Class: Numeric
Overview
Instance Method Summary collapse
-
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor.
-
#+ ⇒ Numeric
Unary Plus---Returns the receiver's value.
-
#- ⇒ Numeric
Unary Minus---Returns the receiver's value, negated.
-
#<=>(other) ⇒ 0?
Returns zero if num equals other,
nil
otherwise. -
#abs ⇒ Object
Returns the absolute value of num.
-
#abs2 ⇒ Object
Returns square of self.
-
#angle ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#arg ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#ceil ⇒ Integer
Returns the smallest
Integer
greater than or equal to num. -
#coerce(numeric) ⇒ Array
If aNumeric is the same type as num, returns an array containing aNumeric and num.
-
#conj ⇒ Object
Returns self.
-
#conjugate ⇒ Object
Returns self.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#div(numeric) ⇒ Integer
Uses
/
to perform division, then converts the result to an integer. -
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing num by numeric.
-
#eql?(numeric) ⇒ Boolean
Returns
true
if num and numeric are the same type and have equal values. -
#fdiv(numeric) ⇒ Float
Returns float division.
-
#floor ⇒ Integer
Returns the largest integer less than or equal to num.
-
#i ⇒ Object
Returns the corresponding imaginary number.
-
#imag ⇒ Object
Returns zero.
-
#imaginary ⇒ Object
Returns zero.
-
#initialize_copy ⇒ Object
:nodoc:.
-
#integer? ⇒ Boolean
Returns
true
if num is anInteger
(includingFixnum
andBignum
). -
#magnitude ⇒ Object
Returns the absolute value of num.
-
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor.
-
#nonzero? ⇒ Numeric?
Returns
self
if num is not zero,nil
otherwise. -
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
-
#quo(numeric) ⇒ Object
Returns most exact division (rational for integers, float for floats).
-
#real ⇒ Numeric
Returns self.
-
#real? ⇒ Boolean
Returns
true
if num is aReal
(i.e. nonComplex
). -
#rect ⇒ Array
Returns an array; [num, 0].
-
#rect ⇒ Array
Returns an array; [num, 0].
-
#remainder(numeric) ⇒ Object
x.remainder(y) means x-y*(x/y).truncate.
-
#round([ndigits]) ⇒ Integer, Float
Rounds num to a given precision in decimal digits (default 0 digits).
-
#singleton_method_added ⇒ Object
Trap attempts to add methods to
Numeric
objects. -
#step ⇒ Object
Invokes block with the sequence of numbers starting at num, incremented by step (default 1) on each call.
-
#to_c ⇒ Object
Returns the value as a complex.
-
#to_int ⇒ Integer
Invokes the child class's
to_i
method to convert num to an integer. -
#truncate ⇒ Integer
Returns num truncated to an integer.
-
#zero? ⇒ Boolean
Returns
true
if num has a zero value.
Methods included from Comparable
#<, #<=, #==, #>, #>=, #between?
Instance Method Details
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor
Equivalent to num.divmod(
aNumeric)[1]
.
See Numeric#divmod
.
|
# File 'numeric.c'
/*
* call-seq:
* num.modulo(numeric) -> real
*
* x.modulo(y) means x-y*(x/y).floor
*
* Equivalent to
* <i>num</i>.<code>divmod(</code><i>aNumeric</i><code>)[1]</code>.
*
* See <code>Numeric#divmod</code>.
*/
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, rb_intern("div"), 1, y)));
}
|
#+ ⇒ Numeric
Unary Plus---Returns the receiver's value.
|
# File 'numeric.c'
/*
* call-seq:
* +num -> num
*
* Unary Plus---Returns the receiver's value.
*/
static VALUE
num_uplus(VALUE num)
{
return num;
}
|
#- ⇒ Numeric
Unary Minus---Returns the receiver's value, negated.
|
# File 'numeric.c'
/*
* call-seq:
* -num -> numeric
*
* Unary Minus---Returns the receiver's value, negated.
*/
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, TRUE);
return rb_funcall(zero, '-', 1, num);
}
|
#<=>(other) ⇒ 0?
Returns zero if num equals other, nil
otherwise.
|
# File 'numeric.c'
/*
* call-seq:
* num <=> other -> 0 or nil
*
* Returns zero if <i>num</i> equals <i>other</i>, <code>nil</code>
* otherwise.
