Class: Complex

Inherits:
Numeric show all
Defined in:
complex.c

Overview

A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.

In ruby, you can create complex object with Complex, Complex::rect, Complex::polar or to_c method.

Complex(1)           #=> (1+0i)
Complex(2, 3)        #=> (2+3i)
Complex.polar(2, 3)  #=> (-1.9799849932008908+0.2822400161197344i)
3.to_c               #=> (3+0i)

You can also create complex object from floating-point numbers or strings.

Complex(0.3)         #=> (0.3+0i)
Complex('0.3-0.5i')  #=> (0.3-0.5i)
Complex('2/3+3/4i')  #=> ((2/3)+(3/4)*i)
Complex('[email protected]')       #=> (-0.4161468365471424+0.9092974268256817i)

0.3.to_c             #=> (0.3+0i)
'0.3-0.5i'.to_c      #=> (0.3-0.5i)
'2/3+3/4i'.to_c      #=> ((2/3)+(3/4)*i)
'[email protected]'.to_c           #=> (-0.4161468365471424+0.9092974268256817i)

A complex object is either an exact or an inexact number.

Complex(1, 1) / 2    #=> ((1/2)+(1/2)*i)
Complex(1, 1) / 2.0  #=> (0.5+0.5i)

Defined Under Namespace

Classes: compatible

Constant Summary collapse

I =

The imaginary unit.

f_complex_new_bang2(rb_cComplex, ZERO, ONE)

Class Method Summary collapse

Instance Method Summary collapse

Methods inherited from Numeric

#%, #[email protected], #<=>, #ceil, #div, #divmod, #floor, #i, #initialize_copy, #integer?, #modulo, #nonzero?, #remainder, #round, #singleton_method_added, #step, #to_int, #truncate, #zero?

Methods included from Comparable

#<, #<=, #>, #>=, #between?

Class Method Details

.polar(abs[, arg]) ⇒ Object

Returns a complex object which denotes the given polar form.

Complex.polar(3, 0)            #=> (3.0+0.0i)
Complex.polar(3, Math::PI/2)   #=> (1.836909530733566e-16+3.0i)
Complex.polar(3, Math::PI)     #=> (-3.0+3.673819061467132e-16i)
Complex.polar(3, -Math::PI/2)  #=> (1.836909530733566e-16-3.0i)

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
# File 'complex.c', line 617

static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
    VALUE abs, arg;

    switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
      case 1:
	nucomp_real_check(abs);
	arg = ZERO;
	break;
      default:
	nucomp_real_check(abs);
	nucomp_real_check(arg);
	break;
    }
    return f_complex_polar(klass, abs, arg);
}

.rect(real[, imag]) ⇒ Object .rectangular(real[, imag]) ⇒ Object

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# File 'complex.c', line 440

static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
	nucomp_real_check(real);
	imag = ZERO;
	break;
      default:
	nucomp_real_check(real);
	nucomp_real_check(imag);
	break;
    }

    return nucomp_s_canonicalize_internal(klass, real, imag);
}

.rect(real[, imag]) ⇒ Object .rectangular(real[, imag]) ⇒ Object

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# File 'complex.c', line 440

static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
	nucomp_real_check(real);
	imag = ZERO;
	break;
      default:
	nucomp_real_check(real);
	nucomp_real_check(imag);
	break;
    }

    return nucomp_s_canonicalize_internal(klass, real, imag);
}

Instance Method Details

#*(numeric) ⇒ Object

Performs multiplication.

Complex(2, 3)  * Complex(2, 3)   #=> (-5+12i)
Complex(900)   * Complex(1)      #=> (900+0i)
Complex(-2, 9) * Complex(-9, 2)  #=> (0-85i)
Complex(9, 8)  * 4               #=> (36+32i)
Complex(20, 9) * 9.8             #=> (196.0+88.2i)

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
# File 'complex.c', line 755

static VALUE
nucomp_mul(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	VALUE real, imag;

	get_dat2(self, other);

	real = f_sub(f_mul(adat->real, bdat->real),
		     f_mul(adat->imag, bdat->imag));
	imag = f_add(f_mul(adat->real, bdat->imag),
		     f_mul(adat->imag, bdat->real));

	return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_complex_new2(CLASS_OF(self),
			      f_mul(dat->real, other),
			      f_mul(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '*');
}

#**(numeric) ⇒ Object

Performs exponentiation.

