Module: Math
- Defined in:
- math.c
Constant Summary collapse
- PI =
rb_float_new(atan(1.0)*4.0)
- E =
rb_float_new(exp(1.0))
Class Method Summary collapse
-
.acos(x) ⇒ Float
Computes the arc cosine of x.
-
.acosh(x) ⇒ Float
Computes the inverse hyperbolic cosine of x.
-
.asin(x) ⇒ Float
Computes the arc sine of x.
-
.asinh(x) ⇒ Float
Computes the inverse hyperbolic sine of x.
-
.atan(x) ⇒ Float
Computes the arc tangent of x.
-
.atan2(y, x) ⇒ Float
Computes the arc tangent given y and x.
-
.atanh(x) ⇒ Float
Computes the inverse hyperbolic tangent of x.
-
.cos(x) ⇒ Float
Computes the cosine of x (expressed in radians).
-
.cosh(x) ⇒ Float
Computes the hyperbolic cosine of x (expressed in radians).
-
.erf(x) ⇒ Float
Calculates the error function of x.
-
.erfc(x) ⇒ Float
Calculates the complementary error function of x.
-
.exp(x) ⇒ Float
Returns e**x.
-
.frexp(numeric) ⇒ Array
Returns a two-element array containing the normalized fraction (a
Float
) and exponent (aFixnum
) of numeric. -
.hypot(x, y) ⇒ Float
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x and y.
-
.ldexp(flt, int) ⇒ Float
Returns the value of flt*(2**int).
-
.log(numeric) ⇒ Float
Returns the natural logarithm of numeric.
-
.log10(numeric) ⇒ Float
Returns the base 10 logarithm of numeric.
-
.sin(x) ⇒ Float
Computes the sine of x (expressed in radians).
-
.sinh(x) ⇒ Float
Computes the hyperbolic sine of x (expressed in radians).
-
.sqrt(numeric) ⇒ Float
Returns the non-negative square root of numeric.
-
.tan(x) ⇒ Float
Returns the tangent of x (expressed in radians).
-
.tanh ⇒ Float
Computes the hyperbolic tangent of x (expressed in radians).
Class Method Details
.acos(x) ⇒ Float
Computes the arc cosine of x. Returns 0..PI.
|
# File 'math.c'
/*
* call-seq:
* Math.acos(x) => float
*
* Computes the arc cosine of <i>x</i>. Returns 0..PI.
*/
static VALUE
math_acos(obj, x)
VALUE obj, x;
{
double d;
Need_Float(x);
errno = 0;
d = acos(RFLOAT(x)->value);
domain_check(d, "acos");
return rb_float_new(d);
}
|
.acosh(x) ⇒ Float
Computes the inverse hyperbolic cosine of x.
|
# File 'math.c'
/*
* call-seq:
* Math.acosh(x) => float
*
* Computes the inverse hyperbolic cosine of <i>x</i>.
*/
static VALUE
math_acosh(obj, x)
VALUE obj, x;
{
double d;
Need_Float(x);
errno = 0;
d = acosh(RFLOAT(x)->value);
domain_check(d, "acosh");
return rb_float_new(d);
}
|
.asin(x) ⇒ Float
Computes the arc sine of x. Returns -PI/2 .. PI/2.
|
# File 'math.c'
/*
* call-seq:
* Math.asin(x) => float
*
* Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}.
*/
static VALUE
math_asin(obj, x)
VALUE obj, x;
{
double d;
Need_Float(x);
errno = 0;
d = asin(RFLOAT(x)->value);
domain_check(d, "asin");
return rb_float_new(d);
}
|
.asinh(x) ⇒ Float
Computes the inverse hyperbolic sine of x.
|
# File 'math.c'
/*
* call-seq:
* Math.asinh(x) => float
*
* Computes the inverse hyperbolic sine of <i>x</i>.
