Class: BigDecimal

Inherits:
Numeric
  • Object
show all
Defined in:
bigdecimal.c,
lib/bigdecimal/util.rb,
bigdecimal.c

Overview

BigDecimal provides arbitrary-precision floating point decimal arithmetic.

Introduction

Ruby provides built-in support for arbitrary precision integer arithmetic.

For example:

42**13 #=> 1265437718438866624512

BigDecimal provides similar support for very large or very accurate floating point numbers.

Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.

For example, try:

sum = 0
10_000.times do
  sum = sum + 0.0001
end
print sum #=> 0.9999999999999062

and contrast with the output from:

require 'bigdecimal'

sum = BigDecimal("0")
10_000.times do
  sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1

Similarly:

(BigDecimal(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true

(1.2 - 1.0) == 0.2 #=> false

Special features of accurate decimal arithmetic

Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.

Infinity

BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.

BigDecimal(“1.0”) / BigDecimal(“0.0”) #=> Infinity BigDecimal(“-1.0”) / BigDecimal(“0.0”) #=> -Infinity

You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)

Not a Number

When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.

Example:

BigDecimal(“0.0”) / BigDecimal(“0.0”) #=> NaN

You can also create undefined values.

NaN is never considered to be the same as any other value, even NaN itself:

n = BigDecimal(‘NaN’) n == 0.0 #=> false n == n #=> false

Positive and negative zero

If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.

If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.

BigDecimal(“1.0”) / BigDecimal(“-Infinity”) #=> -0.0

If the value is positive, a value of positive zero is returned.

BigDecimal(“1.0”) / BigDecimal(“Infinity”) #=> 0.0

(See BigDecimal.mode for how to specify limits of precision.)

Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.

Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.

bigdecimal/util

When you require bigdecimal/util, the #to_d method will be available on BigDecimal and the native Integer, Float, Rational, and String classes:

require ‘bigdecimal/util’

42.to_d         # => 0.42e2
0.5.to_d        # => 0.5e0
(2/3r).to_d(3)  # => 0.667e0
"0.5".to_d      # => 0.5e0

License

Copyright © 2002 by Shigeo Kobayashi <[email protected]>.

BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.

Maintained by mrkn <[email protected]> and ruby-core members.

Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.

Constant Summary collapse

VERSION =

The version of bigdecimal library

rb_str_new2(RUBY_BIGDECIMAL_VERSION)
BASE =

Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)

INT2FIX((SIGNED_VALUE)VpBaseVal())
EXCEPTION_ALL =

Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.

0xff
EXCEPTION_NaN =

Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.

0x02
EXCEPTION_INFINITY =

Determines what happens when the result of a computation is infinity. See BigDecimal.mode.

0x01
EXCEPTION_UNDERFLOW =

Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.

0x04
EXCEPTION_OVERFLOW =

Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.

0x01
EXCEPTION_ZERODIVIDE =

Determines what happens when a division by zero is performed. See BigDecimal.mode.

0x10
ROUND_MODE =

Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.

0x100
ROUND_UP =

Indicates that values should be rounded away from zero. See BigDecimal.mode.

1
ROUND_DOWN =

Indicates that values should be rounded towards zero. See BigDecimal.mode.

2
ROUND_HALF_UP =

Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.

3
ROUND_HALF_DOWN =

Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.

4
ROUND_CEILING =

Round towards +Infinity. See BigDecimal.mode.

5
ROUND_FLOOR =

Round towards -Infinity. See BigDecimal.mode.

6
ROUND_HALF_EVEN =

Round towards the even neighbor. See BigDecimal.mode.

7
SIGN_NaN =

Indicates that a value is not a number. See BigDecimal.sign.

0
SIGN_POSITIVE_ZERO =

Indicates that a value is +0. See BigDecimal.sign.

1
SIGN_NEGATIVE_ZERO =

Indicates that a value is -0. See BigDecimal.sign.

-1
SIGN_POSITIVE_FINITE =

Indicates that a value is positive and finite. See BigDecimal.sign.

2
SIGN_NEGATIVE_FINITE =

Indicates that a value is negative and finite. See BigDecimal.sign.

-2
SIGN_POSITIVE_INFINITE =

Indicates that a value is positive and infinite. See BigDecimal.sign.

3
SIGN_NEGATIVE_INFINITE =

Indicates that a value is negative and infinite. See BigDecimal.sign.

-3
INFINITY =

Positive infinity value.

f_BigDecimal(1, &arg, rb_cBigDecimal)
NAN =

‘Not a Number’ value.

f_BigDecimal(1, &arg, rb_cBigDecimal)

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

._load(str) ⇒ Object

Internal method used to provide marshalling support. See the Marshal module.