*/
static VALUE
num_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
return Qnil;
}
|
#abs ⇒ Numeric #magnitude ⇒ Numeric
Returns the absolute value of num.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
|
# File 'numeric.c'
/*
* call-seq:
* num.abs -> numeric
* num.magnitude -> numeric
*
* Returns the absolute value of <i>num</i>.
*
* 12.abs #=> 12
* (-34.56).abs #=> 34.56
* -34.56.abs #=> 34.56
*/
static VALUE
num_abs(VALUE num)
{
if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
|
#abs2 ⇒ Object
Returns square of self.
|
# File 'complex.c'
/*
* call-seq:
* num.abs2 -> real
*
* Returns square of self.
*/
static VALUE
numeric_abs2(VALUE self)
{
return f_mul(self, self);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
|
# File 'complex.c'
/*
* call-seq:
* num.arg -> 0 or float
* num.angle -> 0 or float
* num.phase -> 0 or float
*
* Returns 0 if the value is positive, pi otherwise.
*/
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
|
# File 'complex.c'
/*
* call-seq:
* num.arg -> 0 or float
* num.angle -> 0 or float
* num.phase -> 0 or float
*
* Returns 0 if the value is positive, pi otherwise.
*/
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#ceil ⇒ Integer
Returns the smallest Integer
greater than or equal to num. Class Numeric
achieves this by converting itself to a Float
then invoking Float#ceil
.
1.ceil #=> 1
1.2.ceil #=> 2
(-1.2).ceil #=> -1
(-1.0).ceil #=> -1
|
# File 'numeric.c'
/*
* call-seq:
* num.ceil -> integer
*
* Returns the smallest <code>Integer</code> greater than or equal to
* <i>num</i>. Class <code>Numeric</code> achieves this by converting
* itself to a <code>Float</code> then invoking
* <code>Float#ceil</code>.
*
* 1.ceil #=> 1
* 1.2.ceil #=> 2
* (-1.2).ceil #=> -1
* (-1.0).ceil #=> -1
*/
static VALUE
num_ceil(VALUE num)
{
return flo_ceil(rb_Float(num));
}
|
#coerce(numeric) ⇒ Array
If aNumeric is the same type as num, returns an array containing aNumeric and num. Otherwise, returns an array with both aNumeric and num represented as Float
objects. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator.
1.coerce(2.5) #=> [2.5, 1.0]
1.2.coerce(3) #=> [3.0, 1.2]
1.coerce(2) #=> [2, 1]
|
# File 'numeric.c'
/*
* call-seq:
* num.coerce(numeric) -> array
*
* If <i>aNumeric</i> is the same type as <i>num</i>, returns an array
* containing <i>aNumeric</i> and <i>num</i>. Otherwise, returns an
* array with both <i>aNumeric</i> and <i>num</i> represented as
* <code>Float</code> objects. This coercion mechanism is used by
* Ruby to handle mixed-type numeric operations: it is intended to
* find a compatible common type between the two operands of the operator.
*
* 1.coerce(2.5) #=> [2.5, 1.0]
* 1.2.coerce(3) #=> [3.0, 1.2]
* 1.coerce(2) #=> [2, 1]
*/
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
|
#conj ⇒ Numeric #conjugate ⇒ Numeric
Returns self.
|
# File 'complex.c'
/*
* call-seq:
* num.conj -> self
* num.conjugate -> self
*
* Returns self.
*/
static VALUE
numeric_conj(VALUE self)
{
return self;
}
|
#conj ⇒ Numeric #conjugate ⇒ Numeric
Returns self.
|
# File 'complex.c'
/*
* call-seq:
* num.conj -> self
* num.conjugate -> self
*
* Returns self.
*/
static VALUE
numeric_conj(VALUE self)
{
return self;
}
|
#denominator ⇒ Integer
Returns the denominator (always positive).
|
# File 'rational.c'
/*
* call-seq:
* num.denominator -> integer
*
* Returns the denominator (always positive).
*/
static VALUE
numeric_denominator(VALUE self)
{
return f_denominator(f_to_r(self));
}
|
#div(numeric) ⇒ Integer
Uses /
to perform division, then converts the result to an integer. numeric
does not define the /
operator; this is left to subclasses.
