Class: Bignum

Inherits:
Integer show all
Defined in:
bignum.c

Overview

Bignum objects hold integers outside the range of Fixnum. Bignum objects are created automatically when integer calculations would otherwise overflow a Fixnum. When a calculation involving Bignum objects returns a result that will fit in a Fixnum, the result is automatically converted.

For the purposes of the bitwise operations and [], a Bignum is treated as if it were an infinite-length bitstring with 2’s complement representation.

While Fixnum values are immediate, Bignum objects are not—assignment and parameter passing work with references to objects, not the objects themselves.

Constant Summary collapse

GMP_VERSION =
rb_sprintf("GMP %s", gmp_version)

Instance Method Summary collapse

Methods inherited from Integer

#ceil, #chr, #denominator, #downto, #floor, #gcd, #gcdlcm, #integer?, #lcm, #next, #numerator, #ord, #pred, #rationalize, #round, #succ, #times, #to_i, #to_int, #to_r, #truncate, #upto

Methods inherited from Numeric

#+@, #abs2, #angle, #arg, #ceil, #conj, #conjugate, #denominator, #floor, #i, #imag, #imaginary, #initialize_copy, #integer?, #nonzero?, #numerator, #phase, #polar, #quo, #real, #real?, #rect, #rectangular, #round, #singleton_method_added, #step, #to_c, #to_int, #truncate, #zero?

Methods included from Comparable

#between?

Instance Method Details

#%(other) ⇒ Numeric #modulo(other) ⇒ Numeric

Returns big modulo other. See Numeric.divmod for more information.

Overloads:



6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
# File 'bignum.c', line 6188

VALUE
rb_big_modulo(VALUE x, VALUE y)
{
    VALUE z;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, '%');
    }
    bigdivmod(x, y, 0, &z);

    return bignorm(z);
}

#&(numeric) ⇒ Integer

Performs bitwise and between big and numeric.

Returns:



6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
# File 'bignum.c', line 6478

VALUE
rb_big_and(VALUE x, VALUE y)
{
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, xn, yn, n1, n2;
    BDIGIT hibitsx, hibitsy;
    BDIGIT hibits1, hibits2;
    VALUE tmpv;
    BDIGIT tmph;
    long tmpn;

    if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bit(x, y, '&');
    }

    hibitsx = abs2twocomp(&x, &xn);
    if (FIXNUM_P(y)) {
	return bigand_int(x, xn, hibitsx, FIX2LONG(y));
    }
    hibitsy = abs2twocomp(&y, &yn);
    if (xn > yn) {
        tmpv = x; x = y; y = tmpv;
        tmpn = xn; xn = yn; yn = tmpn;
        tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
    }
    n1 = xn;
    n2 = yn;
    ds1 = BDIGITS(x);
    ds2 = BDIGITS(y);
    hibits1 = hibitsx;
    hibits2 = hibitsy;

    if (!hibits1)
        n2 = n1;

    z = bignew(n2, 0);
    zds = BDIGITS(z);

    for (i=0; i<n1; i++) {
	zds[i] = ds1[i] & ds2[i];
    }
    for (; i<n2; i++) {
	zds[i] = hibits1 & ds2[i];
    }
    twocomp2abs_bang(z, hibits1 && hibits2);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    return bignorm(z);
}

#*(other) ⇒ Numeric

Multiplies big and other, returning the result.

Returns:



5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
# File 'bignum.c', line 5996

VALUE
rb_big_mul(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	return DBL2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '*');
    }

    return bignorm(bigmul0(x, y));
}

#**(exponent) ⇒ Numeric

Raises big to the exponent power (which may be an integer, float, or anything that will coerce to a number). The result may be a Fixnum, Bignum, or Float

123456789 ** 2      #=> 15241578750190521
123456789 ** 1.2    #=> 5126464716.09932
123456789 ** -2     #=> 6.5610001194102e-17

Returns:



6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
# File 'bignum.c', line 6362

