# Class: BigDecimal

Inherits:
Numeric
• Object
show all
Defined in:
bigdecimal.c,
lib/bigdecimal/util.rb,
bigdecimal.c

## Overview

BigDecimal provides arbitrary-precision floating point decimal arithmetic.

## Introduction

Ruby provides built-in support for arbitrary precision integer arithmetic.

For example:

42**13 #=> 1265437718438866624512

BigDecimal provides similar support for very large or very accurate floating point numbers.

Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.

For example, try:

``````sum = 0
10_000.times do
sum = sum + 0.0001
end
print sum #=> 0.9999999999999062
``````

and contrast with the output from:

``````require 'bigdecimal'

sum = BigDecimal("0")
10_000.times do
sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1
``````

Similarly:

(BigDecimal(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true

(1.2 - 1.0) == 0.2 #=> false

## Special features of accurate decimal arithmetic

Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.

### Infinity

BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.

BigDecimal(“1.0”) / BigDecimal(“0.0”) #=> Infinity BigDecimal(“-1.0”) / BigDecimal(“0.0”) #=> -Infinity

You can represent infinite numbers to BigDecimal using the strings `'Infinity'`, `'+Infinity'` and `'-Infinity'` (case-sensitive)

### Not a Number

When a computation results in an undefined value, the special value `NaN` (for ‘not a number’) is returned.

Example:

BigDecimal(“0.0”) / BigDecimal(“0.0”) #=> NaN

You can also create undefined values.

NaN is never considered to be the same as any other value, even NaN itself:

n = BigDecimal(‘NaN’) n == 0.0 #=> false n == n #=> false

### Positive and negative zero

If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.

If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.

BigDecimal(“1.0”) / BigDecimal(“-Infinity”) #=> -0.0

If the value is positive, a value of positive zero is returned.

BigDecimal(“1.0”) / BigDecimal(“Infinity”) #=> 0.0

(See BigDecimal.mode for how to specify limits of precision.)

Note that `-0.0` and `0.0` are considered to be the same for the purposes of comparison.

Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.

## bigdecimal/util

When you require `bigdecimal/util`, the #to_d method will be available on BigDecimal and the native Integer, Float, Rational, and String classes:

require ‘bigdecimal/util’

``````42.to_d         # => 0.42e2
0.5.to_d        # => 0.5e0
(2/3r).to_d(3)  # => 0.667e0
"0.5".to_d      # => 0.5e0
``````

BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.

Maintained by mrkn <[email protected]> and ruby-core members.

Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.

## Constant Summary collapse

VERSION =

The version of bigdecimal library

`rb_str_new2(RUBY_BIGDECIMAL_VERSION)`
BASE =

Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)

`INT2FIX((SIGNED_VALUE)VpBaseVal())`
EXCEPTION_ALL =

Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.

`0xff`
EXCEPTION_NaN =

Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.

`0x02`
EXCEPTION_INFINITY =

Determines what happens when the result of a computation is infinity. See BigDecimal.mode.

`0x01`
EXCEPTION_UNDERFLOW =

Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.

`0x04`
EXCEPTION_OVERFLOW =

Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.

`0x01`
EXCEPTION_ZERODIVIDE =

Determines what happens when a division by zero is performed. See BigDecimal.mode.

`0x10`
ROUND_MODE =

Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.

`0x100`
ROUND_UP =

Indicates that values should be rounded away from zero. See BigDecimal.mode.

`1`
ROUND_DOWN =

Indicates that values should be rounded towards zero. See BigDecimal.mode.

`2`
ROUND_HALF_UP =

Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.

`3`
ROUND_HALF_DOWN =

Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.

`4`
ROUND_CEILING =

Round towards +Infinity. See BigDecimal.mode.

`5`
ROUND_FLOOR =

Round towards -Infinity. See BigDecimal.mode.

`6`
ROUND_HALF_EVEN =

Round towards the even neighbor. See BigDecimal.mode.

`7`
SIGN_NaN =

Indicates that a value is not a number. See BigDecimal.sign.

`0`
SIGN_POSITIVE_ZERO =

Indicates that a value is +0. See BigDecimal.sign.

`1`
SIGN_NEGATIVE_ZERO =

Indicates that a value is -0. See BigDecimal.sign.

`-1`
SIGN_POSITIVE_FINITE =

Indicates that a value is positive and finite. See BigDecimal.sign.

`2`
SIGN_NEGATIVE_FINITE =

Indicates that a value is negative and finite. See BigDecimal.sign.

`-2`
SIGN_POSITIVE_INFINITE =

Indicates that a value is positive and infinite. See BigDecimal.sign.

`3`
SIGN_NEGATIVE_INFINITE =

Indicates that a value is negative and infinite. See BigDecimal.sign.

`-3`
INFINITY =

Positive infinity value.

`f_BigDecimal(1, &arg, rb_cBigDecimal)`
NAN =

‘Not a Number’ value.

`f_BigDecimal(1, &arg, rb_cBigDecimal)`

## Class Method Summary collapse

• Internal method used to provide marshalling support.

• BigDecimal.double_fig.

• BigDecimal.limit(digits).

• BigDecimal.mode(mode, value).

• Execute the provided block, but preserve the exception mode.

• Execute the provided block, but preserve the precision limit.

• Execute the provided block, but preserve the rounding mode.

## Instance Method Summary collapse

• %: a%b = a - (a.to_f/b).floor * b.

• call-seq: mult(value, digits).

• Returns the value raised to the power of n.

• Return self.

• a - b -> bigdecimal.

• Return the negation of self.

• For c = self/r: with round operation.

• a < b.

• a <= b.

• The comparison operator.

• Tests for value equality; returns true if the values are equal.

• Tests for value equality; returns true if the values are equal.

• a > b.

• a >= b.

• Method used to provide marshalling support.

• Returns the absolute value, as a BigDecimal.

• ceil(n).

• The coerce method provides support for Ruby type coercion.

• call-seq: div(value, digits) -> bigdecimal or integer.

• divmod(value).

• Tests for value equality; returns true if the values are equal.

• Returns the exponent of the BigDecimal number, as an Integer.

• Returns True if the value is finite (not NaN or infinite).

• Return the integer part of the number, as a BigDecimal.

• floor(n).

• Return the fractional part of the number, as a BigDecimal.

• Creates a hash for this BigDecimal.

• Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.

• Returns a string representation of self.

• %: a%b = a - (a.to_f/b).floor * b.

• call-seq: mult(value, digits).

• Returns True if the value is Not a Number.

• Returns self if the value is non-zero, nil otherwise.

• power(n) power(n, prec).

• Returns the number of decimal digits in this number.

• Returns an Array of two Integer values that represent platform-dependent internal storage properties.

• For c = self/r: with round operation.

• remainder.

• round(n, mode).

• Returns the sign of the value.

• Splits a BigDecimal number into four parts, returned as an array of values.