Equivalent to num.divmod(
aNumeric)[0]
.
See Numeric#divmod
.
|
# File 'numeric.c'
/*
* call-seq:
* num.div(numeric) -> integer
*
* Uses <code>/</code> to perform division, then converts the result to
* an integer. <code>numeric</code> does not define the <code>/</code>
* operator; this is left to subclasses.
*
* Equivalent to
* <i>num</i>.<code>divmod(</code><i>aNumeric</i><code>)[0]</code>.
*
* See <code>Numeric#divmod</code>.
*/
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0);
}
|
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing num by numeric. If q, r = x.divmod(y)
, then
q = floor(x/y)
x = q*y+r
The quotient is rounded toward -infinity, as shown in the following table:
a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
------+-----+---------------+---------+-------------+---------------
13 | 4 | 3, 1 | 3 | 1 | 1
------+-----+---------------+---------+-------------+---------------
13 | -4 | -4, -3 | -4 | -3 | 1
------+-----+---------------+---------+-------------+---------------
-13 | 4 | -4, 3 | -4 | 3 | -1
------+-----+---------------+---------+-------------+---------------
-13 | -4 | 3, -1 | 3 | -1 | -1
------+-----+---------------+---------+-------------+---------------
11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
------+-----+---------------+---------+-------------+---------------
11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
Examples
11.divmod(3) #=> [3, 2]
11.divmod(-3) #=> [-4, -1]
11.divmod(3.5) #=> [3, 0.5]
(-11).divmod(3.5) #=> [-4, 3.0]
(11.5).divmod(3.5) #=> [3, 1.0]
|
# File 'numeric.c'
/*
* call-seq:
* num.divmod(numeric) -> array
*
* Returns an array containing the quotient and modulus obtained by
* dividing <i>num</i> by <i>numeric</i>. If <code>q, r =
* x.divmod(y)</code>, then
*
* q = floor(x/y)
* x = q*y+r
*
* The quotient is rounded toward -infinity, as shown in the following table:
*
* a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
* ------+-----+---------------+---------+-------------+---------------
* 13 | 4 | 3, 1 | 3 | 1 | 1
* ------+-----+---------------+---------+-------------+---------------
* 13 | -4 | -4, -3 | -4 | -3 | 1
* ------+-----+---------------+---------+-------------+---------------
* -13 | 4 | -4, 3 | -4 | 3 | -1
* ------+-----+---------------+---------+-------------+---------------
* -13 | -4 | 3, -1 | 3 | -1 | -1
* ------+-----+---------------+---------+-------------+---------------
* 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
* ------+-----+---------------+---------+-------------+---------------
* 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
* ------+-----+---------------+---------+-------------+---------------
* -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
* ------+-----+---------------+---------+-------------+---------------
* -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
*
*
* Examples
*
* 11.divmod(3) #=> [3, 2]
* 11.divmod(-3) #=> [-4, -1]
* 11.divmod(3.5) #=> [3, 0.5]
* (-11).divmod(3.5) #=> [-4, 3.0]
* (11.5).divmod(3.5) #=> [3, 1.0]
*/
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
|
#eql?(numeric) ⇒ Boolean
Returns true
if num and numeric are the same type and have equal values.
1 == 1.0 #=> true
1.eql?(1.0) #=> false
(1.0).eql?(1.0) #=> true
|
# File 'numeric.c'
/*
* call-seq:
* num.eql?(numeric) -> true or false
*
* Returns <code>true</code> if <i>num</i> and <i>numeric</i> are the
* same type and have equal values.
*
* 1 == 1.0 #=> true
* 1.eql?(1.0) #=> false
* (1.0).eql?(1.0) #=> true
*/
static VALUE
num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
return rb_equal(x, y);
}
|
#fdiv(numeric) ⇒ Float
Returns float division.
|
# File 'numeric.c'
/*
* call-seq:
* num.fdiv(numeric) -> float
*
* Returns float division.
*/
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
|
#floor ⇒ Integer
Returns the largest integer less than or equal to num. Numeric
implements this by converting anInteger to a Float
and invoking Float#floor
.