VALUE
rb_big_pow(VALUE x, VALUE y)
{
    double d;
    SIGNED_VALUE yy;

  again:
    if (y == INT2FIX(0)) return INT2FIX(1);
    if (RB_FLOAT_TYPE_P(y)) {
	d = RFLOAT_VALUE(y);
	if ((!RBIGNUM_SIGN(x) && !BIGZEROP(x)) && d != round(d))
	    return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	y = bignorm(y);
	if (FIXNUM_P(y))
	    goto again;
	rb_warn("in a**b, b may be too big");
	d = rb_big2dbl(y);
    }
    else if (FIXNUM_P(y)) {
	yy = FIX2LONG(y);

	if (yy < 0)
	    return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
	else {
	    VALUE z = 0;
	    SIGNED_VALUE mask;
            const size_t xbits = rb_absint_numwords(x, 1, NULL);
	    const size_t BIGLEN_LIMIT = 32*1024*1024;

	    if (xbits == (size_t)-1 ||
                (xbits > BIGLEN_LIMIT) ||
                (xbits * yy > BIGLEN_LIMIT)) {
		rb_warn("in a**b, b may be too big");
		d = (double)yy;
	    }
	    else {
		for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
		    if (z) z = bigsq(z);
		    if (yy & mask) {
			z = z ? bigtrunc(bigmul0(z, x)) : x;
		    }
		}
		return bignorm(z);
	    }
	}
    }
    else {
	return rb_num_coerce_bin(x, y, rb_intern("**"));
    }
    return DBL2NUM(pow(rb_big2dbl(x), d));
}

#+(other) ⇒ Numeric

Adds big and other, returning the result.

Returns:



5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
# File 'bignum.c', line 5866

VALUE
rb_big_plus(VALUE x, VALUE y)
{
    long n;

    if (FIXNUM_P(y)) {
	n = FIX2LONG(y);
	if ((n > 0) != RBIGNUM_SIGN(x)) {
	    if (n < 0) {
		n = -n;
	    }
	    return bigsub_int(x, n);
	}
	if (n < 0) {
	    n = -n;
	}
	return bigadd_int(x, n);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	return bignorm(bigadd(x, y, 1));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	return DBL2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '+');
    }
}

#-(other) ⇒ Numeric

Subtracts other from big, returning the result.

Returns:



5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
# File 'bignum.c', line 5902

VALUE
rb_big_minus(VALUE x, VALUE y)
{
    long n;

    if (FIXNUM_P(y)) {
	n = FIX2LONG(y);
	if ((n > 0) != RBIGNUM_SIGN(x)) {
	    if (n < 0) {
		n = -n;
	    }
	    return bigadd_int(x, n);
	}
	if (n < 0) {
	    n = -n;
	}
	return bigsub_int(x, n);
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	return bignorm(bigadd(x, y, 0));
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	return DBL2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '-');
    }
}

#-Integer

Unary minus (returns an integer whose value is 0-big)

Returns:



5577
5578
5579
5580
5581
5582
5583
5584
5585
# File 'bignum.c', line 5577

VALUE
rb_big_uminus(VALUE x)
{
    VALUE z = rb_big_clone(x);

    RBIGNUM_SET_SIGN(z, !RBIGNUM_SIGN(x));

    return bignorm(z);
}

#/(other) ⇒ Numeric

Performs division: the class of the resulting object depends on the class of numeric and on the magnitude of the result.

Returns:



6160
6161
6162
6163
6164
# File 'bignum.c', line 6160

VALUE
rb_big_div(VALUE x, VALUE y)
{
    return rb_big_divide(x, y, '/');
}

#<(real) ⇒ Boolean

Returns true if the value of big is less than that of real.

Returns:

  • (Boolean)


5497
5498
5499
5500
5501
# File 'bignum.c', line 5497

static VALUE
big_lt(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_lt);
}

#<<(numeric) ⇒ Integer

Shifts big left numeric positions (right if numeric is negative).

