Module: Math

Defined in:
math.c

Constant Summary collapse

PI =
rb_float_new(atan(1.0)*4.0)
E =
rb_float_new(exp(1.0))

Class Method Summary collapse

Class Method Details

.acos(x) ⇒ Float

Computes the arc cosine of x. Returns 0..PI.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.acos(x)    => float
 *  
 *  Computes the arc cosine of <i>x</i>. Returns 0..PI.
 */

static VALUE
math_acos(obj, x)
    VALUE obj, x;
{
    double d;

    Need_Float(x);
    errno = 0;
    d = acos(RFLOAT(x)->value);
    domain_check(d, "acos");
    return rb_float_new(d);
}

.acosh(x) ⇒ Float

Computes the inverse hyperbolic cosine of x.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.acosh(x)    => float
 *  
 *  Computes the inverse hyperbolic cosine of <i>x</i>.
 */

static VALUE
math_acosh(obj, x)
    VALUE obj, x;
{
    double d;

    Need_Float(x);
    errno = 0;
    d = acosh(RFLOAT(x)->value);
    domain_check(d, "acosh");
    return rb_float_new(d);
}

.asin(x) ⇒ Float

Computes the arc sine of x. Returns -PI/2 .. PI/2.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.asin(x)    => float
 *  
 *  Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}.
 */

static VALUE
math_asin(obj, x)
    VALUE obj, x;
{
    double d;

    Need_Float(x);
    errno = 0;
    d = asin(RFLOAT(x)->value);
    domain_check(d, "asin");
    return rb_float_new(d);
}

.asinh(x) ⇒ Float

Computes the inverse hyperbolic sine of x.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.asinh(x)    => float
 *  
 *  Computes the inverse hyperbolic sine of <i>x</i>.
 */

static VALUE
math_asinh(obj, x)
    VALUE obj, x;
{
    Need_Float(x);
    return rb_float_new(asinh(RFLOAT(x)->value));
}

.atan(x) ⇒ Float

Computes the arc tangent of x. Returns -PI/2 .. PI/2.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.atan(x)    => float
 *  
 *  Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}.
 */

static VALUE
math_atan(obj, x)
    VALUE obj, x;
{
    Need_Float(x);
    return rb_float_new(atan(RFLOAT(x)->value));
}

.atan2(y, x) ⇒ Float

Computes the arc tangent given y and x. Returns -PI..PI.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.atan2(y, x)  => float
 *  
 *  Computes the arc tangent given <i>y</i> and <i>x</i>. Returns
 *  -PI..PI.
 *     
 */

static VALUE
math_atan2(obj, y, x)
    VALUE obj, x, y;
{
    Need_Float2(y, x);
    return rb_float_new(atan2(RFLOAT(y)->value, RFLOAT(x)->value));
}

.atanh(x) ⇒ Float

Computes the inverse hyperbolic tangent of x.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.atanh(x)    => float
 *  
 *  Computes the inverse hyperbolic tangent of <i>x</i>.
 */

static VALUE
math_atanh(obj, x)
    VALUE obj, x;
{
    double d;

    Need_Float(x);
    errno = 0;
    d = atanh(RFLOAT(x)->value);
    domain_check(d, "atanh");
    return rb_float_new(d);
}

.cos(x) ⇒ Float

Computes the cosine of x (expressed in radians). Returns -1..1.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.cos(x)    => float
 *  
 *  Computes the cosine of <i>x</i> (expressed in radians). Returns
 *  -1..1.
 */

static VALUE
math_cos(obj, x)
    VALUE obj, x;
{
    Need_Float(x);
    return rb_float_new(cos(RFLOAT(x)->value));
}

.cosh(x) ⇒ Float

Computes the hyperbolic cosine of x (expressed in radians).

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.cosh(x)    => float
 *  
 *  Computes the hyperbolic cosine of <i>x</i> (expressed in radians).
 */

static VALUE
math_cosh(obj, x)
    VALUE obj, x;
{
    Need_Float(x);
    
    return rb_float_new(cosh(RFLOAT(x)->value));
}

.erf(x) ⇒ Float

Calculates the error function of x.

Returns:



# File 'math.c'

/*
 * call-seq:
 *    Math.erf(x)  => float
 *
 *  Calculates the error function of x.
 */

static VALUE
math_erf(obj, x)
    VALUE obj, x;
{
    Need_Float(x);
    return rb_float_new(erf(RFLOAT(x)->value));
}

.erfc(x) ⇒ Float

Calculates the complementary error function of x.