1.floor #=> 1
(-1).floor #=> -1
|
# File 'numeric.c'
/*
* call-seq:
* num.floor -> integer
*
* Returns the largest integer less than or equal to <i>num</i>.
* <code>Numeric</code> implements this by converting <i>anInteger</i>
* to a <code>Float</code> and invoking <code>Float#floor</code>.
*
* 1.floor #=> 1
* (-1).floor #=> -1
*/
static VALUE
num_floor(VALUE num)
{
return flo_floor(rb_Float(num));
}
|
#i ⇒ Object
Returns the corresponding imaginary number. Not available for complex numbers.
|
# File 'numeric.c'
/*
* call-seq:
* num.i -> Complex(0,num)
*
* Returns the corresponding imaginary number.
* Not available for complex numbers.
*/
static VALUE
num_imaginary(VALUE num)
{
return rb_complex_new(INT2FIX(0), num);
}
|
#imag ⇒ 0 #imaginary ⇒ 0
Returns zero.
|
# File 'complex.c'
/*
* call-seq:
* num.imag -> 0
* num.imaginary -> 0
*
* Returns zero.
*/
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
|
#imag ⇒ 0 #imaginary ⇒ 0
Returns zero.
|
# File 'complex.c'
/*
* call-seq:
* num.imag -> 0
* num.imaginary -> 0
*
* Returns zero.
*/
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
|
#initialize_copy ⇒ Object
:nodoc:
|
# File 'numeric.c'
/* :nodoc: */
static VALUE
num_init_copy(VALUE x, VALUE y)
{
/* Numerics are immutable values, which should not be copied */
rb_raise(rb_eTypeError, "can't copy %s", rb_obj_classname(x));
return Qnil; /* not reached */
}
|
#integer? ⇒ Boolean
Returns true
if num is an Integer
(including Fixnum
and Bignum
).
|
# File 'numeric.c'
/*
* call-seq:
* num.integer? -> true or false
*
* Returns <code>true</code> if <i>num</i> is an <code>Integer</code>
* (including <code>Fixnum</code> and <code>Bignum</code>).
*/
static VALUE
num_int_p(VALUE num)
{
return Qfalse;
}
|
#abs ⇒ Numeric #magnitude ⇒ Numeric
Returns the absolute value of num.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
|
# File 'numeric.c'
/*
* call-seq:
* num.abs -> numeric
* num.magnitude -> numeric
*
* Returns the absolute value of <i>num</i>.
*
* 12.abs #=> 12
* (-34.56).abs #=> 34.56
* -34.56.abs #=> 34.56
*/
static VALUE
num_abs(VALUE num)
{
if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
|
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor
Equivalent to num.divmod(
aNumeric)[1]
.
See Numeric#divmod
.
|
# File 'numeric.c'
/*
* call-seq:
* num.modulo(numeric) -> real
*
* x.modulo(y) means x-y*(x/y).floor
*
* Equivalent to
* <i>num</i>.<code>divmod(</code><i>aNumeric</i><code>)[1]</code>.
*
* See <code>Numeric#divmod</code>.
*/
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, rb_intern("div"), 1, y)));
}
|
#nonzero? ⇒ Numeric?
Returns self
if num is not zero, nil
otherwise. This behavior is useful when chaining comparisons:
a = %w( z Bb bB bb BB a aA Aa AA A )
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
|
# File 'numeric.c'
/*
* call-seq:
* num.nonzero? -> self or nil
*
* Returns +self+ if <i>num</i> is not zero, <code>nil</code>
* otherwise. This behavior is useful when chaining comparisons:
*
* a = %w( z Bb bB bb BB a aA Aa AA A )
* b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
* b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
*/
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) {
return Qnil;
}
return num;
}
|
#numerator ⇒ Integer
Returns the numerator.
|
# File 'rational.c'
/*
* call-seq:
* num.numerator -> integer
*
* Returns the numerator.
*/
static VALUE
numeric_numerator(VALUE self)
{
return f_numerator(f_to_r(self));
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
|
# File 'complex.c'
/*
* call-seq:
* num.arg -> 0 or float
* num.angle -> 0 or float
* num.phase -> 0 or float
*
* Returns 0 if the value is positive, pi otherwise.
