Class: Numeric
Instance Method Summary collapse
-
#+ ⇒ Numeric
Unary Plus---Returns the receiver's value.
-
#- ⇒ Numeric
Unary Minus---Returns the receiver's value, negated.
-
#<=>(other) ⇒ 0?
Returns zero if num equals other,
nil
otherwise. -
#abs ⇒ Numeric
Returns the absolute value of num.
-
#ceil ⇒ Integer
Returns the smallest
Integer
greater than or equal to num. -
#coerce(numeric) ⇒ Array
If aNumeric is the same type as num, returns an array containing aNumeric and num.
-
#div(numeric) ⇒ Integer
Uses
/
to perform division, then converts the result to an integer. -
#divmod(aNumeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing num by aNumeric.
-
#eql?(numeric) ⇒ Boolean
Returns
true
if num and numeric are the same type and have equal values. -
#fdiv ⇒ Object
Equivalent to
Numeric#/
, but overridden in subclasses. -
#floor ⇒ Integer
Returns the largest integer less than or equal to num.
-
#initialize_copy ⇒ Object
:nodoc:.
-
#integer? ⇒ Boolean
Returns
true
if num is anInteger
(includingFixnum
andBignum
). -
#modulo(numeric) ⇒ Object
Equivalent to num.
divmod(
aNumeric)[1]
. -
#nonzero? ⇒ Numeric?
Returns num if num is not zero,
nil
otherwise. -
#quo ⇒ Object
Equivalent to
Numeric#/
, but overridden in subclasses. -
#remainder(numeric) ⇒ Object
If num and numeric have different signs, returns mod-numeric; otherwise, returns mod.
-
#round ⇒ Integer
Rounds num to the nearest integer.
-
#singleton_method_added ⇒ Object
Trap attempts to add methods to
Numeric
objects. -
#step(limit, step) {|i| ... } ⇒ Numeric
Invokes block with the sequence of numbers starting at num, incremented by step on each call.
-
#to_int ⇒ Integer
Invokes the child class's
to_i
method to convert num to an integer. -
#truncate ⇒ Integer
Returns num truncated to an integer.
-
#zero? ⇒ Boolean
Returns
true
if num has a zero value.
Methods included from Comparable
#<, #<=, #==, #>, #>=, #between?
Instance Method Details
#+ ⇒ Numeric
Unary Plus---Returns the receiver's value.
|
# File 'numeric.c'
/*
* call-seq:
* +num => num
*
* Unary Plus---Returns the receiver's value.
*/
static VALUE
num_uplus(num)
VALUE num;
{
return num;
}
|
#- ⇒ Numeric
Unary Minus---Returns the receiver's value, negated.
|
# File 'numeric.c'
/*
* call-seq:
* -num => numeric
*
* Unary Minus---Returns the receiver's value, negated.
*/
static VALUE
num_uminus(num)
VALUE num;
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, Qtrue);
return rb_funcall(zero, '-', 1, num);
}
|
#<=>(other) ⇒ 0?
Returns zero if num equals other, nil
otherwise.
|
# File 'numeric.c'
/*
* call-seq:
* num <=> other -> 0 or nil
*
* Returns zero if <i>num</i> equals <i>other</i>, <code>nil</code>
* otherwise.
*/
static VALUE
num_cmp(x, y)
VALUE x, y;
{
if (x == y) return INT2FIX(0);
return Qnil;
}
|
#abs ⇒ Numeric
Returns the absolute value of num.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
|
# File 'numeric.c'
/*
* call-seq:
* num.abs => num or numeric
*
* Returns the absolute value of <i>num</i>.
*
* 12.abs #=> 12
* (-34.56).abs #=> 34.56
* -34.56.abs #=> 34.56
*/
static VALUE
num_abs(num)
VALUE num;
{
if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
|
#ceil ⇒ Integer
Returns the smallest Integer
greater than or equal to num. Class Numeric
achieves this by converting itself to a Float
then invoking Float#ceil
.
