Class: Numeric
Overview
Instance Method Summary collapse
-
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor.
-
#+ ⇒ Numeric
Unary Plus---Returns the receiver's value.
-
#- ⇒ Numeric
Unary Minus---Returns the receiver's value, negated.
-
#<=>(other) ⇒ 0?
Returns zero if num equals other,
nil
otherwise. -
#abs ⇒ Object
Returns the absolute value of num.
-
#abs2 ⇒ Object
Returns square of self.
-
#angle ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#arg ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#ceil ⇒ Integer
Returns the smallest
Integer
greater than or equal to num. -
#coerce(numeric) ⇒ Array
If aNumeric is the same type as num, returns an array containing aNumeric and num.
-
#conj ⇒ Object
Returns self.
-
#conjugate ⇒ Object
Returns self.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#div(numeric) ⇒ Integer
Uses
/
to perform division, then converts the result to an integer. -
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing num by numeric.
-
#eql?(numeric) ⇒ Boolean
Returns
true
if num and numeric are the same type and have equal values. -
#fdiv(numeric) ⇒ Float
Returns float division.
-
#floor ⇒ Integer
Returns the largest integer less than or equal to num.
-
#i ⇒ Complex(0]
Returns the corresponding imaginary number.
-
#imag ⇒ Object
Returns zero.
-
#imaginary ⇒ Object
Returns zero.
-
#initialize_copy ⇒ Object
:nodoc:.
-
#integer? ⇒ Boolean
Returns
true
if num is anInteger
(includingFixnum
andBignum
). -
#magnitude ⇒ Object
Returns the absolute value of num.
-
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor.
-
#nonzero? ⇒ self?
Returns
self
if num is not zero,nil
otherwise. -
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
-
#quo(numeric) ⇒ Object
Returns most exact division (rational for integers, float for floats).
-
#real ⇒ self
Returns self.
-
#real? ⇒ Boolean
Returns
true
if num is aReal
(i.e. nonComplex
). -
#rect ⇒ Array
Returns an array; [num, 0].
-
#rect ⇒ Array
Returns an array; [num, 0].
-
#remainder(numeric) ⇒ Object
x.remainder(y) means x-y*(x/y).truncate.
-
#round([ndigits]) ⇒ Integer, Float
Rounds num to a given precision in decimal digits (default 0 digits).
-
#singleton_method_added ⇒ Object
Trap attempts to add methods to
Numeric
objects. -
#step ⇒ Object
Invokes block with the sequence of numbers starting at num, incremented by step (default 1) on each call.
-
#to_c ⇒ Object
Returns the value as a complex.
-
#to_int ⇒ Integer
Invokes the child class's
to_i
method to convert num to an integer. -
#truncate ⇒ Integer
Returns num truncated to an integer.
-
#zero? ⇒ Boolean
Returns
true
if num has a zero value.
Methods included from Comparable
#<, #<=, #==, #>, #>=, #between?
Instance Method Details
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor
Equivalent to num.divmod(
aNumeric)[1]
.
See Numeric#divmod
.
428 429 430 431 432 433 434 |
# File 'numeric.c', line 428
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, rb_intern("div"), 1, y)));
}
|
#+ ⇒ Numeric
Unary Plus---Returns the receiver's value.
327 328 329 330 331 |
# File 'numeric.c', line 327
static VALUE
num_uplus(VALUE num)
{
return num;
}
|
#- ⇒ Numeric
Unary Minus---Returns the receiver's value, negated.
355 356 357 358 359 360 361 362 363 364 |
# File 'numeric.c', line 355
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, TRUE);
return rb_funcall(zero, '-', 1, num);
}
|
#<=>(other) ⇒ 0?
Returns zero if num equals other, nil
otherwise.
1033 1034 1035 1036 1037 1038 |
# File 'numeric.c', line 1033
static VALUE
num_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
return Qnil;
}
|
#abs ⇒ Numeric #magnitude ⇒ Numeric
Returns the absolute value of num.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
547 548 549 550 551 552 553 554 |
# File 'numeric.c', line 547
static VALUE
num_abs(VALUE num)
{
if (negative_int_p(num)) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
|
#abs2 ⇒ Object
Returns square of self.