*/
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
|
# File 'complex.c'
/*
* call-seq:
* num.polar -> array
*
* Returns an array; [num.abs, num.arg].
*/
static VALUE
numeric_polar(VALUE self)
{
return rb_assoc_new(f_abs(self), f_arg(self));
}
|
#quo(numeric) ⇒ Object
Returns most exact division (rational for integers, float for floats).
|
# File 'numeric.c'
/*
* call-seq:
* num.quo(numeric) -> real
*
* Returns most exact division (rational for integers, float for floats).
*/
static VALUE
num_quo(VALUE x, VALUE y)
{
return rb_funcall(rb_rational_raw1(x), '/', 1, y);
}
|
#real ⇒ Numeric
Returns self.
|
# File 'complex.c'
/*
* call-seq:
* num.real -> self
*
* Returns self.
*/
static VALUE
numeric_real(VALUE self)
{
return self;
}
|
#real? ⇒ Boolean
Returns true
if num is a Real
(i.e. non Complex
).
|
# File 'numeric.c'
/*
* call-seq:
* num.real? -> true or false
*
* Returns <code>true</code> if <i>num</i> is a <code>Real</code>
* (i.e. non <code>Complex</code>).
*/
static VALUE
num_real_p(VALUE num)
{
return Qtrue;
}
|
#rect ⇒ Array
Returns an array; [num, 0].
|
# File 'complex.c'
/*
* call-seq:
* num.rect -> array
*
* Returns an array; [num, 0].
*/
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
|
#rect ⇒ Array
Returns an array; [num, 0].
|
# File 'complex.c'
/*
* call-seq:
* num.rect -> array
*
* Returns an array; [num, 0].
*/
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
|
#remainder(numeric) ⇒ Object
x.remainder(y) means x-y*(x/y).truncate
See Numeric#divmod
.
|
# File 'numeric.c'
/*
* call-seq:
* num.remainder(numeric) -> real
*
* x.remainder(y) means x-y*(x/y).truncate
*
* See <code>Numeric#divmod</code>.
*/
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = rb_funcall(x, '%', 1, y);
if ((!rb_equal(z, INT2FIX(0))) &&
((RTEST(rb_funcall(x, '<', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '>', 1, INT2FIX(0)))) ||
(RTEST(rb_funcall(x, '>', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '<', 1, INT2FIX(0)))))) {
return rb_funcall(z, '-', 1, y);
}
return z;
}
|
#round([ndigits]) ⇒ Integer, Float
Rounds num to a given precision in decimal digits (default 0 digits). Precision may be negative. Returns a floating point number when ndigits is more than zero. Numeric
implements this by converting itself to a Float
and invoking Float#round
.
|
# File 'numeric.c'
/*
* call-seq:
* num.round([ndigits]) -> integer or float
*
* Rounds <i>num</i> to a given precision in decimal digits (default 0 digits).
* Precision may be negative. Returns a floating point number when ndigits
* is more than zero. <code>Numeric</code> implements this by converting itself
* to a <code>Float</code> and invoking <code>Float#round</code>.
*/
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
return flo_round(argc, argv, rb_Float(num));
}
|
#singleton_method_added ⇒ Object
Trap attempts to add methods to Numeric
objects. Always raises a TypeError
|
# File 'numeric.c'
/*
* Trap attempts to add methods to <code>Numeric</code> objects. Always
* raises a <code>TypeError</code>
*/
static VALUE
num_sadded(VALUE x, VALUE name)
{
ID mid = rb_to_id(name);
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
/* Numerics should be values; singleton_methods should not be added to them */
rb_remove_method_id(rb_singleton_class(x), mid);
rb_raise(rb_eTypeError,
"can't define singleton method \"%s\" for %s",
rb_id2name(mid),
rb_obj_classname(x));
return Qnil; /* not reached */
}
|
#step(limit[, step]) {|i| ... } ⇒ Numeric #step(limit[, step]) ⇒ Object
Invokes block with the sequence of numbers starting at num, incremented by step (default 1) on each call. The loop finishes when the value to be passed to the block is greater than limit (if step is positive) or less than limit (if step is negative). If all the arguments are integers, the loop operates using an integer counter. If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*epsilon)+ 1 times, where n = (limit - num)/step. Otherwise, the loop starts at num, uses either the <
or >
operator to compare the counter against limit, and increments itself using the +
operator.