Returns:



6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
# File 'bignum.c', line 6759

VALUE
rb_big_lshift(VALUE x, VALUE y)
{
    int lshift_p;
    size_t shift_numdigits;
    int shift_numbits;

    for (;;) {
	if (FIXNUM_P(y)) {
	    long l = FIX2LONG(y);
            unsigned long shift;
	    if (0 <= l) {
		lshift_p = 1;
                shift = l;
            }
            else {
		lshift_p = 0;
		shift = 1+(unsigned long)(-(l+1));
	    }
            shift_numbits = (int)(shift & (BITSPERDIG-1));
            shift_numdigits = shift >> bit_length(BITSPERDIG-1);
            return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
	}
	else if (RB_BIGNUM_TYPE_P(y)) {
            return bignorm(big_shift2(x, 1, y));
	}
	y = rb_to_int(y);
    }
}

#<=(real) ⇒ Boolean

Returns true if the value of big is less than or equal to that of real.

Returns:

  • (Boolean)


5511
5512
5513
5514
5515
# File 'bignum.c', line 5511

static VALUE
big_le(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_le);
}

#<=>(numeric) ⇒ -1, ...

Comparison—Returns -1, 0, or +1 depending on whether big is less than, equal to, or greater than numeric. This is the basis for the tests in Comparable.

nil is returned if the two values are incomparable.

Returns:

  • (-1, 0, +1, nil)


5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
# File 'bignum.c', line 5392

VALUE
rb_big_cmp(VALUE x, VALUE y)
{
    int cmp;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return rb_integer_float_cmp(x, y);
    }
    else {
	return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
    }

    if (RBIGNUM_SIGN(x) > RBIGNUM_SIGN(y)) return INT2FIX(1);
    if (RBIGNUM_SIGN(x) < RBIGNUM_SIGN(y)) return INT2FIX(-1);

    cmp = bary_cmp(BDIGITS(x), RBIGNUM_LEN(x), BDIGITS(y), RBIGNUM_LEN(y));
    if (RBIGNUM_SIGN(x))
        return INT2FIX(cmp);
    else
        return INT2FIX(-cmp);
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?, which requires obj to be a Bignum.

68719476736 == 68719476736.0   #=> true

Returns:

  • (Boolean)


5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
# File 'bignum.c', line 5528

VALUE
rb_big_eq(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	if (bignorm(x) == y) return Qtrue;
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return rb_integer_float_eq(x, y);
    }
    else {
	return rb_equal(y, x);
    }
    if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse;
    if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse;
    return Qtrue;
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?, which requires obj to be a Bignum.

68719476736 == 68719476736.0   #=> true

Returns:

  • (Boolean)


5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
# File 'bignum.c', line 5528

VALUE
rb_big_eq(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	if (bignorm(x) == y) return Qtrue;
	y = rb_int2big(FIX2LONG(y));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
    }
    else if (RB_FLOAT_TYPE_P(y)) {
        return rb_integer_float_eq(x, y);
    }
    else {
	return rb_equal(y, x);
    }
    if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse;
    if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse;
    return Qtrue;
}

#>(real) ⇒ Boolean

Returns true if the value of big is greater than that of real.

Returns:

  • (Boolean)


5469
5470
5471
5472
5473
# File 'bignum.c', line 5469

static VALUE
big_gt(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_gt);
}

#>=(real) ⇒ Boolean

Returns true if the value of big is greater than or equal to that of real.

Returns:

  • (Boolean)


5483
5484
5485
5486
5487
# File 'bignum.c', line 5483

static VALUE
big_ge(VALUE x, VALUE y)
{
    return big_op(x, y, big_op_ge);
}

#>>(numeric) ⇒ Integer

Shifts big right numeric positions (left if numeric is negative).