• sqrt(n).

• sub(value, digits) -> bigdecimal.

• call-seq: a.to_d -> bigdecimal.

• call-seq: a.to_digits -> string.

• Returns a new Float object having approximately the same value as the BigDecimal number.

• Returns the value as an Integer.

• Returns the value as an Integer.

• Converts a BigDecimal to a Rational.

• to_s(s).

• truncate(n).

• Returns True if the value is zero.

## Class Method Details

Internal method used to provide marshalling support. See the Marshal module.

 ``` 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562``` ```# File 'bigdecimal.c', line 538 static VALUE BigDecimal_load(VALUE self, VALUE str) { ENTER(2); Real *pv; unsigned char *pch; unsigned char ch; unsigned long m=0; pch = (unsigned char *)StringValueCStr(str); /* First get max prec */ while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') { if(!ISDIGIT(ch)) { rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string"); } m = m*10 + (unsigned long)(ch-'0'); } if (m > VpBaseFig()) m -= VpBaseFig(); GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self)); m /= VpBaseFig(); if (m && pv->MaxPrec > m) { pv->MaxPrec = m+1; } return ToValue(pv); }```

### .double_fig ⇒ Object

BigDecimal.double_fig

The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.

 ``` 349 350 351 352 353``` ```# File 'bigdecimal.c', line 349 static VALUE BigDecimal_double_fig(VALUE self) { return INT2FIX(VpDblFig()); }```

### .interpret_loosely(str) ⇒ Object

 ``` 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904``` ```# File 'bigdecimal.c', line 2892 static VALUE BigDecimal_s_interpret_loosely(VALUE klass, VALUE str) { ENTER(1); char const *c_str; Real *pv; c_str = StringValueCStr(str); GUARD_OBJ(pv, VpAlloc(0, c_str, 0, 1)); pv->obj = TypedData_Wrap_Struct(klass, &BigDecimal_data_type, pv); RB_OBJ_FREEZE(pv->obj); return pv->obj; }```

### .limit(*args) ⇒ Object

BigDecimal.limit(digits)

Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.

 ``` 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934``` ```# File 'bigdecimal.c', line 2918 static VALUE BigDecimal_limit(int argc, VALUE *argv, VALUE self) { VALUE nFig; VALUE nCur = SIZET2NUM(VpGetPrecLimit()); if (rb_scan_args(argc, argv, "01", &nFig) == 1) { int nf; if (NIL_P(nFig)) return nCur; nf = NUM2INT(nFig); if (nf < 0) { rb_raise(rb_eArgError, "argument must be positive"); } VpSetPrecLimit(nf); } return nCur; }```

### .mode(*args) ⇒ Object

BigDecimal.mode(mode, value)

Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.

Six values of the mode parameter control the handling of arithmetic exceptions:

BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL

For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:

EXCEPTION_NaN

NaN

EXCEPTION_INFINITY

+Infinity or -Infinity

EXCEPTION_UNDERFLOW

0

EXCEPTION_OVERFLOW

+Infinity or -Infinity

EXCEPTION_ZERODIVIDE

+Infinity or -Infinity

One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:

ROUND_UP, :up

round away from zero

ROUND_DOWN, :down, :truncate

round towards zero (truncate)

ROUND_HALF_UP, :half_up, :default

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)

ROUND_HALF_DOWN, :half_down

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.

ROUND_HALF_EVEN, :half_even, :banker

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker’s rounding)

ROUND_CEILING, :ceiling, :ceil

round towards positive infinity (ceil)

ROUND_FLOOR, :floor

round towards negative infinity (floor)

 ``` 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737``` ```# File 'bigdecimal.c', line 686 static VALUE BigDecimal_mode(int argc, VALUE *argv, VALUE self) { VALUE which; VALUE val; unsigned long f,fo; rb_scan_args(argc, argv, "11", &which, &val); f = (unsigned long)NUM2INT(which); if (f & VP_EXCEPTION_ALL) { /* Exception mode setting */ fo = VpGetException(); if (val == Qnil) return INT2FIX(fo); if (val != Qfalse && val!=Qtrue) { rb_raise(rb_eArgError, "second argument must be true or false"); return Qnil; /* Not reached */ } if (f & VP_EXCEPTION_INFINITY) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) : (fo & (~VP_EXCEPTION_INFINITY)))); } fo = VpGetException(); if (f & VP_EXCEPTION_NaN) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) : (fo & (~VP_EXCEPTION_NaN)))); } fo = VpGetException(); if (f & VP_EXCEPTION_UNDERFLOW) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) : (fo & (~VP_EXCEPTION_UNDERFLOW)))); } fo = VpGetException(); if(f & VP_EXCEPTION_ZERODIVIDE) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) : (fo & (~VP_EXCEPTION_ZERODIVIDE)))); } fo = VpGetException(); return INT2FIX(fo); } if (VP_ROUND_MODE == f) { /* Rounding mode setting */ unsigned short sw; fo = VpGetRoundMode(); if (NIL_P(val)) return INT2FIX(fo); sw = check_rounding_mode(val); fo = VpSetRoundMode(sw); return INT2FIX(fo); } rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid"); return Qnil; }```

### .save_exception_mode { ... } ⇒ Object

Execute the provided block, but preserve the exception mode

``````BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)

BigDecimal(BigDecimal('Infinity'))
BigDecimal(BigDecimal('-Infinity'))
BigDecimal(BigDecimal('NaN'))
end
``````

For use with the BigDecimal::EXCEPTION_*

See BigDecimal.mode

Yields:

 ``` 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986``` ```# File 'bigdecimal.c', line 2977 static VALUE BigDecimal_save_exception_mode(VALUE self) { unsigned short const exception_mode = VpGetException(); int state; VALUE ret = rb_protect(rb_yield, Qnil, &state); VpSetException(exception_mode); if (state) rb_jump_tag(state); return ret; }```

### .save_limit { ... } ⇒ Object

Execute the provided block, but preserve the precision limit

``````BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
BigDecimal.limit(200)
puts BigDecimal.limit
end
puts BigDecimal.limit
``````

Yields:

 ``` 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036``` ```# File 'bigdecimal.c', line 3027 static VALUE BigDecimal_save_limit(VALUE self) { size_t const limit = VpGetPrecLimit(); int state; VALUE ret = rb_protect(rb_yield, Qnil, &state); VpSetPrecLimit(limit); if (state) rb_jump_tag(state); return ret; }```

### .save_rounding_mode { ... } ⇒ Object

Execute the provided block, but preserve the rounding mode

``````BigDecimal.save_rounding_mode do
BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end
``````

For use with the BigDecimal::ROUND_*

See BigDecimal.mode

Yields:

 ``` 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011``` ```# File 'bigdecimal.c', line 3002 static VALUE BigDecimal_save_rounding_mode(VALUE self) { unsigned short const round_mode = VpGetRoundMode(); int state; VALUE ret = rb_protect(rb_yield, Qnil, &state); VpSetRoundMode(round_mode); if (state) rb_jump_tag(state); return ret; }```

## Instance Method Details

### #% ⇒ Object

%: a%b = a - (a.to_f/b).floor * b

 ``` 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568``` ```# File 'bigdecimal.c', line 1557 static VALUE BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */ { ENTER(3); Real *div = NULL, *mod = NULL; if (BigDecimal_DoDivmod(self, r, &div, &mod)) { SAVE(div); SAVE(mod); return ToValue(mod); } return DoSomeOne(self, r, '%'); }```

### #*(r) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

``````c = a.mult(b,n)
c = a * b
``````
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

 ``` 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401``` ```# File 'bigdecimal.c', line 1376 static VALUE BigDecimal_mult(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); if (RB_TYPE_P(r, T_FLOAT)) { b = GetVpValueWithPrec(r, DBLE_FIG, 1); } else if (RB_TYPE_P(r, T_RATIONAL)) { b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); } else { b = GetVpValue(r,0); } if (!b) return DoSomeOne(self, r, '*'); SAVE(b); mx = a->Prec + b->Prec; GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); VpMult(c, a, b); return ToValue(c); }```

### #**(n) ⇒ Object

Returns the value raised to the power of n.

See BigDecimal#power.

 ``` 2676 2677 2678 2679 2680``` ```# File 'bigdecimal.c', line 2676 static VALUE BigDecimal_power_op(VALUE self, VALUE exp) { return BigDecimal_power(1, &exp, self); }```

### #+(r) ⇒ Object

e.g.

``````c = a.add(b,n)
c = a + b
``````
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

 ``` 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094``` ```# File 'bigdecimal.c', line 1055 static VALUE BigDecimal_add(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); if (RB_TYPE_P(r, T_FLOAT)) { b = GetVpValueWithPrec(r, DBLE_FIG, 1); } else if (RB_TYPE_P(r, T_RATIONAL)) { b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); } else { b = GetVpValue(r, 0); } if (!b) return DoSomeOne(self,r,'+'); SAVE(b); if (VpIsNaN(b)) return b->obj; if (VpIsNaN(a)) return a->obj; mx = GetAddSubPrec(a, b); if (mx == (size_t)-1L) { GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0")); VpAddSub(c, a, b, 1); } else { GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0")); if(!mx) { VpSetInf(c, VpGetSign(a)); } else { VpAddSub(c, a, b, 1); } } return ToValue(c); }```

### #+ ⇒ Object

Return self.

``````+BigDecimal('5')  #=> 0.5e1
``````
 ``` 1032 1033 1034 1035 1036``` ```# File 'bigdecimal.c', line 1032 static VALUE BigDecimal_uplus(VALUE self) { return self; }```

### #-(r) ⇒ Object

a - b -> bigdecimal

Subtract the specified value.

e.g.

``````c = a - b
``````

The precision of the result value depends on the type of `b`.

If `b` is a Float, the precision of the result is Float::DIG+1.

If `b` is a BigDecimal, the precision of the result is `b`‘s precision of internal representation from platform. So, it’s return value is platform dependent.

 ``` 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152``` ```# File 'bigdecimal.c', line 1113 static VALUE BigDecimal_sub(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; size_t mx; GUARD_OBJ(a, GetVpValue(self,1)); if (RB_TYPE_P(r, T_FLOAT)) { b = GetVpValueWithPrec(r, DBLE_FIG, 1); } else if (RB_TYPE_P(r, T_RATIONAL)) { b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); } else { b = GetVpValue(r,0); } if (!b) return DoSomeOne(self,r,'-'); SAVE(b); if (VpIsNaN(b)) return b->obj; if (VpIsNaN(a)) return a->obj; mx = GetAddSubPrec(a,b); if (mx == (size_t)-1L) { GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0")); VpAddSub(c, a, b, -1); } else { GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); if (!mx) { VpSetInf(c,VpGetSign(a)); } else { VpAddSub(c, a, b, -1); } } return ToValue(c); }```

### #- ⇒ Object

Return the negation of self.

``````-BigDecimal('5')  #=> -0.5e1
``````
 ``` 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359``` ```# File 'bigdecimal.c', line 1350 static VALUE BigDecimal_neg(VALUE self) { ENTER(5); Real *c, *a; GUARD_OBJ(a, GetVpValue(self, 1)); GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0")); VpAsgn(c, a, -1); return ToValue(c); }```

### #/ ⇒ Object

For c = self/r: with round operation

 ``` 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463``` ```# File 'bigdecimal.c', line 1445 static VALUE BigDecimal_div(VALUE self, VALUE r) /* For c = self/r: with round operation */ { ENTER(5); Real *c=NULL, *res=NULL, *div = NULL; r = BigDecimal_divide(&c, &res, &div, self, r); if (!NIL_P(r)) return r; /* coerced by other */ SAVE(c); SAVE(res); SAVE(div); /* a/b = c + r/b */ /* c xxxxx r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE */ /* Round */ if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */ VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0])); } return ToValue(c); }```

### #<(r) ⇒ Object

a < b

Returns true if a is less than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).

 ``` 1296 1297 1298 1299 1300``` ```# File 'bigdecimal.c', line 1296 static VALUE BigDecimal_lt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '<'); }```

### #<=(r) ⇒ Object

a <= b

Returns true if a is less than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).

 ``` 1309 1310 1311 1312 1313``` ```# File 'bigdecimal.c', line 1309 static VALUE BigDecimal_le(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'L'); }```

### #<=>(r) ⇒ Object

The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.

 ``` 1267 1268 1269 1270 1271``` ```# File 'bigdecimal.c', line 1267 static VALUE BigDecimal_comp(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '*'); }```

### #==(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

``````BigDecimal('1.0') == 1.0  #=> true
``````
 ``` 1283 1284 1285 1286 1287``` ```# File 'bigdecimal.c', line 1283 static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); }```

### #===(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

``````BigDecimal('1.0') == 1.0  #=> true
``````
 ``` 1283 1284 1285 1286 1287``` ```# File 'bigdecimal.c', line 1283 static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); }```

### #>(r) ⇒ Object

a > b

Returns true if a is greater than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).

 ``` 1322 1323 1324 1325 1326``` ```# File 'bigdecimal.c', line 1322 static VALUE BigDecimal_gt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '>'); }```

### #>=(r) ⇒ Object

a >= b

Returns true if a is greater than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce)

 ``` 1335 1336 1337 1338 1339``` ```# File 'bigdecimal.c', line 1335 static VALUE BigDecimal_ge(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'G'); }```

### #_dump ⇒ Object

Method used to provide marshalling support.

``````inf = BigDecimal('Infinity')
#=> Infinity
#=> Infinity
``````

See the Marshal module.