1.ceil #=> 1
1.2.ceil #=> 2
(-1.2).ceil #=> -1
(-1.0).ceil #=> -1
|
# File 'numeric.c'
/*
* call-seq:
* num.ceil => integer
*
* Returns the smallest <code>Integer</code> greater than or equal to
* <i>num</i>. Class <code>Numeric</code> achieves this by converting
* itself to a <code>Float</code> then invoking
* <code>Float#ceil</code>.
*
* 1.ceil #=> 1
* 1.2.ceil #=> 2
* (-1.2).ceil #=> -1
* (-1.0).ceil #=> -1
*/
static VALUE
num_ceil(num)
VALUE num;
{
return flo_ceil(rb_Float(num));
}
|
#coerce(numeric) ⇒ Array
If aNumeric is the same type as num, returns an array containing aNumeric and num. Otherwise, returns an array with both aNumeric and num represented as Float
objects. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator.
1.coerce(2.5) #=> [2.5, 1.0]
1.2.coerce(3) #=> [3.0, 1.2]
1.coerce(2) #=> [2, 1]
|
# File 'numeric.c'
/*
* call-seq:
* num.coerce(numeric) => array
*
* If <i>aNumeric</i> is the same type as <i>num</i>, returns an array
* containing <i>aNumeric</i> and <i>num</i>. Otherwise, returns an
* array with both <i>aNumeric</i> and <i>num</i> represented as
* <code>Float</code> objects. This coercion mechanism is used by
* Ruby to handle mixed-type numeric operations: it is intended to
* find a compatible common type between the two operands of the operator.
*
* 1.coerce(2.5) #=> [2.5, 1.0]
* 1.2.coerce(3) #=> [3.0, 1.2]
* 1.coerce(2) #=> [2, 1]
*/
static VALUE
num_coerce(x, y)
VALUE x, y;
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
|
#div(numeric) ⇒ Integer
Uses /
to perform division, then converts the result to an integer. Numeric
does not define the /
operator; this is left to subclasses.
|
# File 'numeric.c'
/*
* call-seq:
* num.div(numeric) => integer
*
* Uses <code>/</code> to perform division, then converts the result to
* an integer. <code>Numeric</code> does not define the <code>/</code>
* operator; this is left to subclasses.
*/
static VALUE
num_div(x, y)
VALUE x, y;
{
return num_floor(rb_funcall(x, '/', 1, y));
}
|
#divmod(aNumeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing num by aNumeric. If q, r = x.divmod(y)
, then
q = floor(float(x)/float(y))
x = q*y + r
The quotient is rounded toward -infinity, as shown in the following table:
a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
------+-----+---------------+---------+-------------+---------------
13 | 4 | 3, 1 | 3 | 1 | 1
------+-----+---------------+---------+-------------+---------------
13 | -4 | -4, -3 | -3 | -3 | 1
------+-----+---------------+---------+-------------+---------------
-13 | 4 | -4, 3 | -4 | 3 | -1
------+-----+---------------+---------+-------------+---------------
-13 | -4 | 3, -1 | 3 | -1 | -1
------+-----+---------------+---------+-------------+---------------
11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
------+-----+---------------+---------+-------------+---------------
11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | -4 | 2 -3.5 | 2.875 | -3.5 | -3.5
Examples
11.divmod(3) #=> [3, 2]
11.divmod(-3) #=> [-4, -1]
11.divmod(3.5) #=> [3, 0.5]
(-11).divmod(3.5) #=> [-4, 3.0]
(11.5).divmod(3.5) #=> [3, 1.0]
|
# File 'numeric.c'
/*
* call-seq:
* num.divmod( aNumeric ) -> anArray
*
* Returns an array containing the quotient and modulus obtained by
* dividing <i>num</i> by <i>aNumeric</i>. If <code>q, r =
* x.divmod(y)</code>, then
*
* q = floor(float(x)/float(y))
* x = q*y + r
*
* The quotient is rounded toward -infinity, as shown in the following table:
*
* a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