Returns:



6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
# File 'bignum.c', line 6797

VALUE
rb_big_rshift(VALUE x, VALUE y)
{
    int lshift_p;
    size_t shift_numdigits;
    int shift_numbits;

    for (;;) {
	if (FIXNUM_P(y)) {
	    long l = FIX2LONG(y);
            unsigned long shift;
            if (0 <= l) {
                lshift_p = 0;
                shift = l;
            }
            else {
                lshift_p = 1;
		shift = 1+(unsigned long)(-(l+1));
	    }
            shift_numbits = (int)(shift & (BITSPERDIG-1));
            shift_numdigits = shift >> bit_length(BITSPERDIG-1);
            return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
	}
	else if (RB_BIGNUM_TYPE_P(y)) {
            return bignorm(big_shift2(x, 0, y));
	}
	y = rb_to_int(y);
    }
}

#[](n) ⇒ 0, 1

Bit Reference—Returns the nth bit in the (assumed) binary representation of big, where big[0] is the least significant bit.

a = 9**15
50.downto(0) do |n|
  print a[n]
end

produces:

000101110110100000111000011110010100111100010111001

Returns:

  • (0, 1)


6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
# File 'bignum.c', line 6846

static VALUE
rb_big_aref(VALUE x, VALUE y)
{
    BDIGIT *xds;
    unsigned long shift;
    long i, s1, s2;
    BDIGIT bit;

    if (RB_BIGNUM_TYPE_P(y)) {
	if (!RBIGNUM_SIGN(y))
	    return INT2FIX(0);
	bigtrunc(y);
	if (BIGSIZE(y) > sizeof(long)) {
	  out_of_range:
	    return RBIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1);
	}
	shift = big2ulong(y, "long");
    }
    else {
	i = NUM2LONG(y);
	if (i < 0) return INT2FIX(0);
	shift = i;
    }
    s1 = shift/BITSPERDIG;
    s2 = shift%BITSPERDIG;
    bit = (BDIGIT)1 << s2;

    if (s1 >= RBIGNUM_LEN(x)) goto out_of_range;

    xds = BDIGITS(x);
    if (RBIGNUM_POSITIVE_P(x))
        return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
    if (xds[s1] & (bit-1))
        return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
    for (i = 0; i < s1; i++)
        if (xds[i])
            return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
    return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
}

#^(numeric) ⇒ Integer

Performs bitwise exclusive or between big and numeric.

Returns:



6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
# File 'bignum.c', line 6704

VALUE
rb_big_xor(VALUE x, VALUE y)
{
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, xn, yn, n1, n2;
    BDIGIT hibitsx, hibitsy;
    BDIGIT hibits1, hibits2;
    VALUE tmpv;
    BDIGIT tmph;
    long tmpn;

    if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bit(x, y, '^');
    }

    hibitsx = abs2twocomp(&x, &xn);
    if (FIXNUM_P(y)) {
	return bigxor_int(x, xn, hibitsx, FIX2LONG(y));
    }
    hibitsy = abs2twocomp(&y, &yn);
    if (xn > yn) {
        tmpv = x; x = y; y = tmpv;
        tmpn = xn; xn = yn; yn = tmpn;
        tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
    }
    n1 = xn;
    n2 = yn;
    ds1 = BDIGITS(x);
    ds2 = BDIGITS(y);
    hibits1 = hibitsx;
    hibits2 = hibitsy;

    z = bignew(n2, 0);
    zds = BDIGITS(z);

    for (i=0; i<n1; i++) {
	zds[i] = ds1[i] ^ ds2[i];
    }
    for (; i<n2; i++) {
	zds[i] = hibitsx ^ ds2[i];
    }
    twocomp2abs_bang(z, (hibits1 ^ hibits2) != 0);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    return bignorm(z);
}

#absBignum #magnitudeBignum

Returns the absolute value of big.

-1234567890987654321.abs   #=> 1234567890987654321

Overloads:



6939
6940
6941
6942
6943
6944
6945
6946
6947
# File 'bignum.c', line 6939

static VALUE
rb_big_abs(VALUE x)
{
    if (!RBIGNUM_SIGN(x)) {
	x = rb_big_clone(x);
	RBIGNUM_SET_SIGN(x, 1);
    }
    return x;
}

#bit_lengthInteger

Returns the number of bits of the value of int.