1970 1971 1972 1973 1974 |
# File 'complex.c', line 1970
static VALUE
numeric_abs2(VALUE self)
{
return f_mul(self, self);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
1986 1987 1988 1989 1990 1991 1992 |
# File 'complex.c', line 1986
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
1986 1987 1988 1989 1990 1991 1992 |
# File 'complex.c', line 1986
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#ceil ⇒ Integer
Returns the smallest Integer
greater than or equal to num. Class Numeric
achieves this by converting itself to a Float
then invoking Float#ceil
.
1.ceil #=> 1
1.2.ceil #=> 2
(-1.2).ceil #=> -1
(-1.0).ceil #=> -1
1709 1710 1711 1712 1713 |
# File 'numeric.c', line 1709
static VALUE
num_ceil(VALUE num)
{
return flo_ceil(rb_Float(num));
}
|
#coerce(numeric) ⇒ Array
If aNumeric is the same type as num, returns an array containing aNumeric and num. Otherwise, returns an array with both aNumeric and num represented as Float
objects. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator.
1.coerce(2.5) #=> [2.5, 1.0]
1.2.coerce(3) #=> [3.0, 1.2]
1.coerce(2) #=> [2, 1]
204 205 206 207 208 209 210 211 212 |
# File 'numeric.c', line 204
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
|
#conj ⇒ self #conjugate ⇒ self
Returns self.
2025 2026 2027 2028 2029 |
# File 'complex.c', line 2025
static VALUE
numeric_conj(VALUE self)
{
return self;
}
|
#conj ⇒ self #conjugate ⇒ self
Returns self.
2025 2026 2027 2028 2029 |
# File 'complex.c', line 2025
static VALUE
numeric_conj(VALUE self)
{
return self;
}
|
#denominator ⇒ Integer
Returns the denominator (always positive).
1767 1768 1769 1770 1771 |
# File 'rational.c', line 1767
static VALUE
numeric_denominator(VALUE self)
{
return f_denominator(f_to_r(self));
}
|
#div(numeric) ⇒ Integer
Uses /
to perform division, then converts the result to an integer. numeric
does not define the /
operator; this is left to subclasses.
Equivalent to num.divmod(
aNumeric)[0]
.
See Numeric#divmod
.
408 409 410 411 412 413 |
# File 'numeric.c', line 408
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0);
}
|
#divmod(numeric) ⇒ Array
Returns an array containing the quotient and modulus obtained by dividing num by numeric. If q, r = x.divmod(y)
, then
q = floor(x/y)
x = q*y+r
The quotient is rounded toward -infinity, as shown in the following table:
a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
------+-----+---------------+---------+-------------+---------------
13 | 4 | 3, 1 | 3 | 1 | 1
------+-----+---------------+---------+-------------+---------------
13 | -4 | -4, -3 | -4 | -3 | 1
------+-----+---------------+---------+-------------+---------------
-13 | 4 | -4, 3 | -4 | 3 | -1
------+-----+---------------+---------+-------------+---------------
-13 | -4 | 3, -1 | 3 | -1 | -1
------+-----+---------------+---------+-------------+---------------
11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
------+-----+---------------+---------+-------------+---------------
11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
Examples
11.divmod(3) #=> [3, 2]
11.divmod(-3) #=> [-4, -1]
11.divmod(3.5) #=> [3, 0.5]
(-11).divmod(3.5) #=> [-4, 3.0]
(11.5).divmod(3.5) #=> [3, 1.0]
501 502 503 504 505 |
# File 'numeric.c', line 501
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
|
#eql?(numeric) ⇒ Boolean
Returns true
if num and numeric are the same type and have equal values.
1 == 1.0 #=> true
1.eql?(1.0) #=> false
(1.0).eql?(1.0) #=> true
1017 1018 1019 1020 1021 1022 1023 |
# File 'numeric.c', line 1017
static VALUE
num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
return rb_equal(x, y);
}
|
#fdiv(numeric) ⇒ Float
Returns float division.
387 388 389 390 391 |
# File 'numeric.c', line 387
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
|
#floor ⇒ Integer
Returns the largest integer less than or equal to num. Numeric
implements this by converting anInteger to a Float
and invoking Float#floor
.