 ``` 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533``` ```# File 'bigdecimal.c', line 516 static VALUE BigDecimal_dump(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *vp; char *psz; VALUE dummy; volatile VALUE dump; rb_scan_args(argc, argv, "01", &dummy); GUARD_OBJ(vp,GetVpValue(self, 1)); dump = rb_str_new(0, VpNumOfChars(vp, "E")+50); psz = RSTRING_PTR(dump); sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig()); VpToString(vp, psz+strlen(psz), 0, 0); rb_str_resize(dump, strlen(psz)); return dump; }```

### #abs ⇒ Object

Returns the absolute value, as a BigDecimal.

``````BigDecimal('5').abs  #=> 0.5e1
BigDecimal('-3').abs #=> 0.3e1
``````
 ``` 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839``` ```# File 'bigdecimal.c', line 1826 static VALUE BigDecimal_abs(VALUE self) { ENTER(5); Real *c, *a; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0")); VpAsgn(c, a, 1); VpChangeSign(c, 1); return ToValue(c); }```

e.g.

``````c = a.add(b,n)
c = a + b
``````
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

 ``` 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766``` ```# File 'bigdecimal.c', line 1751 static VALUE BigDecimal_add2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; SIGNED_VALUE mx = GetPrecisionInt(n); if (mx == 0) return BigDecimal_add(self, b); else { size_t pl = VpSetPrecLimit(0); VALUE c = BigDecimal_add(self, b); VpSetPrecLimit(pl); GUARD_OBJ(cv, GetVpValue(c, 1)); VpLeftRound(cv, VpGetRoundMode(), mx); return ToValue(cv); } }```

### #ceil(*args) ⇒ Object

ceil(n)

Return the smallest integer greater than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0

 ``` 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108``` ```# File 'bigdecimal.c', line 2084 static VALUE BigDecimal_ceil(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc; VALUE vLoc; size_t mx, pl = VpSetPrecLimit(0); if (rb_scan_args(argc, argv, "01", &vLoc) == 0) { iLoc = 0; } else { iLoc = NUM2INT(vLoc); } GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c, a, VP_ROUND_CEIL, iLoc); if (argc == 0) { return BigDecimal_to_i(ToValue(c)); } return ToValue(c); }```

### #clone ⇒ Object

 ``` 2698 2699 2700 2701 2702``` ```# File 'bigdecimal.c', line 2698 static VALUE BigDecimal_clone(VALUE self) { return self; }```

### #coerce(other) ⇒ Object

The coerce method provides support for Ruby type coercion. It is not enabled by default.

This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.

e.g.

``````a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5
``````

Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.

 ``` 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021``` ```# File 'bigdecimal.c', line 998 static VALUE BigDecimal_coerce(VALUE self, VALUE other) { ENTER(2); VALUE obj; Real *b; if (RB_TYPE_P(other, T_FLOAT)) { GUARD_OBJ(b, GetVpValueWithPrec(other, DBLE_FIG, 1)); obj = rb_assoc_new(ToValue(b), self); } else { if (RB_TYPE_P(other, T_RATIONAL)) { Real* pv = DATA_PTR(self); GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1)); } else { GUARD_OBJ(b, GetVpValue(other, 1)); } obj = rb_assoc_new(b->obj, self); } return obj; }```

### #div(*args) ⇒ Object

call-seq:

``````div(value, digits)  -> bigdecimal or integer
``````

Divide by the specified value.

digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

If digits is 0, the result is the same as for the / operator or #quo.

If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod.

Examples:

``````a = BigDecimal("4")
b = BigDecimal("3")

a.div(b, 3)  # => 0.133e1

a.div(b, 0)  # => 0.1333333333333333333e1
a / b        # => 0.1333333333333333333e1
a.quo(b)     # => 0.1333333333333333333e1

a.div(b)     # => 1
``````
 ``` 1741 1742 1743 1744 1745 1746 1747 1748 1749``` ```# File 'bigdecimal.c', line 1741 static VALUE BigDecimal_div3(int argc, VALUE *argv, VALUE self) { VALUE b,n; rb_scan_args(argc, argv, "11", &b, &n); return BigDecimal_div2(self, b, n); }```

### #divmod(r) ⇒ Object

divmod(value)

Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.

For example:

``````require 'bigdecimal'

a = BigDecimal("42")
b = BigDecimal("9")

q, m = a.divmod(b)

c = q * b + m

a == c  #=> true
``````

The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.

 ``` 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666``` ```# File 'bigdecimal.c', line 1655 static VALUE BigDecimal_divmod(VALUE self, VALUE r) { ENTER(5); Real *div = NULL, *mod = NULL; if (BigDecimal_DoDivmod(self, r, &div, &mod)) { SAVE(div); SAVE(mod); return rb_assoc_new(ToValue(div), ToValue(mod)); } return DoSomeOne(self,r,rb_intern("divmod")); }```

### #dup ⇒ Object

 ``` 2698 2699 2700 2701 2702``` ```# File 'bigdecimal.c', line 2698 static VALUE BigDecimal_clone(VALUE self) { return self; }```

### #eql?(r) ⇒ Boolean

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

``````BigDecimal('1.0') == 1.0  #=> true
``````

Returns:

• (Boolean)
 ``` 1283 1284 1285 1286 1287``` ```# File 'bigdecimal.c', line 1283 static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); }```

### #exponent ⇒ Object

Returns the exponent of the BigDecimal number, as an Integer.

If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.

 ``` 2275 2276 2277 2278 2279 2280``` ```# File 'bigdecimal.c', line 2275 static VALUE BigDecimal_exponent(VALUE self) { ssize_t e = VpExponent10(GetVpValue(self, 1)); return SSIZET2NUM(e); }```

### #finite? ⇒ Boolean

Returns True if the value is finite (not NaN or infinite).

Returns:

• (Boolean)
 ``` 829 830 831 832 833 834 835 836``` ```# File 'bigdecimal.c', line 829 static VALUE BigDecimal_IsFinite(VALUE self) { Real *p = GetVpValue(self, 1); if (VpIsNaN(p)) return Qfalse; if (VpIsInf(p)) return Qfalse; return Qtrue; }```

### #fix ⇒ Object

Return the integer part of the number, as a BigDecimal.

 ``` 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879``` ```# File 'bigdecimal.c', line 1867 static VALUE BigDecimal_fix(VALUE self) { ENTER(5); Real *c, *a; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0")); VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */ return ToValue(c); }```

### #floor(*args) ⇒ Object

floor(n)

Return the largest integer less than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0

 ``` 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065``` ```# File 'bigdecimal.c', line 2037 static VALUE BigDecimal_floor(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc; VALUE vLoc; size_t mx, pl = VpSetPrecLimit(0); if (rb_scan_args(argc, argv, "01", &vLoc)==0) { iLoc = 0; } else { iLoc = NUM2INT(vLoc); } GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc); #ifdef BIGDECIMAL_DEBUG VPrint(stderr, "floor: c=%\n", c); #endif if (argc == 0) { return BigDecimal_to_i(ToValue(c)); } return ToValue(c); }```

### #frac ⇒ Object

Return the fractional part of the number, as a BigDecimal.