“the number of bits” means that the bit position of the highest bit which is different to the sign bit. (The bit position of the bit 2**n is n+1.) If there is no such bit (zero or minus one), zero is returned.

I.e. This method returns ceil(log2(int < 0 ? -int : int+1)).

(-2**10000-1).bit_length  #=> 10001
(-2**10000).bit_length    #=> 10000
(-2**10000+1).bit_length  #=> 10000

(-2**1000-1).bit_length   #=> 1001
(-2**1000).bit_length     #=> 1000
(-2**1000+1).bit_length   #=> 1000

(2**1000-1).bit_length    #=> 1000
(2**1000).bit_length      #=> 1001
(2**1000+1).bit_length    #=> 1001

(2**10000-1).bit_length   #=> 10000
(2**10000).bit_length     #=> 10001
(2**10000+1).bit_length   #=> 10001

Returns:



6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
# File 'bignum.c', line 6998

static VALUE
rb_big_bit_length(VALUE big)
{
    int nlz_bits;
    size_t numbytes;

    static const BDIGIT char_bit[1] = { CHAR_BIT };
    BDIGIT numbytes_bary[bdigit_roomof(sizeof(size_t))];
    BDIGIT nlz_bary[1];
    BDIGIT result_bary[bdigit_roomof(sizeof(size_t)+1)];

    numbytes = rb_absint_size(big, &nlz_bits);

    if (numbytes == 0)
        return LONG2FIX(0);

    if (RBIGNUM_NEGATIVE_P(big) && rb_absint_singlebit_p(big)) {
        if (nlz_bits != CHAR_BIT-1) {
            nlz_bits++;
        }
        else {
            nlz_bits = 0;
            numbytes--;
        }
    }

    if (numbytes <= SIZE_MAX / CHAR_BIT) {
        return SIZET2NUM(numbytes * CHAR_BIT - nlz_bits);
    }

    nlz_bary[0] = nlz_bits;

    bary_unpack(BARY_ARGS(numbytes_bary), &numbytes, 1, sizeof(numbytes), 0,
            INTEGER_PACK_NATIVE_BYTE_ORDER);
    BARY_SHORT_MUL(result_bary, numbytes_bary, char_bit);
    BARY_SUB(result_bary, result_bary, nlz_bary);

    return rb_integer_unpack(result_bary, numberof(result_bary), sizeof(BDIGIT), 0,
            INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
}

#coerce(numeric) ⇒ Array

Returns an array with both a numeric and a big represented as Bignum objects.

This is achieved by converting numeric to a Bignum.

A TypeError is raised if the numeric is not a Fixnum or Bignum type.

(0x3FFFFFFFFFFFFFFF+1).coerce(42)   #=> [42, 4611686018427387904]

Returns:



6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
# File 'bignum.c', line 6916

static VALUE
rb_big_coerce(VALUE x, VALUE y)
{
    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	rb_raise(rb_eTypeError, "can't coerce %s to Bignum",
		 rb_obj_classname(y));
    }
    return rb_assoc_new(y, x);
}

#div(other) ⇒ Integer

Performs integer division: returns integer value.

Returns:



6173
6174
6175
6176
6177
# File 'bignum.c', line 6173

VALUE
rb_big_idiv(VALUE x, VALUE y)
{
    return rb_big_divide(x, y, rb_intern("div"));
}

#divmod(numeric) ⇒ Array

See Numeric#divmod.

Returns:



6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
# File 'bignum.c', line 6236

VALUE
rb_big_divmod(VALUE x, VALUE y)
{
    VALUE div, mod;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, rb_intern("divmod"));
    }
    bigdivmod(x, y, &div, &mod);

    return rb_assoc_new(bignorm(div), bignorm(mod));
}

#eql?(obj) ⇒ Boolean

Returns true only if obj is a Bignum with the same value as big. Contrast this with Bignum#==, which performs type conversions.