If no block is given, an enumerator is returned instead.
1.step(10, 2) { |i| print i, " " }
Math::E.step(Math::PI, 0.2) { |f| print f, " " }
produces:
1 3 5 7 9
2.71828182845905 2.91828182845905 3.11828182845905
|
# File 'numeric.c'
/*
* call-seq:
* num.step(limit[, step]) {|i| block } -> self
* num.step(limit[, step]) -> an_enumerator
*
* Invokes <em>block</em> with the sequence of numbers starting at
* <i>num</i>, incremented by <i>step</i> (default 1) on each
* call. The loop finishes when the value to be passed to the block
* is greater than <i>limit</i> (if <i>step</i> is positive) or less
* than <i>limit</i> (if <i>step</i> is negative). If all the
* arguments are integers, the loop operates using an integer
* counter. If any of the arguments are floating point numbers, all
* are converted to floats, and the loop is executed <i>floor(n +
* n*epsilon)+ 1</i> times, where <i>n = (limit -
* num)/step</i>. Otherwise, the loop starts at <i>num</i>, uses
* either the <code><</code> or <code>></code> operator to compare
* the counter against <i>limit</i>, and increments itself using the
* <code>+</code> operator.
*
* If no block is given, an enumerator is returned instead.
*
* 1.step(10, 2) { |i| print i, " " }
* Math::E.step(Math::PI, 0.2) { |f| print f, " " }
*
* <em>produces:</em>
*
* 1 3 5 7 9
* 2.71828182845905 2.91828182845905 3.11828182845905
*/
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
RETURN_ENUMERATOR(from, argc, argv);
if (argc == 1) {
to = argv[0];
step = INT2FIX(1);
}
else {
if (argc == 2) {
to = argv[0];
step = argv[1];
}
else {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 1..2)", argc);
}
if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
}
if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
long i, end, diff;
i = FIX2LONG(from);
end = FIX2LONG(to);
diff = FIX2LONG(step);
if (diff > 0) {
while (i <= end) {
rb_yield(LONG2FIX(i));
i += diff;
}
}
else {
while (i >= end) {
rb_yield(LONG2FIX(i));
i += diff;
}
}
}
else if (!ruby_float_step(from, to, step, FALSE)) {
VALUE i = from;
ID cmp;
if (RTEST(rb_funcall(step, '>', 1, INT2FIX(0)))) {
cmp = '>';
}
else {
cmp = '<';
}
for (;;) {
if (RTEST(rb_funcall(i, cmp, 1, to))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, step);
}
}
return from;
}
|
#to_c ⇒ Object
Returns the value as a complex.
|
# File 'complex.c'
/*
* call-seq:
* num.to_c -> complex
*
* Returns the value as a complex.
*/
static VALUE
numeric_to_c(VALUE self)
{
return rb_complex_new1(self);
}
|
#to_int ⇒ Integer
Invokes the child class's to_i
method to convert num to an integer.
|
# File 'numeric.c'
/*
* call-seq:
* num.to_int -> integer
*
* Invokes the child class's <code>to_i</code> method to convert
* <i>num</i> to an integer.
*/
static VALUE
num_to_int(VALUE num)
{
return rb_funcall(num, id_to_i, 0, 0);
}
|
#truncate ⇒ Integer
Returns num truncated to an integer. Numeric
implements this by converting its value to a float and invoking Float#truncate
.
|
# File 'numeric.c'
/*
* call-seq:
* num.truncate -> integer
*
* Returns <i>num</i> truncated to an integer. <code>Numeric</code>
* implements this by converting its value to a float and invoking
* <code>Float#truncate</code>.
*/
static VALUE
num_truncate(VALUE num)
{
return flo_truncate(rb_Float(num));
}
|
#zero? ⇒ Boolean
Returns true
if num has a zero value.
|
# File 'numeric.c'
/*
* call-seq:
* num.zero? -> true or false
*
* Returns <code>true</code> if <i>num</i> has a zero value.
*/
static VALUE
num_zero_p(VALUE num)
{
if (rb_equal(num, INT2FIX(0))) {
return Qtrue;
}
return Qfalse;
}
|