 ``` 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018``` ```# File 'bigdecimal.c', line 2006 static VALUE BigDecimal_frac(VALUE self) { ENTER(5); Real *c, *a; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0")); VpFrac(c, a); return ToValue(c); }```

### #hash ⇒ Object

Creates a hash for this BigDecimal.

Two BigDecimals with equal sign, fractional part and exponent have the same hash.

 ``` 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502``` ```# File 'bigdecimal.c', line 487 static VALUE BigDecimal_hash(VALUE self) { ENTER(1); Real *p; st_index_t hash; GUARD_OBJ(p, GetVpValue(self, 1)); hash = (st_index_t)p->sign; /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */ if(hash == 2 || hash == (st_index_t)-2) { hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec); hash += p->exponent; } return ST2FIX(hash); }```

### #infinite? ⇒ Boolean

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.

Returns:

• (Boolean)
 ``` 819 820 821 822 823 824 825 826``` ```# File 'bigdecimal.c', line 819 static VALUE BigDecimal_IsInfinite(VALUE self) { Real *p = GetVpValue(self, 1); if (VpIsPosInf(p)) return INT2FIX(1); if (VpIsNegInf(p)) return INT2FIX(-1); return Qnil; }```

### #inspect ⇒ Object

Returns a string representation of self.

``````BigDecimal("1234.5678").inspect
#=> "0.12345678e4"
``````
 ``` 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302``` ```# File 'bigdecimal.c', line 2287 static VALUE BigDecimal_inspect(VALUE self) { ENTER(5); Real *vp; volatile VALUE str; size_t nc; GUARD_OBJ(vp, GetVpValue(self, 1)); nc = VpNumOfChars(vp, "E"); str = rb_str_new(0, nc); VpToString(vp, RSTRING_PTR(str), 0, 0); rb_str_resize(str, strlen(RSTRING_PTR(str))); return str; }```

### #modulo ⇒ Object

%: a%b = a - (a.to_f/b).floor * b

 ``` 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568``` ```# File 'bigdecimal.c', line 1557 static VALUE BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */ { ENTER(3); Real *div = NULL, *mod = NULL; if (BigDecimal_DoDivmod(self, r, &div, &mod)) { SAVE(div); SAVE(mod); return ToValue(mod); } return DoSomeOne(self, r, '%'); }```

### #mult(b, n) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

``````c = a.mult(b,n)
c = a * b
``````
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

 ``` 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814``` ```# File 'bigdecimal.c', line 1799 static VALUE BigDecimal_mult2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; SIGNED_VALUE mx = GetPrecisionInt(n); if (mx == 0) return BigDecimal_mult(self, b); else { size_t pl = VpSetPrecLimit(0); VALUE c = BigDecimal_mult(self, b); VpSetPrecLimit(pl); GUARD_OBJ(cv, GetVpValue(c, 1)); VpLeftRound(cv, VpGetRoundMode(), mx); return ToValue(cv); } }```

### #n_significant_digits ⇒ Object

 ``` 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477``` ```# File 'bigdecimal.c', line 453 static VALUE BigDecimal_n_significant_digits(VALUE self) { ENTER(1); Real *p; GUARD_OBJ(p, GetVpValue(self, 1)); ssize_t n = p->Prec; while (n > 0 && p->frac[n-1] == 0) --n; if (n <= 0) { return INT2FIX(0); } int nlz, ntz; BDIGIT x = p->frac[0]; for (nlz = BASE_FIG; x > 0; x /= 10) --nlz; x = p->frac[n-1]; for (ntz = 0; x > 0 && x % 10 == 0; x /= 10) ++ntz; ssize_t n_digits = BASE_FIG * n - nlz - ntz; return SSIZET2NUM(n_digits); }```

### #nan? ⇒ Boolean

Returns True if the value is Not a Number.

Returns:

• (Boolean)
 ``` 808 809 810 811 812 813 814``` ```# File 'bigdecimal.c', line 808 static VALUE BigDecimal_IsNaN(VALUE self) { Real *p = GetVpValue(self, 1); if (VpIsNaN(p)) return Qtrue; return Qfalse; }```

### #nonzero? ⇒ Boolean

Returns self if the value is non-zero, nil otherwise.

Returns:

• (Boolean)
 ``` 1257 1258 1259 1260 1261 1262``` ```# File 'bigdecimal.c', line 1257 static VALUE BigDecimal_nonzero(VALUE self) { Real *a = GetVpValue(self, 1); return VpIsZero(a) ? Qnil : self; }```

### #power(*args) ⇒ Object

power(n) power(n, prec)

Returns the value raised to the power of n.

Note that n must be an Integer.