Complex('i') ** 2              #=> (-1+0i)
Complex(-8) ** Rational(1, 3)  #=> (1.0000000000000002+1.7320508075688772i)

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
# File 'complex.c', line 884

static VALUE
nucomp_expt(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && k_exact_zero_p(other))
	return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other) && f_one_p(f_denominator(other)))
	other = f_numerator(other); /* c14n */

    if (k_complex_p(other)) {
	get_dat1(other);

	if (k_exact_zero_p(dat->imag))
	    other = dat->real; /* c14n */
    }

    if (k_complex_p(other)) {
	VALUE r, theta, nr, ntheta;

	get_dat1(other);

	r = f_abs(self);
	theta = f_arg(self);

	nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
			      f_mul(dat->imag, theta)));
	ntheta = f_add(f_mul(theta, dat->real),
		       f_mul(dat->imag, m_log_bang(r)));
	return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (k_fixnum_p(other)) {
	if (f_gt_p(other, ZERO)) {
	    VALUE x, z;
	    long n;

	    x = self;
	    z = x;
	    n = FIX2LONG(other) - 1;

	    while (n) {
		long q, r;

		while (1) {
		    get_dat1(x);

		    q = n / 2;
		    r = n % 2;

		    if (r)
			break;

		    x = nucomp_s_new_internal(CLASS_OF(self),
				       f_sub(f_mul(dat->real, dat->real),
					     f_mul(dat->imag, dat->imag)),
				       f_mul(f_mul(TWO, dat->real), dat->imag));
		    n = q;
		}
		z = f_mul(z, x);
		n--;
	    }
	    return z;
	}
	return f_expt(f_reciprocal(self), f_negate(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	VALUE r, theta;

	if (k_bignum_p(other))
	    rb_warn("in a**b, b may be too big");

	r = f_abs(self);
	theta = f_arg(self);

	return f_complex_polar(CLASS_OF(self), f_expt(r, other),
			       f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}

#+(numeric) ⇒ Object

Performs addition.

Complex(2, 3)  + Complex(2, 3)   #=> (4+6i)
Complex(900)   + Complex(1)      #=> (901+0i)
Complex(-2, 9) + Complex(-9, 2)  #=> (-11+11i)
Complex(9, 8)  + 4               #=> (13+8i)
Complex(20, 9) + 9.8             #=> (29.8+9i)

719
720
721
722
723
# File 'complex.c', line 719

static VALUE
nucomp_add(VALUE self, VALUE other)
{
    return f_addsub(self, other, f_add, '+');
}

#-(numeric) ⇒ Object

Performs subtraction.

Complex(2, 3)  - Complex(2, 3)   #=> (0+0i)
Complex(900)   - Complex(1)      #=> (899+0i)
Complex(-2, 9) - Complex(-9, 2)  #=> (7+7i)
Complex(9, 8)  - 4               #=> (5+8i)
Complex(20, 9) - 9.8             #=> (10.2+9i)

737
738
739
740
741
# File 'complex.c', line 737

static VALUE
nucomp_sub(VALUE self, VALUE other)
{
    return f_addsub(self, other, f_sub, '-');
}

#-Object

Returns negation of the value.

-Complex(1, 2)  #=> (-1-2i)

676
677
678
679
680
681
682
# File 'complex.c', line 676

static VALUE
nucomp_negate(VALUE self)
{
  get_dat1(self);
  return f_complex_new2(CLASS_OF(self),
			f_negate(dat->real), f_negate(dat->imag));
}

#/(numeric) ⇒ Object #quo(numeric) ⇒ Object

Performs division.

Complex(2, 3)  / Complex(2, 3)   #=> ((1/1)+(0/1)*i)
Complex(900)   / Complex(1)      #=> ((900/1)+(0/1)*i)
Complex(-2, 9) / Complex(-9, 2)  #=> ((36/85)-(77/85)*i)
Complex(9, 8)  / 4               #=> ((9/4)+(2/1)*i)
Complex(20, 9) / 9.8             #=> (2.0408163265306123+0.9183673469387754i)

847
848
849
850
851
# File 'complex.c', line 847

static VALUE
nucomp_div(VALUE self, VALUE other)
{
    return f_divide(self, other, f_quo, id_quo);
}

#==(object) ⇒ Boolean

Returns true if cmp equals object numerically.