*/
static VALUE
math_asinh(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(asinh(RFLOAT(x)->value));
}
|
.atan(x) ⇒ Float
Computes the arc tangent of x. Returns -PI/2 .. PI/2.
|
# File 'math.c'
/*
* call-seq:
* Math.atan(x) => float
*
* Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}.
*/
static VALUE
math_atan(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(atan(RFLOAT(x)->value));
}
|
.atan2(y, x) ⇒ Float
Computes the arc tangent given y and x. Returns -PI..PI.
|
# File 'math.c'
/*
* call-seq:
* Math.atan2(y, x) => float
*
* Computes the arc tangent given <i>y</i> and <i>x</i>. Returns
* -PI..PI.
*
*/
static VALUE
math_atan2(obj, y, x)
VALUE obj, x, y;
{
Need_Float2(y, x);
return rb_float_new(atan2(RFLOAT(y)->value, RFLOAT(x)->value));
}
|
.atanh(x) ⇒ Float
Computes the inverse hyperbolic tangent of x.
|
# File 'math.c'
/*
* call-seq:
* Math.atanh(x) => float
*
* Computes the inverse hyperbolic tangent of <i>x</i>.
*/
static VALUE
math_atanh(obj, x)
VALUE obj, x;
{
double d;
Need_Float(x);
errno = 0;
d = atanh(RFLOAT(x)->value);
domain_check(d, "atanh");
return rb_float_new(d);
}
|
.cos(x) ⇒ Float
Computes the cosine of x (expressed in radians). Returns -1..1.
|
# File 'math.c'
/*
* call-seq:
* Math.cos(x) => float
*
* Computes the cosine of <i>x</i> (expressed in radians). Returns
* -1..1.
*/
static VALUE
math_cos(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(cos(RFLOAT(x)->value));
}
|
.cosh(x) ⇒ Float
Computes the hyperbolic cosine of x (expressed in radians).
|
# File 'math.c'
/*
* call-seq:
* Math.cosh(x) => float
*
* Computes the hyperbolic cosine of <i>x</i> (expressed in radians).
*/
static VALUE
math_cosh(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(cosh(RFLOAT(x)->value));
}
|
.erf(x) ⇒ Float
Calculates the error function of x.
|
# File 'math.c'
/*
* call-seq:
* Math.erf(x) => float
*
* Calculates the error function of x.
*/
static VALUE
math_erf(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(erf(RFLOAT(x)->value));
}
|
.erfc(x) ⇒ Float
Calculates the complementary error function of x.
|
# File 'math.c'
/*
* call-seq:
* Math.erfc(x) => float
*
* Calculates the complementary error function of x.
*/
static VALUE
math_erfc(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(erfc(RFLOAT(x)->value));
}
|
.exp(x) ⇒ Float
Returns e**x.
|
# File 'math.c'
/*
* call-seq:
* Math.exp(x) => float
*
* Returns e**x.
*/
static VALUE
math_exp(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(exp(RFLOAT(x)->value));
}
|
.frexp(numeric) ⇒ Array
Returns a two-element array containing the normalized fraction (a Float
) and exponent (a Fixnum
) of numeric.
fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
fraction * 2**exponent #=> 1234.0
|
# File 'math.c'
/*
* call-seq:
* Math.frexp(numeric) => [ fraction, exponent ]
*
* Returns a two-element array containing the normalized fraction (a
* <code>Float</code>) and exponent (a <code>Fixnum</code>) of
* <i>numeric</i>.
*
* fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
* fraction * 2**exponent #=> 1234.0
*/
static VALUE
math_frexp(obj, x)
VALUE obj, x;
{
double d;
int exp;
Need_Float(x);
d = frexp(RFLOAT(x)->value, &exp);
return rb_assoc_new(rb_float_new(d), INT2NUM(exp));
}
|
.hypot(x, y) ⇒ Float
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x and y.
Math.hypot(3, 4) #=> 5.0
|
# File 'math.c'
/*
* call-seq:
* Math.hypot(x, y) => float
*
* Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle
* with sides <i>x</i> and <i>y</i>.