Also available as the operator **.

 ``` 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667``` ```# File 'bigdecimal.c', line 2430 static VALUE BigDecimal_power(int argc, VALUE*argv, VALUE self) { ENTER(5); VALUE vexp, prec; Real* exp = NULL; Real *x, *y; ssize_t mp, ma, n; SIGNED_VALUE int_exp; double d; rb_scan_args(argc, argv, "11", &vexp, &prec); GUARD_OBJ(x, GetVpValue(self, 1)); n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec); if (VpIsNaN(x)) { y = VpCreateRbObject(n, "0"); RB_GC_GUARD(y->obj); VpSetNaN(y); return ToValue(y); } retry: switch (TYPE(vexp)) { case T_FIXNUM: break; case T_BIGNUM: break; case T_FLOAT: d = RFLOAT_VALUE(vexp); if (d == round(d)) { if (FIXABLE(d)) { vexp = LONG2FIX((long)d); } else { vexp = rb_dbl2big(d); } goto retry; } if (NIL_P(prec)) { n += DBLE_FIG; } exp = GetVpValueWithPrec(vexp, DBLE_FIG, 1); break; case T_RATIONAL: if (is_zero(rb_rational_num(vexp))) { if (is_positive(vexp)) { vexp = INT2FIX(0); goto retry; } } else if (is_one(rb_rational_den(vexp))) { vexp = rb_rational_num(vexp); goto retry; } exp = GetVpValueWithPrec(vexp, n, 1); if (NIL_P(prec)) { n += n; } break; case T_DATA: if (is_kind_of_BigDecimal(vexp)) { VALUE zero = INT2FIX(0); VALUE rounded = BigDecimal_round(1, &zero, vexp); if (RTEST(BigDecimal_eq(vexp, rounded))) { vexp = BigDecimal_to_i(vexp); goto retry; } if (NIL_P(prec)) { GUARD_OBJ(y, GetVpValue(vexp, 1)); n += y->Prec*VpBaseFig(); } exp = DATA_PTR(vexp); break; } /* fall through */ default: rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected scalar Numeric)", RB_OBJ_CLASSNAME(vexp)); } if (VpIsZero(x)) { if (is_negative(vexp)) { y = VpCreateRbObject(n, "#0"); RB_GC_GUARD(y->obj); if (BIGDECIMAL_NEGATIVE_P(x)) { if (is_integer(vexp)) { if (is_even(vexp)) { /* (-0) ** (-even_integer) -> Infinity */ VpSetPosInf(y); } else { /* (-0) ** (-odd_integer) -> -Infinity */ VpSetNegInf(y); } } else { /* (-0) ** (-non_integer) -> Infinity */ VpSetPosInf(y); } } else { /* (+0) ** (-num) -> Infinity */ VpSetPosInf(y); } return ToValue(y); } else if (is_zero(vexp)) { return ToValue(VpCreateRbObject(n, "1")); } else { return ToValue(VpCreateRbObject(n, "0")); } } if (is_zero(vexp)) { return ToValue(VpCreateRbObject(n, "1")); } else if (is_one(vexp)) { return self; } if (VpIsInf(x)) { if (is_negative(vexp)) { if (BIGDECIMAL_NEGATIVE_P(x)) { if (is_integer(vexp)) { if (is_even(vexp)) { /* (-Infinity) ** (-even_integer) -> +0 */ return ToValue(VpCreateRbObject(n, "0")); } else { /* (-Infinity) ** (-odd_integer) -> -0 */ return ToValue(VpCreateRbObject(n, "-0")); } } else { /* (-Infinity) ** (-non_integer) -> -0 */ return ToValue(VpCreateRbObject(n, "-0")); } } else { return ToValue(VpCreateRbObject(n, "0")); } } else { y = VpCreateRbObject(n, "0"); if (BIGDECIMAL_NEGATIVE_P(x)) { if (is_integer(vexp)) { if (is_even(vexp)) { VpSetPosInf(y); } else { VpSetNegInf(y); } } else { /* TODO: support complex */ rb_raise(rb_eMathDomainError, "a non-integral exponent for a negative base"); } } else { VpSetPosInf(y); } return ToValue(y); } } if (exp != NULL) { return rmpd_power_by_big_decimal(x, exp, n); } else if (RB_TYPE_P(vexp, T_BIGNUM)) { VALUE abs_value = BigDecimal_abs(self); if (is_one(abs_value)) { return ToValue(VpCreateRbObject(n, "1")); } else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) { if (is_negative(vexp)) { y = VpCreateRbObject(n, "0"); if (is_even(vexp)) { VpSetInf(y, VpGetSign(x)); } else { VpSetInf(y, -VpGetSign(x)); } return ToValue(y); } else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) { return ToValue(VpCreateRbObject(n, "-0")); } else { return ToValue(VpCreateRbObject(n, "0")); } } else { if (is_positive(vexp)) { y = VpCreateRbObject(n, "0"); if (is_even(vexp)) { VpSetInf(y, VpGetSign(x)); } else { VpSetInf(y, -VpGetSign(x)); } return ToValue(y); } else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) { return ToValue(VpCreateRbObject(n, "-0")); } else { return ToValue(VpCreateRbObject(n, "0")); } } } int_exp = FIX2LONG(vexp); ma = int_exp; if (ma < 0) ma = -ma; if (ma == 0) ma = 1; if (VpIsDef(x)) { mp = x->Prec * (VpBaseFig() + 1); GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0")); } else { GUARD_OBJ(y, VpCreateRbObject(1, "0")); } VpPower(y, x, int_exp); if (!NIL_P(prec) && VpIsDef(y)) { VpMidRound(y, VpGetRoundMode(), n); } return ToValue(y); }```

### #precision ⇒ Object

Returns the number of decimal digits in this number.

Example:

``````BigDecimal("0").precision  # => 0
BigDecimal("1").precision  # => 1
BigDecimal("-1e20").precision  # => 21
BigDecimal("1e-20").precision  # => 20
BigDecimal("Infinity").precision  # => 0
BigDecimal("-Infinity").precision  # => 0
BigDecimal("NaN").precision  # => 0
``````
 ``` 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451``` ```# File 'bigdecimal.c', line 402 static VALUE BigDecimal_precision(VALUE self) { ENTER(1); Real *p; GUARD_OBJ(p, GetVpValue(self, 1)); /* * The most significant digit is frac[0], and the least significant digit is frac[Prec-1]. * When the exponent is zero, the decimal point is located just before frac[0]. * When the exponent is negative, the decimal point moves to leftward. * Conversely, when the exponent is positive, the decimal point moves to rightward. * * | frac[0] frac[1] frac[2] . frac[3] frac[4] ... frac[Prec-1] * |------------------------> exponent == 3 */ ssize_t ex = p->exponent; ssize_t precision = 0; if (ex < 0) { precision = (-ex + 1) * BASE_FIG; /* 1 is for p->frac[0] */ ex = 0; } else if (p->Prec > 0) { BDIGIT x = p->frac[0]; for (precision = 0; x > 0; x /= 10) { ++precision; } } if (ex > (ssize_t)p->Prec) { precision += (ex - 1) * BASE_FIG; } else if (p->Prec > 0) { ssize_t n = (ssize_t)p->Prec - 1; while (n > 0 && p->frac[n] == 0) --n; precision += n * BASE_FIG; if (ex < (ssize_t)p->Prec) { BDIGIT x = p->frac[n]; for (; x > 0 && x % 10 == 0; x /= 10) { --precision; } } } return SSIZET2NUM(precision); }```

### #precs ⇒ Array

Returns an Array of two Integer values that represent platform-dependent internal storage properties.