410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# File 'bigdecimal.c', line 410

static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
    ENTER(2);
    Real *pv;
    unsigned char *pch;
    unsigned char ch;
    unsigned long m=0;

    pch = (unsigned char *)StringValueCStr(str);
    /* First get max prec */
    while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
        if(!ISDIGIT(ch)) {
            rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
        }
        m = m*10 + (unsigned long)(ch-'0');
    }
    if (m > VpBaseFig()) m -= VpBaseFig();
    GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self));
    m /= VpBaseFig();
    if (m && pv->MaxPrec > m) {
	pv->MaxPrec = m+1;
    }
    return ToValue(pv);
}

.double_figObject

BigDecimal.double_fig

The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.



320
321
322
323
324
# File 'bigdecimal.c', line 320

static VALUE
BigDecimal_double_fig(VALUE self)
{
    return INT2FIX(VpDblFig());
}

.interpret_loosely(str) ⇒ Object



2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
# File 'bigdecimal.c', line 2738

static VALUE
BigDecimal_s_interpret_loosely(VALUE klass, VALUE str)
{
    ENTER(1);
    char const *c_str;
    Real *pv;

    c_str = StringValueCStr(str);
    GUARD_OBJ(pv, VpAlloc(0, c_str, 0, 1));
    pv->obj = TypedData_Wrap_Struct(klass, &BigDecimal_data_type, pv);
    RB_OBJ_FREEZE(pv->obj);
    return pv->obj;
}

.limit(*args) ⇒ Object

BigDecimal.limit(digits)

Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.



2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
# File 'bigdecimal.c', line 2764

static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
    VALUE  nFig;
    VALUE  nCur = INT2NUM(VpGetPrecLimit());

    if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
	int nf;
	if (NIL_P(nFig)) return nCur;
	nf = NUM2INT(nFig);
	if (nf < 0) {
	    rb_raise(rb_eArgError, "argument must be positive");
	}
	VpSetPrecLimit(nf);
    }
    return nCur;
}

.mode(*args) ⇒ Object

BigDecimal.mode(mode, value)

Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.

Six values of the mode parameter control the handling of arithmetic exceptions:

BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL

For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:

EXCEPTION_NaN

NaN

EXCEPTION_INFINITY

+Infinity or -Infinity

EXCEPTION_UNDERFLOW

0

EXCEPTION_OVERFLOW

+Infinity or -Infinity

EXCEPTION_ZERODIVIDE

+Infinity or -Infinity

One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:

ROUND_UP, :up

round away from zero

ROUND_DOWN, :down, :truncate

round towards zero (truncate)

ROUND_HALF_UP, :half_up, :default

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)

ROUND_HALF_DOWN, :half_down

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.

ROUND_HALF_EVEN, :half_even, :banker

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker’s rounding)

ROUND_CEILING, :ceiling, :ceil

round towards positive infinity (ceil)

ROUND_FLOOR, :floor

round towards negative infinity (floor)



558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
# File 'bigdecimal.c', line 558

static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
    VALUE which;
    VALUE val;
    unsigned long f,fo;

    rb_scan_args(argc, argv, "11", &which, &val);
    f = (unsigned long)NUM2INT(which);

    if (f & VP_EXCEPTION_ALL) {
	/* Exception mode setting */
	fo = VpGetException();
	if (val == Qnil) return INT2FIX(fo);
	if (val != Qfalse && val!=Qtrue) {
	    rb_raise(rb_eArgError, "second argument must be true or false");
	    return Qnil; /* Not reached */
	}
	if (f & VP_EXCEPTION_INFINITY) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
			(fo & (~VP_EXCEPTION_INFINITY))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_NaN) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
			(fo & (~VP_EXCEPTION_NaN))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_UNDERFLOW) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
			(fo & (~VP_EXCEPTION_UNDERFLOW))));
	}
	fo = VpGetException();
	if(f & VP_EXCEPTION_ZERODIVIDE) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
			(fo & (~VP_EXCEPTION_ZERODIVIDE))));
	}
	fo = VpGetException();
	return INT2FIX(fo);
    }
    if (VP_ROUND_MODE == f) {
	/* Rounding mode setting */
	unsigned short sw;
	fo = VpGetRoundMode();
	if (NIL_P(val)) return INT2FIX(fo);
	sw = check_rounding_mode(val);
	fo = VpSetRoundMode(sw);
	return INT2FIX(fo);
    }
    rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid");
    return Qnil;
}

.save_exception_mode { ... } ⇒ Object

Execute the provided block, but preserve the exception mode

BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
  BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)

  BigDecimal(BigDecimal('Infinity'))
  BigDecimal(BigDecimal('-Infinity'))
  BigDecimal(BigDecimal('NaN'))
end

For use with the BigDecimal::EXCEPTION_*

See BigDecimal.mode

Yields:



2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
# File 'bigdecimal.c', line 2823

static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
    unsigned short const exception_mode = VpGetException();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetException(exception_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_limit { ... } ⇒ Object

Execute the provided block, but preserve the precision limit

BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
    BigDecimal.limit(200)
    puts BigDecimal.limit
end
puts BigDecimal.limit