*
* Math.hypot(3, 4) #=> 5.0
*/
static VALUE
math_hypot(obj, x, y)
VALUE obj, x, y;
{
Need_Float2(x, y);
return rb_float_new(hypot(RFLOAT(x)->value, RFLOAT(y)->value));
}
|
.ldexp(flt, int) ⇒ Float
Returns the value of flt*(2**int).
fraction, exponent = Math.frexp(1234)
Math.ldexp(fraction, exponent) #=> 1234.0
|
# File 'math.c'
/*
* call-seq:
* Math.ldexp(flt, int) -> float
*
* Returns the value of <i>flt</i>*(2**<i>int</i>).
*
* fraction, exponent = Math.frexp(1234)
* Math.ldexp(fraction, exponent) #=> 1234.0
*/
static VALUE
math_ldexp(obj, x, n)
VALUE obj, x, n;
{
Need_Float(x);
return rb_float_new(ldexp(RFLOAT(x)->value, NUM2INT(n)));
}
|
.log(numeric) ⇒ Float
Returns the natural logarithm of numeric.
|
# File 'math.c'
/*
* call-seq:
* Math.log(numeric) => float
*
* Returns the natural logarithm of <i>numeric</i>.
*/
static VALUE
math_log(obj, x)
VALUE obj, x;
{
double d;
Need_Float(x);
errno = 0;
d = log(RFLOAT(x)->value);
domain_check(d, "log");
return rb_float_new(d);
}
|
.log10(numeric) ⇒ Float
Returns the base 10 logarithm of numeric.
|
# File 'math.c'
/*
* call-seq:
* Math.log10(numeric) => float
*
* Returns the base 10 logarithm of <i>numeric</i>.
*/
static VALUE
math_log10(obj, x)
VALUE obj, x;
{
double d;
Need_Float(x);
errno = 0;
d = log10(RFLOAT(x)->value);
domain_check(d, "log10");
return rb_float_new(d);
}
|
.sin(x) ⇒ Float
Computes the sine of x (expressed in radians). Returns -1..1.
|
# File 'math.c'
/*
* call-seq:
* Math.sin(x) => float
*
* Computes the sine of <i>x</i> (expressed in radians). Returns
* -1..1.
*/
static VALUE
math_sin(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(sin(RFLOAT(x)->value));
}
|
.sinh(x) ⇒ Float
Computes the hyperbolic sine of x (expressed in radians).
|
# File 'math.c'
/*
* call-seq:
* Math.sinh(x) => float
*
* Computes the hyperbolic sine of <i>x</i> (expressed in
* radians).
*/
static VALUE
math_sinh(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(sinh(RFLOAT(x)->value));
}
|
.sqrt(numeric) ⇒ Float
Returns the non-negative square root of numeric.
|
# File 'math.c'
/*
* call-seq:
* Math.sqrt(numeric) => float
*
* Returns the non-negative square root of <i>numeric</i>.
*/
static VALUE
math_sqrt(obj, x)
VALUE obj, x;
{
double d;
Need_Float(x);
errno = 0;
d = sqrt(RFLOAT(x)->value);
domain_check(d, "sqrt");
return rb_float_new(d);
}
|
.tan(x) ⇒ Float
Returns the tangent of x (expressed in radians).
|
# File 'math.c'
/*
* call-seq:
* Math.tan(x) => float
*
* Returns the tangent of <i>x</i> (expressed in radians).
*/
static VALUE
math_tan(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(tan(RFLOAT(x)->value));
}
|
.tanh ⇒ Float
Computes the hyperbolic tangent of x (expressed in radians).
|
# File 'math.c'
/*
* call-seq:
* Math.tanh() => float
*
* Computes the hyperbolic tangent of <i>x</i> (expressed in
* radians).
*/
static VALUE
math_tanh(obj, x)
VALUE obj, x;
{
Need_Float(x);
return rb_float_new(tanh(RFLOAT(x)->value));
}
|