* ------+-----+---------------+---------+-------------+---------------
* 13 | 4 | 3, 1 | 3 | 1 | 1
* ------+-----+---------------+---------+-------------+---------------
* 13 | -4 | -4, -3 | -3 | -3 | 1
* ------+-----+---------------+---------+-------------+---------------
* -13 | 4 | -4, 3 | -4 | 3 | -1
* ------+-----+---------------+---------+-------------+---------------
* -13 | -4 | 3, -1 | 3 | -1 | -1
* ------+-----+---------------+---------+-------------+---------------
* 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
* ------+-----+---------------+---------+-------------+---------------
* 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
* ------+-----+---------------+---------+-------------+---------------
* -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
* ------+-----+---------------+---------+-------------+---------------
* -11.5 | -4 | 2 -3.5 | 2.875 | -3.5 | -3.5
*
*
* Examples
* 11.divmod(3) #=> [3, 2]
* 11.divmod(-3) #=> [-4, -1]
* 11.divmod(3.5) #=> [3, 0.5]
* (-11).divmod(3.5) #=> [-4, 3.0]
* (11.5).divmod(3.5) #=> [3, 1.0]
*/
static VALUE
num_divmod(x, y)
VALUE x, y;
{
return rb_assoc_new(num_div(x, y), rb_funcall(x, '%', 1, y));
}
|
#eql?(numeric) ⇒ Boolean
Returns true
if num and numeric are the same type and have equal values.
1 == 1.0 #=> true
1.eql?(1.0) #=> false
(1.0).eql?(1.0) #=> true
|
# File 'numeric.c'
/*
* call-seq:
* num.eql?(numeric) => true or false
*
* Returns <code>true</code> if <i>num</i> and <i>numeric</i> are the
* same type and have equal values.
*
* 1 == 1.0 #=> true
* 1.eql?(1.0) #=> false
* (1.0).eql?(1.0) #=> true
*/
static VALUE
num_eql(x, y)
VALUE x, y;
{
if (TYPE(x) != TYPE(y)) return Qfalse;
return rb_equal(x, y);
}
|
#quo(numeric) ⇒ Object #fdiv(numeric) ⇒ Object
Equivalent to Numeric#/
, but overridden in subclasses.
|
# File 'numeric.c'
/*
* call-seq:
* num.quo(numeric) => result
* num.fdiv(numeric) => result
*
* Equivalent to <code>Numeric#/</code>, but overridden in subclasses.
*/
static VALUE
num_quo(x, y)
VALUE x, y;
{
return rb_funcall(x, '/', 1, y);
}
|
#floor ⇒ Integer
Returns the largest integer less than or equal to num. Numeric
implements this by converting anInteger to a Float
and invoking Float#floor
.
1.floor #=> 1
(-1).floor #=> -1
|
# File 'numeric.c'
/*
* call-seq:
* num.floor => integer
*
* Returns the largest integer less than or equal to <i>num</i>.
* <code>Numeric</code> implements this by converting <i>anInteger</i>
* to a <code>Float</code> and invoking <code>Float#floor</code>.
*
* 1.floor #=> 1
* (-1).floor #=> -1
*/
static VALUE
num_floor(num)
VALUE num;
{
return flo_floor(rb_Float(num));
}
|
#initialize_copy ⇒ Object
:nodoc:
|
# File 'numeric.c'
/* :nodoc: */
static VALUE
num_init_copy(x, y)
VALUE x, y;
{
/* Numerics are immutable values, which should not be copied */
rb_raise(rb_eTypeError, "can't copy %s", rb_obj_classname(x));
return Qnil; /* not reached */
}
|
#integer? ⇒ Boolean
Returns true
if num is an Integer
(including Fixnum
and Bignum
).
|
# File 'numeric.c'
/*
* call-seq:
* num.integer? -> true or false
*
* Returns <code>true</code> if <i>num</i> is an <code>Integer</code>
* (including <code>Fixnum</code> and <code>Bignum</code>).
*/
static VALUE
num_int_p(num)
VALUE num;
{
return Qfalse;
}
|
#modulo(numeric) ⇒ Object
Equivalent to num.divmod(
aNumeric)[1]
.
|
# File 'numeric.c'
/*
* call-seq:
* num.modulo(numeric) => result
*
* Equivalent to
* <i>num</i>.<code>divmod(</code><i>aNumeric</i><code>)[1]</code>.