This method is deprecated and will be removed in the future. Instead, use BigDecimal#n_significant_digits for obtaining the number of significant digits in scientific notation, and BigDecimal#precision for obtaining the number of digits in decimal notation.

``````BigDecimal('5').precs #=> [9, 18]
``````

Returns:

• (Array)
 ``` 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384``` ```# File 'bigdecimal.c', line 369 static VALUE BigDecimal_prec(VALUE self) { ENTER(1); Real *p; VALUE obj; rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "BigDecimal#precs is deprecated and will be removed in the future; " "use BigDecimal#precision instead."); GUARD_OBJ(p, GetVpValue(self, 1)); obj = rb_assoc_new(SIZET2NUM(p->Prec*VpBaseFig()), SIZET2NUM(p->MaxPrec*VpBaseFig())); return obj; }```

### #quo ⇒ Object

For c = self/r: with round operation

 ``` 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463``` ```# File 'bigdecimal.c', line 1445 static VALUE BigDecimal_div(VALUE self, VALUE r) /* For c = self/r: with round operation */ { ENTER(5); Real *c=NULL, *res=NULL, *div = NULL; r = BigDecimal_divide(&c, &res, &div, self, r); if (!NIL_P(r)) return r; /* coerced by other */ SAVE(c); SAVE(res); SAVE(div); /* a/b = c + r/b */ /* c xxxxx r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE */ /* Round */ if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */ VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0])); } return ToValue(c); }```

### #remainder ⇒ Object

remainder

 ``` 1623 1624 1625 1626 1627 1628 1629 1630 1631``` ```# File 'bigdecimal.c', line 1623 static VALUE BigDecimal_remainder(VALUE self, VALUE r) /* remainder */ { VALUE f; Real *d, *rv = 0; f = BigDecimal_divremain(self, r, &d, &rv); if (!NIL_P(f)) return f; return ToValue(rv); }```

### #round(*args) ⇒ Object

round(n, mode)

Round to the nearest integer (by default), returning the result as a BigDecimal if n is specified, or as an Integer if it isn’t.

BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10

BigDecimal(‘3.14159’).round(2).class.name #=> “BigDecimal” BigDecimal(‘3.14159’).round.class.name #=> “Integer”

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result, and return value will be an Integer.

BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300

The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.

 ``` 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956``` ```# File 'bigdecimal.c', line 1906 static VALUE BigDecimal_round(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc = 0; VALUE vLoc; VALUE vRound; int round_to_int = 0; size_t mx, pl; unsigned short sw = VpGetRoundMode(); switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) { case 0: iLoc = 0; round_to_int = 1; break; case 1: if (RB_TYPE_P(vLoc, T_HASH)) { sw = check_rounding_mode_option(vLoc); } else { iLoc = NUM2INT(vLoc); if (iLoc < 1) round_to_int = 1; } break; case 2: iLoc = NUM2INT(vLoc); if (RB_TYPE_P(vRound, T_HASH)) { sw = check_rounding_mode_option(vRound); } else { sw = check_rounding_mode(vRound); } break; default: break; } pl = VpSetPrecLimit(0); GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c, a, sw, iLoc); if (round_to_int) { return BigDecimal_to_i(ToValue(c)); } return ToValue(c); }```

### #sign ⇒ Object

Returns the sign of the value.

Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.

The specific value returned indicates the type and sign of the BigDecimal, as follows:

BigDecimal::SIGN_NaN

value is Not a Number

BigDecimal::SIGN_POSITIVE_ZERO

value is +0

BigDecimal::SIGN_NEGATIVE_ZERO

value is -0

BigDecimal::SIGN_POSITIVE_INFINITE

value is +Infinity

BigDecimal::SIGN_NEGATIVE_INFINITE

value is -Infinity

BigDecimal::SIGN_POSITIVE_FINITE

value is positive

BigDecimal::SIGN_NEGATIVE_FINITE

value is negative

 ``` 2952 2953 2954 2955 2956 2957``` ```# File 'bigdecimal.c', line 2952 static VALUE BigDecimal_sign(VALUE self) { /* sign */ int s = GetVpValue(self, 1)->sign; return INT2FIX(s); }```

### #split ⇒ Object

Splits a BigDecimal number into four parts, returned as an array of values.

The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.

The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.

The third value is the base used for arithmetic (currently always 10) as an Integer.

The fourth value is an Integer exponent.

If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.

From these values, you can translate a BigDecimal to a float as follows:

``````sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
``````

(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)

 ``` 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268``` ```# File 'bigdecimal.c', line 2238 static VALUE BigDecimal_split(VALUE self) { ENTER(5); Real *vp; VALUE obj,str; ssize_t e, s; char *psz1; GUARD_OBJ(vp, GetVpValue(self, 1)); str = rb_str_new(0, VpNumOfChars(vp, "E")); psz1 = RSTRING_PTR(str); VpSzMantissa(vp, psz1); s = 1; if(psz1[0] == '-') { size_t len = strlen(psz1 + 1); memmove(psz1, psz1 + 1, len); psz1[len] = '\0'; s = -1; } if (psz1[0] == 'N') s = 0; /* NaN */ e = VpExponent10(vp); obj = rb_ary_new2(4); rb_ary_push(obj, INT2FIX(s)); rb_ary_push(obj, str); rb_str_resize(str, strlen(psz1)); rb_ary_push(obj, INT2FIX(10)); rb_ary_push(obj, SSIZET2NUM(e)); return obj; }```

### #sqrt(nFig) ⇒ Object

sqrt(n)

Returns the square root of the value.

Result has at least n significant digits.

 ``` 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863``` ```# File 'bigdecimal.c', line 1848 static VALUE BigDecimal_sqrt(VALUE self, VALUE nFig) { ENTER(5); Real *c, *a; size_t mx, n; GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); n = GetPrecisionInt(nFig) + VpDblFig() + BASE_FIG; if (mx <= n) mx = n; GUARD_OBJ(c, VpCreateRbObject(mx, "0")); VpSqrt(c, a); return ToValue(c); }```

### #sub(b, n) ⇒ Object

sub(value, digits) -> bigdecimal

Subtract the specified value.

e.g.

``````c = a.sub(b,n)
``````
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

 ``` 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796``` ```# File 'bigdecimal.c', line 1781 static VALUE BigDecimal_sub2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; SIGNED_VALUE mx = GetPrecisionInt(n); if (mx == 0) return BigDecimal_sub(self, b); else { size_t pl = VpSetPrecLimit(0); VALUE c = BigDecimal_sub(self, b); VpSetPrecLimit(pl); GUARD_OBJ(cv, GetVpValue(c, 1)); VpLeftRound(cv, VpGetRoundMode(), mx); return ToValue(cv); } }```

### #to_d ⇒ Object

call-seq:

``````a.to_d -> bigdecimal
``````

Returns self.

``````require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_d                       # => 0.314e1
``````
 ``` 106 107 108``` ```# File 'lib/bigdecimal/util.rb', line 106 def to_d self end```

### #to_digits ⇒ Object

call-seq:

``````a.to_digits -> string
``````

Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.