1.floor #=> 1
(-1).floor #=> -1
1687 1688 1689 1690 1691 |
# File 'numeric.c', line 1687
static VALUE
num_floor(VALUE num)
{
return flo_floor(rb_Float(num));
}
|
#i ⇒ Complex(0]
Returns the corresponding imaginary number. Not available for complex numbers.
341 342 343 344 345 |
# File 'numeric.c', line 341
static VALUE
num_imaginary(VALUE num)
{
return rb_complex_new(INT2FIX(0), num);
}
|
#imag ⇒ 0 #imaginary ⇒ 0
Returns zero.
1958 1959 1960 1961 1962 |
# File 'complex.c', line 1958
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
|
#imag ⇒ 0 #imaginary ⇒ 0
Returns zero.
1958 1959 1960 1961 1962 |
# File 'complex.c', line 1958
static VALUE
numeric_imag(VALUE self)
{
return INT2FIX(0);
}
|
#initialize_copy ⇒ Object
:nodoc:
311 312 313 314 315 316 317 318 |
# File 'numeric.c', line 311
static VALUE
num_init_copy(VALUE x, VALUE y)
{
/* Numerics are immutable values, which should not be copied */
rb_raise(rb_eTypeError, "can't copy %s", rb_obj_classname(x));
UNREACHABLE;
}
|
#integer? ⇒ Boolean
Returns true
if num is an Integer
(including Fixnum
and Bignum
).
529 530 531 532 533 |
# File 'numeric.c', line 529
static VALUE
num_int_p(VALUE num)
{
return Qfalse;
}
|
#abs ⇒ Numeric #magnitude ⇒ Numeric
Returns the absolute value of num.
12.abs #=> 12
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
547 548 549 550 551 552 553 554 |
# File 'numeric.c', line 547
static VALUE
num_abs(VALUE num)
{
if (negative_int_p(num)) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
|
#modulo(numeric) ⇒ Object
x.modulo(y) means x-y*(x/y).floor
Equivalent to num.divmod(
aNumeric)[1]
.
See Numeric#divmod
.
428 429 430 431 432 433 434 |
# File 'numeric.c', line 428
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, rb_intern("div"), 1, y)));
}
|
#nonzero? ⇒ self?
Returns self
if num is not zero, nil
otherwise. This behavior is useful when chaining comparisons:
a = %w( z Bb bB bb BB a aA Aa AA A )
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
586 587 588 589 590 591 592 593 |
# File 'numeric.c', line 586
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) {
return Qnil;
}
return num;
}
|
#numerator ⇒ Integer
Returns the numerator.
1755 1756 1757 1758 1759 |
# File 'rational.c', line 1755
static VALUE
numeric_numerator(VALUE self)
{
return f_numerator(f_to_r(self));
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
1986 1987 1988 1989 1990 1991 1992 |
# File 'complex.c', line 1986
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#polar ⇒ Array
Returns an array; [num.abs, num.arg].
2012 2013 2014 2015 2016 |
# File 'complex.c', line 2012
static VALUE
numeric_polar(VALUE self)
{
return rb_assoc_new(f_abs(self), f_arg(self));
}
|
#quo(numeric) ⇒ Object
Returns most exact division (rational for integers, float for floats).
373 374 375 376 377 |
# File 'numeric.c', line 373
static VALUE
num_quo(VALUE x, VALUE y)
{
return rb_funcall(rb_rational_raw1(x), '/', 1, y);
}
|
#real ⇒ self
Returns self.
1945 1946 1947 1948 1949 |
# File 'complex.c', line 1945
static VALUE
numeric_real(VALUE self)
{
return self;
}
|
#real? ⇒ Boolean
Returns true
if num is a Real
(i.e. non Complex
).
515 516 517 518 519 |
# File 'numeric.c', line 515
static VALUE
num_real_p(VALUE num)
{
return Qtrue;
}
|
#rect ⇒ Array
Returns an array; [num, 0].
2000 2001 2002 2003 2004 |
# File 'complex.c', line 2000
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
|
#rect ⇒ Array
Returns an array; [num, 0].
2000 2001 2002 2003 2004 |
# File 'complex.c', line 2000
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
|
#remainder(numeric) ⇒ Object
x.remainder(y) means x-y*(x/y).truncate
See Numeric#divmod
.