Yields:



2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
# File 'bigdecimal.c', line 2873

static VALUE
BigDecimal_save_limit(VALUE self)
{
    size_t const limit = VpGetPrecLimit();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetPrecLimit(limit);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_rounding_mode { ... } ⇒ Object

Execute the provided block, but preserve the rounding mode

BigDecimal.save_rounding_mode do
  BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
  puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end

For use with the BigDecimal::ROUND_*

See BigDecimal.mode

Yields:



2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
# File 'bigdecimal.c', line 2848

static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
    unsigned short const round_mode = VpGetRoundMode();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetRoundMode(round_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

Instance Method Details

#%Object

%: a%b = a - (a.to_f/b).floor * b



1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
# File 'bigdecimal.c', line 1429

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return ToValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#*(r) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
# File 'bigdecimal.c', line 1248

static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self, r, '*');
    SAVE(b);

    mx = a->Prec + b->Prec;
    GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
    VpMult(c, a, b);
    return ToValue(c);
}

#**(n) ⇒ Object

Returns the value raised to the power of n.

See BigDecimal#power.



2535
2536
2537
2538
2539
# File 'bigdecimal.c', line 2535

static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
    return BigDecimal_power(1, &exp, self);
}

#+(r) ⇒ Object

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
# File 'bigdecimal.c', line 927

static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r, 0);
    }

    if (!b) return DoSomeOne(self,r,'+');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a, b);
    if (mx == (size_t)-1L) {
	GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
	VpAddSub(c, a, b, 1);
    }
    else {
	GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
	if(!mx) {
	    VpSetInf(c, VpGetSign(a));
	}
	else {
	    VpAddSub(c, a, b, 1);
	}
    }
    return ToValue(c);
}

#+Object

Return self.

+BigDecimal('5')  #=> 0.5e1


904
905
906
907
908
# File 'bigdecimal.c', line 904

static VALUE
BigDecimal_uplus(VALUE self)
{
    return self;
}

#-(r) ⇒ Object

a - b -> bigdecimal

Subtract the specified value.

e.g.

c = a - b

The precision of the result value depends on the type of b.

If b is a Float, the precision of the result is Float::DIG+1.

If b is a BigDecimal, the precision of the result is b‘s precision of internal representation from platform. So, it’s return value is platform dependent.



985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
# File 'bigdecimal.c', line 985

static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self,1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self,r,'-');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a,b);
    if (mx == (size_t)-1L) {
	GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
	VpAddSub(c, a, b, -1);
    }
    else {
	GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
	if (!mx) {
	    VpSetInf(c,VpGetSign(a));
	}
	else {
	    VpAddSub(c, a, b, -1);
	}
    }
    return ToValue(c);
}

#-Object

Return the negation of self.

-BigDecimal('5')  #=> -0.5e1


1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
# File 'bigdecimal.c', line 1222

static VALUE
BigDecimal_neg(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    GUARD_OBJ(a, GetVpValue(self, 1));
    GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
    VpAsgn(c, a, -1);
    return ToValue(c);
}

#/Object

For c = self/r: with round operation



1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
# File 'bigdecimal.c', line 1317

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if (!NIL_P(r)) return r; /* coerced by other */
    SAVE(c); SAVE(res); SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
	VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
    }
    return ToValue(c);
}

#<(r) ⇒ Object

a < b

Returns true if a is less than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1168
1169
1170
1171
1172
# File 'bigdecimal.c', line 1168

static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '<');
}

#<=(r) ⇒ Object

a <= b

Returns true if a is less than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1181
1182
1183
1184
1185
# File 'bigdecimal.c', line 1181

static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'L');
}

#<=>(r) ⇒ Object

The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.



1139
1140
1141
1142
1143
# File 'bigdecimal.c', line 1139

static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '*');
}

#==(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true


1155
1156
1157
1158
1159
# File 'bigdecimal.c', line 1155

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#===(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true


1155
1156
1157
1158
1159
# File 'bigdecimal.c', line 1155

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#>(r) ⇒ Object

a > b

Returns true if a is greater than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1194
1195
1196
1197
1198
# File 'bigdecimal.c', line 1194

static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '>');
}

#>=(r) ⇒ Object

a >= b

Returns true if a is greater than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce)



1207
1208
1209
1210
1211
# File 'bigdecimal.c', line 1207

static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'G');
}

#_dumpObject

Method used to provide marshalling support.

inf = BigDecimal('Infinity')
  #=> Infinity
BigDecimal._load(inf._dump)
  #=> Infinity

See the Marshal module.



388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# File 'bigdecimal.c', line 388

static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *vp;
    char *psz;
    VALUE dummy;
    volatile VALUE dump;

    rb_scan_args(argc, argv, "01", &dummy);
    GUARD_OBJ(vp,GetVpValue(self, 1));
    dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
    psz = RSTRING_PTR(dump);
    sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
    VpToString(vp, psz+strlen(psz), 0, 0);
    rb_str_resize(dump, strlen(psz));
    return dump;
}

#absObject

Returns the absolute value, as a BigDecimal.