``````require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_digits                  # => "3.14"
``````
 ``` 86 87 88 89 90 91 92 93 94``` ```# File 'lib/bigdecimal/util.rb', line 86 def to_digits if self.nan? || self.infinite? || self.zero? self.to_s else i = self.to_i.to_s _,f,_,z = self.frac.split i + "." + ("0"*(-z)) + f end end```

### #to_f ⇒ Object

Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.

 ``` 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947``` ```# File 'bigdecimal.c', line 905 static VALUE BigDecimal_to_f(VALUE self) { ENTER(1); Real *p; double d; SIGNED_VALUE e; char *buf; volatile VALUE str; GUARD_OBJ(p, GetVpValue(self, 1)); if (VpVtoD(&d, &e, p) != 1) return rb_float_new(d); if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG)) goto overflow; if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG)) goto underflow; str = rb_str_new(0, VpNumOfChars(p, "E")); buf = RSTRING_PTR(str); VpToString(p, buf, 0, 0); errno = 0; d = strtod(buf, 0); if (errno == ERANGE) { if (d == 0.0) goto underflow; if (fabs(d) >= HUGE_VAL) goto overflow; } return rb_float_new(d); overflow: VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0); if (BIGDECIMAL_NEGATIVE_P(p)) return rb_float_new(VpGetDoubleNegInf()); else return rb_float_new(VpGetDoublePosInf()); underflow: VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0); if (BIGDECIMAL_NEGATIVE_P(p)) return rb_float_new(-0.0); else return rb_float_new(0.0); }```

### #to_i ⇒ Object

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.

 ``` 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899``` ```# File 'bigdecimal.c', line 858 static VALUE BigDecimal_to_i(VALUE self) { ENTER(5); ssize_t e, nf; Real *p; GUARD_OBJ(p, GetVpValue(self, 1)); BigDecimal_check_num(p); e = VpExponent10(p); if (e <= 0) return INT2FIX(0); nf = VpBaseFig(); if (e <= nf) { return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0])); } else { VALUE a = BigDecimal_split(self); VALUE digits = RARRAY_AREF(a, 1); VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0); VALUE ret; ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits); if (BIGDECIMAL_NEGATIVE_P(p)) { numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); } if (dpower < 0) { ret = rb_funcall(numerator, rb_intern("div"), 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(-dpower))); } else { ret = rb_funcall(numerator, '*', 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(dpower))); } if (RB_TYPE_P(ret, T_FLOAT)) { rb_raise(rb_eFloatDomainError, "Infinity"); } return ret; } }```

### #to_int ⇒ Object

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.

 ``` 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899``` ```# File 'bigdecimal.c', line 858 static VALUE BigDecimal_to_i(VALUE self) { ENTER(5); ssize_t e, nf; Real *p; GUARD_OBJ(p, GetVpValue(self, 1)); BigDecimal_check_num(p); e = VpExponent10(p); if (e <= 0) return INT2FIX(0); nf = VpBaseFig(); if (e <= nf) { return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0])); } else { VALUE a = BigDecimal_split(self); VALUE digits = RARRAY_AREF(a, 1); VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0); VALUE ret; ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits); if (BIGDECIMAL_NEGATIVE_P(p)) { numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); } if (dpower < 0) { ret = rb_funcall(numerator, rb_intern("div"), 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(-dpower))); } else { ret = rb_funcall(numerator, '*', 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(dpower))); } if (RB_TYPE_P(ret, T_FLOAT)) { rb_raise(rb_eFloatDomainError, "Infinity"); } return ret; } }```

### #to_r ⇒ Object

Converts a BigDecimal to a Rational.

 ``` 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982``` ```# File 'bigdecimal.c', line 952 static VALUE BigDecimal_to_r(VALUE self) { Real *p; ssize_t sign, power, denomi_power; VALUE a, digits, numerator; p = GetVpValue(self, 1); BigDecimal_check_num(p); sign = VpGetSign(p); power = VpExponent10(p); a = BigDecimal_split(self); digits = RARRAY_AREF(a, 1); denomi_power = power - RSTRING_LEN(digits); numerator = rb_funcall(digits, rb_intern("to_i"), 0); if (sign < 0) { numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); } if (denomi_power < 0) { return rb_Rational(numerator, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(-denomi_power))); } else { return rb_Rational1(rb_funcall(numerator, '*', 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(denomi_power)))); } }```

### #to_s(*args) ⇒ Object

to_s(s)

Converts the value to a string.

The default format looks like 0.xxxxEnn.

The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.

If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.

A space at the start of s returns positive values with a leading space.

If s contains a number, a space is inserted after each group of that many fractional digits.

If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.

If s ends with an ‘F’, conventional floating point notation is used.

Examples:

``````BigDecimal('-123.45678901234567890').to_s('5F')
#=> '-123.45678 90123 45678 9'

BigDecimal('123.45678901234567890').to_s('+8F')
#=> '+123.45678901 23456789'

BigDecimal('123.45678901234567890').to_s(' F')
#=> ' 123.4567890123456789'
``````
 ``` 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212``` ```# File 'bigdecimal.c', line 2143 static VALUE BigDecimal_to_s(int argc, VALUE *argv, VALUE self) { ENTER(5); int fmt = 0; /* 0: E format, 1: F format */ int fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */ Real *vp; volatile VALUE str; char *psz; char ch; size_t nc, mc = 0; SIGNED_VALUE m; VALUE f; GUARD_OBJ(vp, GetVpValue(self, 1)); if (rb_scan_args(argc, argv, "01", &f) == 1) { if (RB_TYPE_P(f, T_STRING)) { psz = StringValueCStr(f); if (*psz == ' ') { fPlus = 1; psz++; } else if (*psz == '+') { fPlus = 2; psz++; } while ((ch = *psz++) != 0) { if (ISSPACE(ch)) { continue; } if (!ISDIGIT(ch)) { if (ch == 'F' || ch == 'f') { fmt = 1; /* F format */ } break; } mc = mc*10 + ch - '0'; } } else { m = NUM2INT(f); if (m <= 0) { rb_raise(rb_eArgError, "argument must be positive"); } mc = (size_t)m; } } if (fmt) { nc = VpNumOfChars(vp, "F"); } else { nc = VpNumOfChars(vp, "E"); } if (mc > 0) { nc += (nc + mc - 1) / mc + 1; } str = rb_usascii_str_new(0, nc); psz = RSTRING_PTR(str); if (fmt) { VpToFString(vp, psz, mc, fPlus); } else { VpToString (vp, psz, mc, fPlus); } rb_str_resize(str, strlen(psz)); return str; }```

### #truncate(*args) ⇒ Object

truncate(n)

Truncate to the nearest integer (by default), returning the result as a BigDecimal.

BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0

 ``` 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002``` ```# File 'bigdecimal.c', line 1977 static VALUE BigDecimal_truncate(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc; VALUE vLoc; size_t mx, pl = VpSetPrecLimit(0); if (rb_scan_args(argc, argv, "01", &vLoc) == 0) { iLoc = 0; } else { iLoc = NUM2INT(vLoc); } GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */ if (argc == 0) { return BigDecimal_to_i(ToValue(c)); } return ToValue(c); }```

### #zero? ⇒ Boolean

Returns True if the value is zero.

Returns:

• (Boolean)
 ``` 1249 1250 1251 1252 1253 1254``` ```# File 'bigdecimal.c', line 1249 static VALUE BigDecimal_zero(VALUE self) { Real *a = GetVpValue(self, 1); return VpIsZero(a) ? Qtrue : Qfalse; }```