Complex(2, 3)  == Complex(2, 3)   #=> true
Complex(5)     == 5               #=> true
Complex(0)     == 0.0             #=> true
Complex('1/3') == 0.33            #=> false
Complex('1/2') == '1/2'           #=> false

Returns:

  • (Boolean)

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
# File 'complex.c', line 975

static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	get_dat2(self, other);

	return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
			  f_eqeq_p(adat->imag, bdat->imag));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	get_dat1(self);

	return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
    }
    return f_eqeq_p(other, self);
}

#absObject #magnitudeObject

Returns the absolute part of its polar form.

Complex(-1).abs         #=> 1
Complex(3.0, -4.0).abs  #=> 5.0

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
# File 'complex.c', line 1016

static VALUE
nucomp_abs(VALUE self)
{
    get_dat1(self);

    if (f_zero_p(dat->real)) {
	VALUE a = f_abs(dat->imag);
	if (k_float_p(dat->real) && !k_float_p(dat->imag))
	    a = f_to_f(a);
	return a;
    }
    if (f_zero_p(dat->imag)) {
	VALUE a = f_abs(dat->real);
	if (!k_float_p(dat->real) && k_float_p(dat->imag))
	    a = f_to_f(a);
	return a;
    }
    return m_hypot(dat->real, dat->imag);
}

#abs2Object

Returns square of the absolute value.

Complex(-1).abs2         #=> 1
Complex(3.0, -4.0).abs2  #=> 25.0

1045
1046
1047
1048
1049
1050
1051
# File 'complex.c', line 1045

static VALUE
nucomp_abs2(VALUE self)
{
    get_dat1(self);
    return f_add(f_mul(dat->real, dat->real),
		 f_mul(dat->imag, dat->imag));
}

#argFloat #angleFloat #phaseFloat

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Overloads:


1063
1064
1065
1066
1067
1068
# File 'complex.c', line 1063

static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}

#argFloat #angleFloat #phaseFloat

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Overloads:


1063
1064
1065
1066
1067
1068
# File 'complex.c', line 1063

static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}

#coerceObject

:nodoc:


993
994
995
996
997
998
999
1000
1001
1002
1003
1004
# File 'complex.c', line 993

static VALUE
nucomp_coerce(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && f_real_p(other))
	return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
    if (RB_TYPE_P(other, T_COMPLEX))
	return rb_assoc_new(other, self);

    rb_raise(rb_eTypeError, "%s can't be coerced into %s",
	     rb_obj_classname(other), rb_obj_classname(self));
    return Qnil;
}

#complex?Boolean

:nodoc:

Returns:

  • (Boolean)

1118
1119
1120
1121
1122
# File 'complex.c', line 1118

static VALUE
nucomp_true(VALUE self)
{
    return Qtrue;
}

#conjObject #conjugateObject

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)

1109
1110
1111
1112
1113
1114
# File 'complex.c', line 1109

static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}

#conjObject #conjugateObject

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)

1109
1110
1111
1112
1113
1114
# File 'complex.c', line 1109

static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}

#denominatorInteger

Returns the denominator (lcm of both denominator - real and imag).

See numerator.

Returns:


1162
1163
1164
1165
1166
1167
# File 'complex.c', line 1162

static VALUE
nucomp_denominator(VALUE self)
{
    get_dat1(self);
    return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}

#eql?Boolean

:nodoc:

Returns:

  • (Boolean)

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
# File 'complex.c', line 1219

static VALUE
nucomp_eql_p(VALUE self, VALUE other)
{
    if (k_complex_p(other)) {
	get_dat2(self, other);

	return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
			  (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
			  f_eqeq_p(self, other));

    }
    return Qfalse;
}

#exact?Boolean

:nodoc:

Returns:

  • (Boolean)

1139
1140
1141
1142
1143
1144
# File 'complex.c', line 1139

static VALUE
nucomp_exact_p(VALUE self)
{
    get_dat1(self);
    return f_boolcast(k_exact_p(dat->real) && k_exact_p(dat->imag));
}

#fdiv(numeric) ⇒ Object

Performs division as each part is a float, never returns a float.