*/
static VALUE
num_modulo(x, y)
VALUE x, y;
{
return rb_funcall(x, '%', 1, y);
}
|
#nonzero? ⇒ Numeric?
Returns num if num is not zero, nil
otherwise. This behavior is useful when chaining comparisons:
a = %w( z Bb bB bb BB a aA Aa AA A )
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
|
# File 'numeric.c'
/*
* call-seq:
* num.nonzero? => num or nil
*
* Returns <i>num</i> if <i>num</i> is not zero, <code>nil</code>
* otherwise. This behavior is useful when chaining comparisons:
*
* a = %w( z Bb bB bb BB a aA Aa AA A )
* b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
* b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
*/
static VALUE
num_nonzero_p(num)
VALUE num;
{
if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) {
return Qnil;
}
return num;
}
|
#quo(numeric) ⇒ Object #fdiv(numeric) ⇒ Object
Equivalent to Numeric#/
, but overridden in subclasses.
|
# File 'numeric.c'
/*
* call-seq:
* num.quo(numeric) => result
* num.fdiv(numeric) => result
*
* Equivalent to <code>Numeric#/</code>, but overridden in subclasses.
*/
static VALUE
num_quo(x, y)
VALUE x, y;
{
return rb_funcall(x, '/', 1, y);
}
|
#remainder(numeric) ⇒ Object
If num and numeric have different signs, returns mod-numeric; otherwise, returns mod. In both cases mod is the value num.modulo(
numeric)
. The differences between remainder
and modulo (%
) are shown in the table under Numeric#divmod
.
|
# File 'numeric.c'
/*
* call-seq:
* num.remainder(numeric) => result
*
* If <i>num</i> and <i>numeric</i> have different signs, returns
* <em>mod</em>-<i>numeric</i>; otherwise, returns <em>mod</em>. In
* both cases <em>mod</em> is the value
* <i>num</i>.<code>modulo(</code><i>numeric</i><code>)</code>. The
* differences between <code>remainder</code> and modulo
* (<code>%</code>) are shown in the table under <code>Numeric#divmod</code>.
*/
static VALUE
num_remainder(x, y)
VALUE x, y;
{
VALUE z = rb_funcall(x, '%', 1, y);
if ((!rb_equal(z, INT2FIX(0))) &&
((RTEST(rb_funcall(x, '<', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '>', 1, INT2FIX(0)))) ||
(RTEST(rb_funcall(x, '>', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '<', 1, INT2FIX(0)))))) {
return rb_funcall(z, '-', 1, y);
}
return z;
}
|
#round ⇒ Integer
Rounds num to the nearest integer. Numeric
implements this by converting itself to a Float
and invoking Float#round
.
|
# File 'numeric.c'
/*
* call-seq:
* num.round => integer
*
* Rounds <i>num</i> to the nearest integer. <code>Numeric</code>
* implements this by converting itself to a
* <code>Float</code> and invoking <code>Float#round</code>.
*/
static VALUE
num_round(num)
VALUE num;
{
return flo_round(rb_Float(num));
}
|
#singleton_method_added ⇒ Object
Trap attempts to add methods to Numeric
objects. Always raises a TypeError
|
# File 'numeric.c'
/*
* Trap attempts to add methods to <code>Numeric</code> objects. Always
* raises a <code>TypeError</code>
*/
static VALUE
num_sadded(x, name)
VALUE x, name;
{
ruby_frame = ruby_frame->prev; /* pop frame for "singleton_method_added" */
/* Numerics should be values; singleton_methods should not be added to them */
rb_raise(rb_eTypeError,
"can't define singleton method \"%s\" for %s",
rb_id2name(rb_to_id(name)),
rb_obj_classname(x));
return Qnil; /* not reached */
}
|
#step(limit, step) {|i| ... } ⇒ Numeric
Invokes block with the sequence of numbers starting at num, incremented by step on each call. The loop finishes when the value to be passed to the block is greater than limit (if step is positive) or less than limit (if step is negative). If all the arguments are integers, the loop operates using an integer counter. If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*epsilon)+ 1 times, where n = (limit - num)/step. Otherwise, the loop starts at num, uses either the <
or >
operator to compare the counter against limit, and increments itself using the +
operator.