68719476736.eql?(68719476736.0)   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5560
5561
5562
5563
5564
5565
5566
5567
5568
# File 'bignum.c', line 5560

VALUE
rb_big_eql(VALUE x, VALUE y)
{
    if (!RB_BIGNUM_TYPE_P(y)) return Qfalse;
    if (RBIGNUM_SIGN(x) != RBIGNUM_SIGN(y)) return Qfalse;
    if (RBIGNUM_LEN(x) != RBIGNUM_LEN(y)) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM_LEN(y)) != 0) return Qfalse;
    return Qtrue;
}

#even?Boolean

Returns true if big is an even number.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


7062
7063
7064
7065
7066
7067
7068
7069
# File 'bignum.c', line 7062

static VALUE
rb_big_even_p(VALUE num)
{
    if (RBIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
	return Qfalse;
    }
    return Qtrue;
}

#fdiv(numeric) ⇒ Float

Returns the floating point result of dividing big by numeric.

-1234567890987654321.fdiv(13731)      #=> -89910996357705.5
-1234567890987654321.fdiv(13731.24)   #=> -89909424858035.7

Returns:



6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
# File 'bignum.c', line 6320

VALUE
rb_big_fdiv(VALUE x, VALUE y)
{
    double dx, dy;

    dx = big2dbl(x);
    if (FIXNUM_P(y)) {
	dy = (double)FIX2LONG(y);
	if (isinf(dx))
	    return big_fdiv_int(x, rb_int2big(FIX2LONG(y)));
    }
    else if (RB_BIGNUM_TYPE_P(y)) {
	dy = rb_big2dbl(y);
	if (isinf(dx) || isinf(dy))
	    return big_fdiv_int(x, y);
    }
    else if (RB_FLOAT_TYPE_P(y)) {
	dy = RFLOAT_VALUE(y);
	if (isnan(dy))
	    return y;
	if (isinf(dx))
	    return big_fdiv_float(x, y);
    }
    else {
	return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
    }
    return DBL2NUM(dx / dy);
}

#hashFixnum

Compute a hash based on the value of big.

Returns:



6893
6894
6895
6896
6897
6898
6899
6900
# File 'bignum.c', line 6893

static VALUE
rb_big_hash(VALUE x)
{
    st_index_t hash;

    hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*RBIGNUM_LEN(x)) ^ RBIGNUM_SIGN(x);
    return INT2FIX(hash);
}

#absBignum #magnitudeBignum

Returns the absolute value of big.

-1234567890987654321.abs   #=> 1234567890987654321

Overloads:



6939
6940
6941
6942
6943
6944
6945
6946
6947
# File 'bignum.c', line 6939

static VALUE
rb_big_abs(VALUE x)
{
    if (!RBIGNUM_SIGN(x)) {
	x = rb_big_clone(x);
	RBIGNUM_SET_SIGN(x, 1);
    }
    return x;
}

#%(other) ⇒ Numeric #modulo(other) ⇒ Numeric

Returns big modulo other. See Numeric.divmod for more information.

Overloads:



6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
# File 'bignum.c', line 6188

VALUE
rb_big_modulo(VALUE x, VALUE y)
{
    VALUE z;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, '%');
    }
    bigdivmod(x, y, 0, &z);

    return bignorm(z);
}

#odd?Boolean

Returns true if big is an odd number.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


7046
7047
7048
7049
7050
7051
7052
7053
# File 'bignum.c', line 7046

static VALUE
rb_big_odd_p(VALUE num)
{
    if (RBIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
	return Qtrue;
    }
    return Qfalse;
}

#remainder(numeric) ⇒ Numeric

Returns the remainder after dividing big by numeric.

-1234567890987654321.remainder(13731)      #=> -6966
-1234567890987654321.remainder(13731.24)   #=> -9906.22531493148

Returns:



6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
# File 'bignum.c', line 6213

static VALUE
rb_big_remainder(VALUE x, VALUE y)
{
    VALUE z;

    if (FIXNUM_P(y)) {
	y = rb_int2big(FIX2LONG(y));
    }
    else if (!RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bin(x, y, rb_intern("remainder"));
    }
    bigdivrem(x, y, 0, &z);

    return bignorm(z);
}

#sizeInteger

Returns the number of bytes in the machine representation of big.