BigDecimal('5').abs  #=> 0.5e1
BigDecimal('-3').abs #=> 0.3e1


1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
# File 'bigdecimal.c', line 1698

static VALUE
BigDecimal_abs(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpAsgn(c, a, 1);
    VpChangeSign(c, 1);
    return ToValue(c);
}

#add(b, n) ⇒ Object

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
# File 'bigdecimal.c', line 1623

static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_add(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_add(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}

#ceil(*args) ⇒ Object

ceil(n)

Return the smallest integer greater than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0



1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
# File 'bigdecimal.c', line 1953

static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    } else {
	iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#cloneObject



2557
2558
2559
2560
2561
# File 'bigdecimal.c', line 2557

static VALUE
BigDecimal_clone(VALUE self)
{
  return self;
}

#coerce(other) ⇒ Object

The coerce method provides support for Ruby type coercion. It is not enabled by default.

This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.

e.g.

a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5

Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.



870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
# File 'bigdecimal.c', line 870

static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
    ENTER(2);
    VALUE obj;
    Real *b;

    if (RB_TYPE_P(other, T_FLOAT)) {
	GUARD_OBJ(b, GetVpValueWithPrec(other, DBL_DIG+1, 1));
	obj = rb_assoc_new(ToValue(b), self);
    }
    else {
	if (RB_TYPE_P(other, T_RATIONAL)) {
	    Real* pv = DATA_PTR(self);
	    GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
	}
	else {
	    GUARD_OBJ(b, GetVpValue(other, 1));
	}
	obj = rb_assoc_new(b->obj, self);
    }

    return obj;
}

#div(*args) ⇒ Object

call-seq:

div(value, digits)  -> bigdecimal or integer

Divide by the specified value.

digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

If digits is 0, the result is the same as for the / operator or #quo.

If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod.

Examples:

a = BigDecimal("4")
b = BigDecimal("3")

a.div(b, 3)  # => 0.133e1

a.div(b, 0)  # => 0.1333333333333333333e1
a / b        # => 0.1333333333333333333e1
a.quo(b)     # => 0.1333333333333333333e1

a.div(b)     # => 1


1613
1614
1615
1616
1617
1618
1619
1620
1621
# File 'bigdecimal.c', line 1613

static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
    VALUE b,n;

    rb_scan_args(argc, argv, "11", &b, &n);

    return BigDecimal_div2(self, b, n);
}

#divmod(r) ⇒ Object

divmod(value)

Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.

For example:

require 'bigdecimal'

a = BigDecimal("42")
b = BigDecimal("9")

q, m = a.divmod(b)

c = q * b + m

a == c  #=> true

The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.



1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
# File 'bigdecimal.c', line 1527

static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
    ENTER(5);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return rb_assoc_new(ToValue(div), ToValue(mod));
    }
    return DoSomeOne(self,r,rb_intern("divmod"));
}

#dupObject



2557
2558
2559
2560
2561
# File 'bigdecimal.c', line 2557

static VALUE
BigDecimal_clone(VALUE self)
{
  return self;
}

#eql?(r) ⇒ Boolean

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true

Returns:

  • (Boolean)


1155
1156
1157
1158
1159
# File 'bigdecimal.c', line 1155

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#exponentObject

Returns the exponent of the BigDecimal number, as an Integer.

If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.



2144
2145
2146
2147
2148
2149
# File 'bigdecimal.c', line 2144

static VALUE
BigDecimal_exponent(VALUE self)
{
    ssize_t e = VpExponent10(GetVpValue(self, 1));
    return INT2NUM(e);
}

#finite?Boolean

Returns True if the value is finite (not NaN or infinite).

Returns:

  • (Boolean)


701
702
703
704
705
706
707
708
# File 'bigdecimal.c', line 701

static VALUE
BigDecimal_IsFinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p)) return Qfalse;
    if (VpIsInf(p)) return Qfalse;
    return Qtrue;
}

#fixObject

Return the integer part of the number, as a BigDecimal.



1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
# File 'bigdecimal.c', line 1739

static VALUE
BigDecimal_fix(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
    return ToValue(c);
}

#floor(*args) ⇒ Object

floor(n)

Return the largest integer less than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0



1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
# File 'bigdecimal.c', line 1906

static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
	iLoc = 0;
    }
    else {
	iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
    VPrint(stderr, "floor: c=%\n", c);
#endif
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#fracObject

Return the fractional part of the number, as a BigDecimal.



1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
# File 'bigdecimal.c', line 1875

static VALUE
BigDecimal_frac(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpFrac(c, a);
    return ToValue(c);
}

#hashObject

Creates a hash for this BigDecimal.