1.step(10, 2) { |i| print i, " " }
Math::E.step(Math::PI, 0.2) { |f| print f, " " }
produces:
1 3 5 7 9
2.71828182845905 2.91828182845905 3.11828182845905
|
# File 'numeric.c'
/*
* call-seq:
* num.step(limit, step ) {|i| block } => num
*
* Invokes <em>block</em> with the sequence of numbers starting at
* <i>num</i>, incremented by <i>step</i> on each call. The loop
* finishes when the value to be passed to the block is greater than
* <i>limit</i> (if <i>step</i> is positive) or less than
* <i>limit</i> (if <i>step</i> is negative). If all the arguments are
* integers, the loop operates using an integer counter. If any of the
* arguments are floating point numbers, all are converted to floats,
* and the loop is executed <i>floor(n + n*epsilon)+ 1</i> times,
* where <i>n = (limit - num)/step</i>. Otherwise, the loop
* starts at <i>num</i>, uses either the <code><</code> or
* <code>></code> operator to compare the counter against
* <i>limit</i>, and increments itself using the <code>+</code>
* operator.
*
* 1.step(10, 2) { |i| print i, " " }
* Math::E.step(Math::PI, 0.2) { |f| print f, " " }
*
* <em>produces:</em>
*
* 1 3 5 7 9
* 2.71828182845905 2.91828182845905 3.11828182845905
*/
static VALUE
num_step(argc, argv, from)
int argc;
VALUE *argv;
VALUE from;
{
VALUE to, step;
RETURN_ENUMERATOR(from, argc, argv);
if (argc == 1) {
to = argv[0];
step = INT2FIX(1);
}
else {
if (argc == 2) {
to = argv[0];
step = argv[1];
}
else {
rb_raise(rb_eArgError, "wrong number of arguments");
}
if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
}
if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
long i, end, diff;
i = FIX2LONG(from);
end = FIX2LONG(to);
diff = FIX2LONG(step);
if (diff > 0) {
while (i <= end) {
rb_yield(LONG2FIX(i));
i += diff;
}
}
else {
while (i >= end) {
rb_yield(LONG2FIX(i));
i += diff;
}
}
}
else if (!ruby_float_step(from, to, step, Qfalse)) {
VALUE i = from;
ID cmp;
if (RTEST(rb_funcall(step, '>', 1, INT2FIX(0)))) {
cmp = '>';
}
else {
cmp = '<';
}
for (;;) {
if (RTEST(rb_funcall(i, cmp, 1, to))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, step);
}
}
return from;
}
|
#to_int ⇒ Integer
Invokes the child class's to_i
method to convert num to an integer.
|
# File 'numeric.c'
/*
* call-seq:
* num.to_int => integer
*
* Invokes the child class's <code>to_i</code> method to convert
* <i>num</i> to an integer.
*/
static VALUE
num_to_int(num)
VALUE num;
{
return rb_funcall(num, id_to_i, 0, 0);
}
|
#truncate ⇒ Integer
Returns num truncated to an integer. Numeric
implements this by converting its value to a float and invoking Float#truncate
.
|
# File 'numeric.c'
/*
* call-seq:
* num.truncate => integer
*
* Returns <i>num</i> truncated to an integer. <code>Numeric</code>
* implements this by converting its value to a float and invoking
* <code>Float#truncate</code>.
*/
static VALUE
num_truncate(num)
VALUE num;
{
return flo_truncate(rb_Float(num));
}
|
#zero? ⇒ Boolean
Returns true
if num has a zero value.
|
# File 'numeric.c'
/*
* call-seq:
* num.zero? => true or false
*
* Returns <code>true</code> if <i>num</i> has a zero value.
*/
static VALUE
num_zero_p(num)
VALUE num;
{
if (rb_equal(num, INT2FIX(0))) {
return Qtrue;
}
return Qfalse;
}
|