Complex(11, 22).fdiv(3)  #=> (3.6666666666666665+7.333333333333333i)

863
864
865
866
867
# File 'complex.c', line 863

static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
    return f_divide(self, other, f_fdiv, id_fdiv);
}

#hashObject

:nodoc:


1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
# File 'complex.c', line 1203

static VALUE
nucomp_hash(VALUE self)
{
    st_index_t v, h[2];
    VALUE n;

    get_dat1(self);
    n = rb_hash(dat->real);
    h[0] = NUM2LONG(n);
    n = rb_hash(dat->imag);
    h[1] = NUM2LONG(n);
    v = rb_memhash(h, sizeof(h));
    return LONG2FIX(v);
}

#imagObject #imaginaryObject

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4

661
662
663
664
665
666
# File 'complex.c', line 661

static VALUE
nucomp_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}

#imagObject #imaginaryObject

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4

661
662
663
664
665
666
# File 'complex.c', line 661

static VALUE
nucomp_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}

#inexact?Boolean

:nodoc:

Returns:

  • (Boolean)

1147
1148
1149
1150
1151
# File 'complex.c', line 1147

static VALUE
nucomp_inexact_p(VALUE self)
{
    return f_boolcast(!nucomp_exact_p(self));
}

#inspectString

Returns the value as a string for inspection.

Complex(2).inspect                       #=> "(2+0i)"
Complex('-8/6').inspect                  #=> "((-4/3)+0i)"
Complex('1/2i').inspect                  #=> "(0+(1/2)*i)"
Complex(0, Float::INFINITY).inspect      #=> "(0+Infinity*i)"
Complex(Float::NAN, Float::NAN).inspect  #=> "(NaN+NaN*i)"

Returns:


1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
# File 'complex.c', line 1303

static VALUE
nucomp_inspect(VALUE self)
{
    VALUE s;

    s = rb_usascii_str_new2("(");
    rb_str_concat(s, f_format(self, f_inspect));
    rb_str_cat2(s, ")");

    return s;
}

#absObject #magnitudeObject

Returns the absolute part of its polar form.

Complex(-1).abs         #=> 1
Complex(3.0, -4.0).abs  #=> 5.0

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
# File 'complex.c', line 1016

static VALUE
nucomp_abs(VALUE self)
{
    get_dat1(self);

    if (f_zero_p(dat->real)) {
	VALUE a = f_abs(dat->imag);
	if (k_float_p(dat->real) && !k_float_p(dat->imag))
	    a = f_to_f(a);
	return a;
    }
    if (f_zero_p(dat->imag)) {
	VALUE a = f_abs(dat->real);
	if (!k_float_p(dat->real) && k_float_p(dat->imag))
	    a = f_to_f(a);
	return a;
    }
    return m_hypot(dat->real, dat->imag);
}

#marshal_dumpObject (private)

:nodoc:


1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
# File 'complex.c', line 1335

static VALUE
nucomp_marshal_dump(VALUE self)
{
    VALUE a;
    get_dat1(self);

    a = rb_assoc_new(dat->real, dat->imag);
    rb_copy_generic_ivar(a, self);
    return a;
}

#numeratorNumeric

Returns the numerator.

    1   2       3+4i  <-  numerator
    - + -i  ->  ----
    2   3        6    <-  denominator

c = Complex('1/2+2/3i')  #=> ((1/2)+(2/3)*i)
n = c.numerator          #=> (3+4i)
d = c.denominator        #=> 6
n / d                    #=> ((1/2)+(2/3)*i)
Complex(Rational(n.real, d), Rational(n.imag, d))
                         #=> ((1/2)+(2/3)*i)

See denominator.

Returns:


1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
# File 'complex.c', line 1187

static VALUE
nucomp_numerator(VALUE self)
{
    VALUE cd;

    get_dat1(self);

    cd = f_denominator(self);
    return f_complex_new2(CLASS_OF(self),
			  f_mul(f_numerator(dat->real),
				f_div(cd, f_denominator(dat->real))),
			  f_mul(f_numerator(dat->imag),
				f_div(cd, f_denominator(dat->imag))));
}

#argFloat #angleFloat #phaseFloat

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Overloads:


1063
1064
1065
1066
1067
1068
# File 'complex.c', line 1063

static VALUE
nucomp_arg(VALUE self)
{
    get_dat1(self);
    return m_atan2_bang(dat->imag, dat->real);
}

#polarArray

Returns an array; [cmp.abs, cmp.arg].