(256**10 - 1).size   #=> 12
(256**20 - 1).size   #=> 20
(256**40 - 1).size   #=> 40

Returns:



6961
6962
6963
6964
6965
# File 'bignum.c', line 6961

static VALUE
rb_big_size(VALUE big)
{
    return SIZET2NUM(BIGSIZE(big));
}

#to_fFloat

Converts big to a Float. If big doesn’t fit in a Float, the result is infinity.

Returns:



5292
5293
5294
5295
5296
# File 'bignum.c', line 5292

static VALUE
rb_big_to_f(VALUE x)
{
    return DBL2NUM(rb_big2dbl(x));
}

#to_s(base = 10) ⇒ String Also known as: inspect

Returns a string containing the representation of big radix base (2 through 36).

12345654321.to_s         #=> "12345654321"
12345654321.to_s(2)      #=> "1011011111110110111011110000110001"
12345654321.to_s(8)      #=> "133766736061"
12345654321.to_s(16)     #=> "2dfdbbc31"
78546939656932.to_s(36)  #=> "rubyrules"

Returns:



5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
# File 'bignum.c', line 5033

static VALUE
rb_big_to_s(int argc, VALUE *argv, VALUE x)
{
    int base;

    if (argc == 0) base = 10;
    else {
	VALUE b;

	rb_scan_args(argc, argv, "01", &b);
	base = NUM2INT(b);
    }
    return rb_big2str(x, base);
}

#|(numeric) ⇒ Integer

Performs bitwise or between big and numeric.

Returns:



6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
# File 'bignum.c', line 6604

VALUE
rb_big_or(VALUE x, VALUE y)
{
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, xn, yn, n1, n2;
    BDIGIT hibitsx, hibitsy;
    BDIGIT hibits1, hibits2;
    VALUE tmpv;
    BDIGIT tmph;
    long tmpn;

    if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
	return rb_num_coerce_bit(x, y, '|');
    }

    hibitsx = abs2twocomp(&x, &xn);
    if (FIXNUM_P(y)) {
	return bigor_int(x, xn, hibitsx, FIX2LONG(y));
    }
    hibitsy = abs2twocomp(&y, &yn);
    if (xn > yn) {
        tmpv = x; x = y; y = tmpv;
        tmpn = xn; xn = yn; yn = tmpn;
        tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
    }
    n1 = xn;
    n2 = yn;
    ds1 = BDIGITS(x);
    ds2 = BDIGITS(y);
    hibits1 = hibitsx;
    hibits2 = hibitsy;

    if (hibits1)
        n2 = n1;

    z = bignew(n2, 0);
    zds = BDIGITS(z);

    for (i=0; i<n1; i++) {
	zds[i] = ds1[i] | ds2[i];
    }
    for (; i<n2; i++) {
	zds[i] = hibits1 | ds2[i];
    }
    twocomp2abs_bang(z, hibits1 || hibits2);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    return bignorm(z);
}

#~Integer

Inverts the bits in big. As Bignums are conceptually infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.

sprintf("%X", ~0x1122334455)    #=> "..FEEDDCCBBAA"

Returns:



5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
# File 'bignum.c', line 5599

static VALUE
rb_big_neg(VALUE x)
{
    VALUE z = rb_big_clone(x);
    BDIGIT *ds = BDIGITS(z);
    long n = RBIGNUM_LEN(z);

    if (!n) return INT2FIX(-1);

    if (RBIGNUM_POSITIVE_P(z)) {
        if (bary_add_one(ds, n)) {
            big_extend_carry(z);
        }
        RBIGNUM_SET_NEGATIVE_SIGN(z);
    }
    else {
        bary_neg(ds, n);
        if (bary_add_one(ds, n))
            return INT2FIX(-1);
        bary_neg(ds, n);
        RBIGNUM_SET_POSITIVE_SIGN(z);
    }

    return bignorm(z);
}