Returns:



# File 'math.c'

/*
 * call-seq:
 *    Math.erfc(x)  => float
 *
 *  Calculates the complementary error function of x.
 */

static VALUE
math_erfc(obj, x)
    VALUE obj, x;
{
    Need_Float(x);
    return rb_float_new(erfc(RFLOAT(x)->value));
}

.exp(x) ⇒ Float

Returns e**x.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.exp(x)    => float
 *  
 *  Returns e**x.
 */

static VALUE
math_exp(obj, x)
    VALUE obj, x;
{
    Need_Float(x);
    return rb_float_new(exp(RFLOAT(x)->value));
}

.frexp(numeric) ⇒ Array

Returns a two-element array containing the normalized fraction (a Float) and exponent (a Fixnum) of numeric.

fraction, exponent = Math.frexp(1234)   #=> [0.6025390625, 11]
fraction * 2**exponent                  #=> 1234.0

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.frexp(numeric)    => [ fraction, exponent ]
 *  
 *  Returns a two-element array containing the normalized fraction (a
 *  <code>Float</code>) and exponent (a <code>Fixnum</code>) of
 *  <i>numeric</i>.
 *     
 *     fraction, exponent = Math.frexp(1234)   #=> [0.6025390625, 11]
 *     fraction * 2**exponent                  #=> 1234.0
 */

static VALUE
math_frexp(obj, x)
    VALUE obj, x;
{
    double d;
    int exp;

    Need_Float(x);
    
    d = frexp(RFLOAT(x)->value, &exp);
    return rb_assoc_new(rb_float_new(d), INT2NUM(exp));
}

.hypot(x, y) ⇒ Float

Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x and y.

Math.hypot(3, 4)   #=> 5.0

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.hypot(x, y)    => float
 *  
 *  Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle
 *  with sides <i>x</i> and <i>y</i>.
 *     
 *     Math.hypot(3, 4)   #=> 5.0
 */

static VALUE
math_hypot(obj, x, y)
    VALUE obj, x, y;
{
    Need_Float2(x, y);
    return rb_float_new(hypot(RFLOAT(x)->value, RFLOAT(y)->value));
}

.ldexp(flt, int) ⇒ Float

Returns the value of flt*(2**int).

fraction, exponent = Math.frexp(1234)
Math.ldexp(fraction, exponent)   #=> 1234.0

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.ldexp(flt, int) -> float
 *  
 *  Returns the value of <i>flt</i>*(2**<i>int</i>).
 *     
 *     fraction, exponent = Math.frexp(1234)
 *     Math.ldexp(fraction, exponent)   #=> 1234.0
 */

static VALUE
math_ldexp(obj, x, n)
    VALUE obj, x, n;
{
    Need_Float(x);
    return rb_float_new(ldexp(RFLOAT(x)->value, NUM2INT(n)));
}

.log(numeric) ⇒ Float

Returns the natural logarithm of numeric.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.log(numeric)    => float
 *  
 *  Returns the natural logarithm of <i>numeric</i>.
 */

static VALUE
math_log(obj, x)
    VALUE obj, x;
{
    double d;

    Need_Float(x);
    errno = 0;
    d = log(RFLOAT(x)->value);
    domain_check(d, "log");
    return rb_float_new(d);
}

.log10(numeric) ⇒ Float

Returns the base 10 logarithm of numeric.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.log10(numeric)    => float
 *  
 *  Returns the base 10 logarithm of <i>numeric</i>.
 */

static VALUE
math_log10(obj, x)
    VALUE obj, x;
{
    double d;

    Need_Float(x);
    errno = 0;
    d = log10(RFLOAT(x)->value);
    domain_check(d, "log10");
    return rb_float_new(d);
}

.sin(x) ⇒ Float

Computes the sine of x (expressed in radians). Returns -1..1.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.sin(x)    => float
 *  
 *  Computes the sine of <i>x</i> (expressed in radians). Returns
 *  -1..1.
 */

static VALUE
math_sin(obj, x)
    VALUE obj, x;
{
    Need_Float(x);

    return rb_float_new(sin(RFLOAT(x)->value));
}

.sinh(x) ⇒ Float

Computes the hyperbolic sine of x (expressed in radians).

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.sinh(x)    => float
 *  
 *  Computes the hyperbolic sine of <i>x</i> (expressed in
 *  radians).
 */

static VALUE
math_sinh(obj, x)
    VALUE obj, x;
{
    Need_Float(x);
    return rb_float_new(sinh(RFLOAT(x)->value));
}

.sqrt(numeric) ⇒ Float

Returns the non-negative square root of numeric.

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.sqrt(numeric)    => float
 *  
 *  Returns the non-negative square root of <i>numeric</i>.
 */

static VALUE
math_sqrt(obj, x)
    VALUE obj, x;
{
    double d;

    Need_Float(x);
    errno = 0;
    d = sqrt(RFLOAT(x)->value);
    domain_check(d, "sqrt");
    return rb_float_new(d);
}

.tan(x) ⇒ Float

Returns the tangent of x (expressed in radians).

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.tan(x)    => float
 *  
 *  Returns the tangent of <i>x</i> (expressed in radians).
 */

static VALUE
math_tan(obj, x)
    VALUE obj, x;
{
    Need_Float(x);

    return rb_float_new(tan(RFLOAT(x)->value));
}

.tanhFloat

Computes the hyperbolic tangent of x (expressed in radians).

Returns:



# File 'math.c'

/*
 *  call-seq:
 *     Math.tanh()    => float
 *  
 *  Computes the hyperbolic tangent of <i>x</i> (expressed in
 *  radians).
 */

static VALUE
math_tanh(obj, x)
    VALUE obj, x;
{
    Need_Float(x);
    return rb_float_new(tanh(RFLOAT(x)->value));
}