Two BigDecimals with equal sign, fractional part and exponent have the same hash.



359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# File 'bigdecimal.c', line 359

static VALUE
BigDecimal_hash(VALUE self)
{
    ENTER(1);
    Real *p;
    st_index_t hash;

    GUARD_OBJ(p, GetVpValue(self, 1));
    hash = (st_index_t)p->sign;
    /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
    if(hash == 2 || hash == (st_index_t)-2) {
	hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
	hash += p->exponent;
    }
    return ST2FIX(hash);
}

#infinite?Boolean

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.

Returns:

  • (Boolean)


691
692
693
694
695
696
697
698
# File 'bigdecimal.c', line 691

static VALUE
BigDecimal_IsInfinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsPosInf(p)) return INT2FIX(1);
    if (VpIsNegInf(p)) return INT2FIX(-1);
    return Qnil;
}

#initialize_copy(other) ⇒ Object

:nodoc:

private method for dup and clone the provided BigDecimal other



2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
# File 'bigdecimal.c', line 2545

static VALUE
BigDecimal_initialize_copy(VALUE self, VALUE other)
{
    Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
    Real *x = rb_check_typeddata(other, &BigDecimal_data_type);

    if (self != other) {
	DATA_PTR(self) = VpCopy(pv, x);
    }
    return self;
}

#inspectObject

Returns a string representation of self.

BigDecimal("1234.5678").inspect
  #=> "0.12345678e4"


2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
# File 'bigdecimal.c', line 2156

static VALUE
BigDecimal_inspect(VALUE self)
{
    ENTER(5);
    Real *vp;
    volatile VALUE str;
    size_t nc;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    nc = VpNumOfChars(vp, "E");

    str = rb_str_new(0, nc);
    VpToString(vp, RSTRING_PTR(str), 0, 0);
    rb_str_resize(str, strlen(RSTRING_PTR(str)));
    return str;
}

#moduloObject

%: a%b = a - (a.to_f/b).floor * b



1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
# File 'bigdecimal.c', line 1429

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return ToValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#mult(b, n) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
# File 'bigdecimal.c', line 1671

static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_mult(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_mult(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}

#nan?Boolean

Returns True if the value is Not a Number.

Returns:

  • (Boolean)


680
681
682
683
684
685
686
# File 'bigdecimal.c', line 680

static VALUE
BigDecimal_IsNaN(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p))  return Qtrue;
    return Qfalse;
}

#nonzero?Boolean

Returns self if the value is non-zero, nil otherwise.

Returns:

  • (Boolean)


1129
1130
1131
1132
1133
1134
# File 'bigdecimal.c', line 1129

static VALUE
BigDecimal_nonzero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qnil : self;
}

#power(*args) ⇒ Object

power(n) power(n, prec)

Returns the value raised to the power of n.

Note that n must be an Integer.

Also available as the operator **.



2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
# File 'bigdecimal.c', line 2299

static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
    ENTER(5);
    VALUE vexp, prec;
    Real* exp = NULL;
    Real *x, *y;
    ssize_t mp, ma, n;
    SIGNED_VALUE int_exp;
    double d;

    rb_scan_args(argc, argv, "11", &vexp, &prec);

    GUARD_OBJ(x, GetVpValue(self, 1));
    n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);

    if (VpIsNaN(x)) {
	y = VpCreateRbObject(n, "0");
	RB_GC_GUARD(y->obj);
	VpSetNaN(y);
	return ToValue(y);
    }

  retry:
    switch (TYPE(vexp)) {
      case T_FIXNUM:
	break;

      case T_BIGNUM:
	break;

      case T_FLOAT:
	d = RFLOAT_VALUE(vexp);
	if (d == round(d)) {
	    if (FIXABLE(d)) {
		vexp = LONG2FIX((long)d);
	    }
	    else {
		vexp = rb_dbl2big(d);
	    }
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1);
	break;

      case T_RATIONAL:
	if (is_zero(rb_rational_num(vexp))) {
	    if (is_positive(vexp)) {
		vexp = INT2FIX(0);
		goto retry;
	    }
	}
	else if (is_one(rb_rational_den(vexp))) {
	    vexp = rb_rational_num(vexp);
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, n, 1);
	break;

      case T_DATA:
	if (is_kind_of_BigDecimal(vexp)) {
	    VALUE zero = INT2FIX(0);
	    VALUE rounded = BigDecimal_round(1, &zero, vexp);
	    if (RTEST(BigDecimal_eq(vexp, rounded))) {
		vexp = BigDecimal_to_i(vexp);
		goto retry;
	    }
	    exp = DATA_PTR(vexp);
	    break;
	}
	/* fall through */
      default:
	rb_raise(rb_eTypeError,
		 "wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
		 RB_OBJ_CLASSNAME(vexp));
    }