445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# File 'numeric.c', line 445
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = rb_funcall(x, '%', 1, y);
if ((!rb_equal(z, INT2FIX(0))) &&
((negative_int_p(x) &&
positive_int_p(y)) ||
(positive_int_p(x) &&
negative_int_p(y)))) {
return rb_funcall(z, '-', 1, y);
}
return z;
}
|
#round([ndigits]) ⇒ Integer, Float
Rounds num to a given precision in decimal digits (default 0 digits). Precision may be negative. Returns a floating point number when ndigits is more than zero. Numeric
implements this by converting itself to a Float
and invoking Float#round
.
1725 1726 1727 1728 1729 |
# File 'numeric.c', line 1725
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
return flo_round(argc, argv, rb_Float(num));
}
|
#singleton_method_added ⇒ Object
Trap attempts to add methods to Numeric
objects. Always raises a TypeError
295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# File 'numeric.c', line 295
static VALUE
num_sadded(VALUE x, VALUE name)
{
ID mid = rb_to_id(name);
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
/* Numerics should be values; singleton_methods should not be added to them */
rb_remove_method_id(rb_singleton_class(x), mid);
rb_raise(rb_eTypeError,
"can't define singleton method \"%s\" for %s",
rb_id2name(mid),
rb_obj_classname(x));
UNREACHABLE;
}
|
#step(limit[, step]) {|i| ... } ⇒ self #step(limit[, step]) ⇒ Object
Invokes block with the sequence of numbers starting at num, incremented by step (default 1) on each call. The loop finishes when the value to be passed to the block is greater than limit (if step is positive) or less than limit (if step is negative). If all the arguments are integers, the loop operates using an integer counter. If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*epsilon)+ 1 times, where n = (limit - num)/step. Otherwise, the loop starts at num, uses either the <
or >
operator to compare the counter against limit, and increments itself using the +
operator.
If no block is given, an enumerator is returned instead.
1.step(10, 2) { |i| print i, " " }
Math::E.step(Math::PI, 0.2) { |f| print f, " " }
produces:
1 3 5 7 9
2.71828182845905 2.91828182845905 3.11828182845905
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 |
# File 'numeric.c', line 1866
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
RETURN_SIZED_ENUMERATOR(from, argc, argv, num_step_size);
if (argc == 1) {
to = argv[0];
step = INT2FIX(1);
}
else {
rb_check_arity(argc, 1, 2);
to = argv[0];
step = argv[1];
if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
}
if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
long i, end, diff;
i = FIX2LONG(from);
end = FIX2LONG(to);
diff = FIX2LONG(step);
if (diff > 0) {
while (i <= end) {
rb_yield(LONG2FIX(i));
i += diff;
}
}
else {
while (i >= end) {
rb_yield(LONG2FIX(i));
i += diff;
}
}
}
else if (!ruby_float_step(from, to, step, FALSE)) {
VALUE i = from;
ID cmp;
if (positive_int_p(step)) {
cmp = '>';
}
else {
cmp = '<';
}
for (;;) {
if (RTEST(rb_funcall(i, cmp, 1, to))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, step);
}
}
return from;
}
|
#to_c ⇒ Object
Returns the value as a complex.
1509 1510 1511 1512 1513 |
# File 'complex.c', line 1509
static VALUE
numeric_to_c(VALUE self)
{
return rb_complex_new1(self);
}
|
#to_int ⇒ Integer
Invokes the child class's to_i
method to convert num to an integer.
603 604 605 606 607 |
# File 'numeric.c', line 603
static VALUE
num_to_int(VALUE num)
{
return rb_funcall(num, id_to_i, 0, 0);
}
|
#truncate ⇒ Integer
Returns num truncated to an integer. Numeric
implements this by converting its value to a float and invoking Float#truncate
.
1740 1741 1742 1743 1744 |
# File 'numeric.c', line 1740
static VALUE
num_truncate(VALUE num)
{
return flo_truncate(rb_Float(num));
}
|
#zero? ⇒ Boolean
Returns true
if num has a zero value.
564 565 566 567 568 569 570 571 |
# File 'numeric.c', line 564
static VALUE
num_zero_p(VALUE num)
{
if (rb_equal(num, INT2FIX(0))) {
return Qtrue;
}
return Qfalse;
}
|