Complex(1, 2).polar  #=> [2.23606797749979, 1.1071487177940904]

Returns:


1094
1095
1096
1097
1098
# File 'complex.c', line 1094

static VALUE
nucomp_polar(VALUE self)
{
    return rb_assoc_new(f_abs(self), f_arg(self));
}

#quoObject

#rationalize([eps]) ⇒ Object

Returns the value as a rational if possible (the imaginary part should be exactly zero).

Complex(1.0/3, 0).rationalize  #=> (1/3)
Complex(1, 0.0).rationalize    # RangeError
Complex(1, 2).rationalize      # RangeError

See to_r.


1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
# File 'complex.c', line 1476

static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
    get_dat1(self);

    rb_scan_args(argc, argv, "01", NULL);

    if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
       VALUE s = f_to_s(self);
       rb_raise(rb_eRangeError, "can't convert %s into Rational",
                StringValuePtr(s));
    }
    return rb_funcall2(dat->real, rb_intern("rationalize"), argc, argv);
}

#realObject

Returns the real part.

Complex(7).real      #=> 7
Complex(9, -4).real  #=> 9

644
645
646
647
648
649
# File 'complex.c', line 644

static VALUE
nucomp_real(VALUE self)
{
    get_dat1(self);
    return dat->real;
}

#real?false

Returns false.

Returns:

  • (false)

Returns:

  • (Boolean)

1131
1132
1133
1134
1135
# File 'complex.c', line 1131

static VALUE
nucomp_false(VALUE self)
{
    return Qfalse;
}

#rectArray #rectangularArray

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]

Overloads:


1079
1080
1081
1082
1083
1084
# File 'complex.c', line 1079

static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}

#rectArray #rectangularArray

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]

Overloads:


1079
1080
1081
1082
1083
1084
# File 'complex.c', line 1079

static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}

#to_cself

Returns self.

Complex(2).to_c      #=> (2+0i)
Complex(-8, 6).to_c  #=> (-8+6i)

Returns:

  • (self)

1500
1501
1502
1503
1504
# File 'complex.c', line 1500

static VALUE
nucomp_to_c(VALUE self)
{
    return self;
}

#to_fFloat

Returns the value as a float if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_f    #=> 1.0
Complex(1, 0.0).to_f  # RangeError
Complex(1, 2).to_f    # RangeError

Returns:


1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
# File 'complex.c', line 1424

static VALUE
nucomp_to_f(VALUE self)
{
    get_dat1(self);

    if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
	VALUE s = f_to_s(self);
	rb_raise(rb_eRangeError, "can't convert %s into Float",
		 StringValuePtr(s));
    }
    return f_to_f(dat->real);
}

#to_iInteger

Returns the value as an integer if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_i    #=> 1
Complex(1, 0.0).to_i  # RangeError
Complex(1, 2).to_i    # RangeError

Returns:


1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
# File 'complex.c', line 1400

static VALUE
nucomp_to_i(VALUE self)
{
    get_dat1(self);

    if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
	VALUE s = f_to_s(self);
	rb_raise(rb_eRangeError, "can't convert %s into Integer",
		 StringValuePtr(s));
    }
    return f_to_i(dat->real);
}

#to_rObject

Returns the value as a rational if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_r    #=> (1/1)
Complex(1, 0.0).to_r  # RangeError
Complex(1, 2).to_r    # RangeError

See rationalize.


1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
# File 'complex.c', line 1450

static VALUE
nucomp_to_r(VALUE self)
{
    get_dat1(self);

    if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
	VALUE s = f_to_s(self);
	rb_raise(rb_eRangeError, "can't convert %s into Rational",
		 StringValuePtr(s));
    }
    return f_to_r(dat->real);
}

#to_sString

Returns the value as a string.

Complex(2).to_s                       #=> "2+0i"
Complex('-8/6').to_s                  #=> "-4/3+0i"
Complex('1/2i').to_s                  #=> "0+1/2i"
Complex(0, Float::INFINITY).to_s      #=> "0+Infinity*i"
Complex(Float::NAN, Float::NAN).to_s  #=> "NaN+NaN*i"

Returns:


1285
1286
1287
1288
1289
# File 'complex.c', line 1285

static VALUE
nucomp_to_s(VALUE self)
{
    return f_format(self, f_to_s);
}

#conjObject #conjugateObject

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)

1109
1110
1111
1112
1113
1114
# File 'complex.c', line 1109

static VALUE
nucomp_conj(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}