    if (VpIsZero(x)) {
	if (is_negative(vexp)) {
	    y = VpCreateRbObject(n, "#0");
	    RB_GC_GUARD(y->obj);
	    if (BIGDECIMAL_NEGATIVE_P(x)) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-0) ** (-even_integer)  -> Infinity */
			VpSetPosInf(y);
		    }
		    else {
			/* (-0) ** (-odd_integer)  -> -Infinity */
			VpSetNegInf(y);
		    }
		}
		else {
		    /* (-0) ** (-non_integer)  -> Infinity */
		    VpSetPosInf(y);
		}
	    }
	    else {
		/* (+0) ** (-num)  -> Infinity */
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
	else if (is_zero(vexp)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else {
	    return ToValue(VpCreateRbObject(n, "0"));
	}
    }

    if (is_zero(vexp)) {
	return ToValue(VpCreateRbObject(n, "1"));
    }
    else if (is_one(vexp)) {
	return self;
    }

    if (VpIsInf(x)) {
	if (is_negative(vexp)) {
	    if (BIGDECIMAL_NEGATIVE_P(x)) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-Infinity) ** (-even_integer) -> +0 */
			return ToValue(VpCreateRbObject(n, "0"));
		    }
		    else {
			/* (-Infinity) ** (-odd_integer) -> -0 */
			return ToValue(VpCreateRbObject(n, "-0"));
		    }
		}
		else {
		    /* (-Infinity) ** (-non_integer) -> -0 */
		    return ToValue(VpCreateRbObject(n, "-0"));
		}
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    y = VpCreateRbObject(n, "0");
	    if (BIGDECIMAL_NEGATIVE_P(x)) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			VpSetPosInf(y);
		    }
		    else {
			VpSetNegInf(y);
		    }
		}
		else {
		    /* TODO: support complex */
		    rb_raise(rb_eMathDomainError,
			     "a non-integral exponent for a negative base");
		}
	    }
	    else {
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
    }

    if (exp != NULL) {
	return rmpd_power_by_big_decimal(x, exp, n);
    }
    else if (RB_TYPE_P(vexp, T_BIGNUM)) {
	VALUE abs_value = BigDecimal_abs(self);
	if (is_one(abs_value)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
	    if (is_negative(vexp)) {
		y = VpCreateRbObject(n, "0");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    if (is_positive(vexp)) {
		y = VpCreateRbObject(n, "0");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
    }

    int_exp = FIX2LONG(vexp);
    ma = int_exp;
    if (ma <  0) ma = -ma;
    if (ma == 0) ma = 1;

    if (VpIsDef(x)) {
	mp = x->Prec * (VpBaseFig() + 1);
	GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
    }
    else {
	GUARD_OBJ(y, VpCreateRbObject(1, "0"));
    }
    VpPower(y, x, int_exp);
    if (!NIL_P(prec) && VpIsDef(y)) {
	VpMidRound(y, VpGetRoundMode(), n);
    }
    return ToValue(y);
}

#precsArray

Returns an Array of two Integer values.

The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.

BigDecimal('5').precs #=> [9, 18]

Returns:

  • (Array)


338
339
340
341
342
343
344
345
346
347
348
349
# File 'bigdecimal.c', line 338

static VALUE
BigDecimal_prec(VALUE self)
{
    ENTER(1);
    Real *p;
    VALUE obj;

    GUARD_OBJ(p, GetVpValue(self, 1));
    obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
		       INT2NUM(p->MaxPrec*VpBaseFig()));
    return obj;
}

#quoObject

For c = self/r: with round operation



1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
# File 'bigdecimal.c', line 1317

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if (!NIL_P(r)) return r; /* coerced by other */
    SAVE(c); SAVE(res); SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
	VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
    }
    return ToValue(c);
}

#remainderObject

remainder



1495
1496
1497
1498
1499
1500
1501
1502
1503
# File 'bigdecimal.c', line 1495

static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
    VALUE  f;
    Real  *d, *rv = 0;
    f = BigDecimal_divremain(self, r, &d, &rv);
    if (!NIL_P(f)) return f;
    return ToValue(rv);
}

#round(*args) ⇒ Object

round(n, mode)

Round to the nearest integer (by default), returning the result as a BigDecimal if n is specified, or as an Integer if it isn’t.

BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10

BigDecimal(‘3.14159’).round(2).class.name #=> “BigDecimal” BigDecimal(‘3.14159’).round.class.name #=> “Integer”

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300.0

The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.



1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
# File 'bigdecimal.c', line 1778

static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real   *c, *a;
    int    iLoc = 0;
    VALUE  vLoc;
    VALUE  vRound;
    size_t mx, pl;

    unsigned short sw = VpGetRoundMode();

    switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
      case 0:
	iLoc = 0;
	break;
      case 1:
        if (RB_TYPE_P(vLoc, T_HASH)) {
	    sw = check_rounding_mode_option(vLoc);
	}
	else {
	    iLoc = NUM2INT(vLoc);
	}
	break;
      case 2:
	iLoc = NUM2INT(vLoc);
	if (RB_TYPE_P(vRound, T_HASH)) {
	    sw = check_rounding_mode_option(vRound);
	}
	else {
	    sw = check_rounding_mode(vRound);
	}
	break;
      default:
	break;
    }

    pl = VpSetPrecLimit(0);
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, sw, iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#signObject

Returns the sign of the value.

Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.

The specific value returned indicates the type and sign of the BigDecimal, as follows:

BigDecimal::SIGN_NaN

value is Not a Number

BigDecimal::SIGN_POSITIVE_ZERO

value is +0

BigDecimal::SIGN_NEGATIVE_ZERO

value is -0

BigDecimal::SIGN_POSITIVE_INFINITE

value is +Infinity

BigDecimal::SIGN_NEGATIVE_INFINITE

value is -Infinity

BigDecimal::SIGN_POSITIVE_FINITE

value is positive

BigDecimal::SIGN_NEGATIVE_FINITE

value is negative



2798
2799
2800
2801
2802
2803
# File 'bigdecimal.c', line 2798

static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
    int s = GetVpValue(self, 1)->sign;
    return INT2FIX(s);
}

#splitObject

Splits a BigDecimal number into four parts, returned as an array of values.

The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.

The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.

The third value is the base used for arithmetic (currently always 10) as an Integer.

The fourth value is an Integer exponent.

If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.

From these values, you can translate a BigDecimal to a float as follows:

sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)

(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)



2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
# File 'bigdecimal.c', line 2107

static VALUE
BigDecimal_split(VALUE self)
{
    ENTER(5);
    Real *vp;
    VALUE obj,str;
    ssize_t e, s;
    char *psz1;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    str = rb_str_new(0, VpNumOfChars(vp, "E"));
    psz1 = RSTRING_PTR(str);
    VpSzMantissa(vp, psz1);
    s = 1;
    if(psz1[0] == '-') {
	size_t len = strlen(psz1 + 1);

	memmove(psz1, psz1 + 1, len);
	psz1[len] = '\0';
        s = -1;
    }
    if (psz1[0] == 'N') s = 0; /* NaN */
    e = VpExponent10(vp);
    obj = rb_ary_new2(4);
    rb_ary_push(obj, INT2FIX(s));
    rb_ary_push(obj, str);
    rb_str_resize(str, strlen(psz1));
    rb_ary_push(obj, INT2FIX(10));
    rb_ary_push(obj, INT2NUM(e));
    return obj;
}

#sqrt(nFig) ⇒ Object

sqrt(n)

Returns the square root of the value.

Result has at least n significant digits.



1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
# File 'bigdecimal.c', line 1720

static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
    ENTER(5);
    Real *c, *a;
    size_t mx, n;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);

    n = GetPrecisionInt(nFig) + VpDblFig() + BASE_FIG;
    if (mx <= n) mx = n;
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSqrt(c, a);
    return ToValue(c);
}

#sub(b, n) ⇒ Object

sub(value, digits) -> bigdecimal

Subtract the specified value.

e.g.

c = a.sub(b,n)
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
# File 'bigdecimal.c', line 1653

static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_sub(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_sub(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}

#to_dObject

call-seq:

a.to_d -> bigdecimal

Returns self.

require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_d                       # => 0.314e1


106
107
108
# File 'lib/bigdecimal/util.rb', line 106

def to_d
  self
end

#to_digitsObject

call-seq:

a.to_digits -> string

Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.

require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_digits                  # => "3.14"


86
87
88
89
90
91
92
93
94
# File 'lib/bigdecimal/util.rb', line 86

def to_digits
  if self.nan? || self.infinite? || self.zero?
    self.to_s
  else
    i       = self.to_i.to_s
    _,f,_,z = self.frac.split
    i + "." + ("0"*(-z)) + f
  end
end

#to_fObject

Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.



777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
# File 'bigdecimal.c', line 777

static VALUE
BigDecimal_to_f(VALUE self)
{
    ENTER(1);
    Real *p;
    double d;
    SIGNED_VALUE e;
    char *buf;
    volatile VALUE str;

    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpVtoD(&d, &e, p) != 1)
	return rb_float_new(d);
    if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
	goto overflow;
    if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
	goto underflow;

    str = rb_str_new(0, VpNumOfChars(p, "E"));
    buf = RSTRING_PTR(str);
    VpToString(p, buf, 0, 0);
    errno = 0;
    d = strtod(buf, 0);
    if (errno == ERANGE) {
	if (d == 0.0) goto underflow;
	if (fabs(d) >= HUGE_VAL) goto overflow;
    }
    return rb_float_new(d);

overflow:
    VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
	return rb_float_new(VpGetDoubleNegInf());
    else
	return rb_float_new(VpGetDoublePosInf());

underflow:
    VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
	return rb_float_new(-0.0);
    else
	return rb_float_new(0.0);
}

#to_iObject

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.



730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
# File 'bigdecimal.c', line 730

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_AREF(a, 1);
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (BIGDECIMAL_NEGATIVE_P(p)) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else {
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	}
	if (RB_TYPE_P(ret, T_FLOAT)) {
	    rb_raise(rb_eFloatDomainError, "Infinity");
	}
	return ret;
    }
}

#to_intObject

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.



730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
# File 'bigdecimal.c', line 730

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_AREF(a, 1);
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (BIGDECIMAL_NEGATIVE_P(p)) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else {
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	}
	if (RB_TYPE_P(ret, T_FLOAT)) {
	    rb_raise(rb_eFloatDomainError, "Infinity");
	}
	return ret;
    }
}

#to_rObject

Converts a BigDecimal to a Rational.



824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
# File 'bigdecimal.c', line 824

static VALUE
BigDecimal_to_r(VALUE self)
{
    Real *p;
    ssize_t sign, power, denomi_power;
    VALUE a, digits, numerator;

    p = GetVpValue(self, 1);
    BigDecimal_check_num(p);

    sign = VpGetSign(p);
    power = VpExponent10(p);
    a = BigDecimal_split(self);
    digits = RARRAY_AREF(a, 1);
    denomi_power = power - RSTRING_LEN(digits);
    numerator = rb_funcall(digits, rb_intern("to_i"), 0);

    if (sign < 0) {
	numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
    }
    if (denomi_power < 0) {
	return rb_Rational(numerator,
			   rb_funcall(INT2FIX(10), rb_intern("**"), 1,
				      INT2FIX(-denomi_power)));
    }
    else {
	return rb_Rational1(rb_funcall(numerator, '*', 1,
				       rb_funcall(INT2FIX(10), rb_intern("**"), 1,
						  INT2FIX(denomi_power))));
    }
}

#to_s(*args) ⇒ Object

to_s(s)

Converts the value to a string.

The default format looks like 0.xxxxEnn.

The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.

If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.

A space at the start of s returns positive values with a leading space.

If s contains a number, a space is inserted after each group of that many fractional digits.

If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.

If s ends with an ‘F’, conventional floating point notation is used.

Examples:

BigDecimal('-123.45678901234567890').to_s('5F')
  #=> '-123.45678 90123 45678 9'

BigDecimal('123.45678901234567890').to_s('+8F')
  #=> '+123.45678901 23456789'

BigDecimal('123.45678901234567890').to_s(' F')
  #=> ' 123.4567890123456789'


2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
# File 'bigdecimal.c', line 2012

static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    int   fmt = 0;   /* 0: E format, 1: F format */
    int   fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */
    Real  *vp;
    volatile VALUE str;
    char  *psz;
    char   ch;
    size_t nc, mc = 0;
    SIGNED_VALUE m;
    VALUE  f;

    GUARD_OBJ(vp, GetVpValue(self, 1));

    if (rb_scan_args(argc, argv, "01", &f) == 1) {
	if (RB_TYPE_P(f, T_STRING)) {
	    psz = StringValueCStr(f);
	    if (*psz == ' ') {
		fPlus = 1;
		psz++;
	    }
	    else if (*psz == '+') {
		fPlus = 2;
		psz++;
	    }
	    while ((ch = *psz++) != 0) {
		if (ISSPACE(ch)) {
		    continue;
		}
		if (!ISDIGIT(ch)) {
		    if (ch == 'F' || ch == 'f') {
			fmt = 1; /* F format */
		    }
		    break;
		}
		mc = mc*10 + ch - '0';
	    }
	}
	else {
	    m = NUM2INT(f);
	    if (m <= 0) {
		rb_raise(rb_eArgError, "argument must be positive");
	    }
	    mc = (size_t)m;
	}
    }
    if (fmt) {
	nc = VpNumOfChars(vp, "F");
    }
    else {
	nc = VpNumOfChars(vp, "E");
    }
    if (mc > 0) {
	nc += (nc + mc - 1) / mc + 1;
    }

    str = rb_str_new(0, nc);
    psz = RSTRING_PTR(str);

    if (fmt) {
	VpToFString(vp, psz, mc, fPlus);
    }
    else {
	VpToString (vp, psz, mc, fPlus);
    }
    rb_str_resize(str, strlen(psz));
    return str;
}

#truncate(*args) ⇒ Object

truncate(n)

Truncate to the nearest integer (by default), returning the result as a BigDecimal.

BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0



1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
# File 'bigdecimal.c', line 1846

static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    }
    else {
	iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#zero?Boolean

Returns True if the value is zero.

Returns:

  • (Boolean)


1121
1122
1123
1124
1125
1126
# File 'bigdecimal.c', line 1121

static VALUE
BigDecimal_zero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qtrue : Qfalse;
}