Class: Module
Overview
*********************************************************************
A <code>Module</code> is a collection of methods and constants. The
methods in a module may be instance methods or module methods.
Instance methods appear as methods in a class when the module is
included, module methods do not. Conversely, module methods may be
called without creating an encapsulating object, while instance
methods may not. (See <code>Module#module_function</code>.)
In the descriptions that follow, the parameter <i>sym</i> refers
to a symbol, which is either a quoted string or a
<code>Symbol</code> (such as <code>:name</code>).
module Mod
include Math
CONST = 1
def meth
# ...
end
end
Mod.class #=> Module
Mod.constants #=> [:CONST, :PI, :E]
Mod.instance_methods #=> [:meth]
Direct Known Subclasses
Class Method Summary collapse
-
.constants ⇒ Object
In the first form, returns an array of the names of all constants accessible from the point of call.
-
.nesting ⇒ Array
Returns the list of
Modules
nested at the point of call.
Instance Method Summary collapse
-
#<(other) ⇒ true, ...
Returns true if mod is a subclass of other.
-
#<=(other) ⇒ true, ...
Returns true if mod is a subclass of other or is the same as other.
-
#<=>(other_module) ⇒ -1, ...
Comparison—Returns -1, 0, +1 or nil depending on whether
module
includesother_module
, they are the same, or ifmodule
is included byother_module
. -
#== ⇒ Object
Equality — At the
Object
level,==
returnstrue
only ifobj
andother
are the same object. -
#===(obj) ⇒ Boolean
Case Equality—Returns
true
if obj is an instance of mod or one of mod’s descendants. -
#>(other) ⇒ true, ...
Returns true if mod is an ancestor of other.
-
#>=(other) ⇒ true, ...
Returns true if mod is an ancestor of other, or the two modules are the same.
-
#alias_method(new_name, old_name) ⇒ self
private
Makes new_name a new copy of the method old_name.
-
#ancestors ⇒ Array
Returns a list of modules included in mod (including mod itself).
-
#append_features(mod) ⇒ Object
private
When this module is included in another, Ruby calls
append_features
in this module, passing it the receiving module in mod. - #attr ⇒ Object private
-
#attr_accessor ⇒ Object
private
Defines a named attribute for this module, where the name is symbol.
id2name
, creating an instance variable (@name
) and a corresponding access method to read it. -
#attr_reader ⇒ Object
private
Creates instance variables and corresponding methods that return the value of each instance variable.
-
#attr_writer ⇒ Object
private
Creates an accessor method to allow assignment to the attribute symbol
.id2name
. -
#autoload ⇒ nil
Registers filename to be loaded (using
Kernel::require
) the first time that module (which may be aString
or a symbol) is accessed in the namespace of mod. -
#autoload?(name) ⇒ String?
Returns filename to be loaded if name is registered as
autoload
in the namespace of mod. -
#class_eval ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected.
-
#class_exec ⇒ Object
Evaluates the given block in the context of the class/module.
-
#class_variable_defined? ⇒ Boolean
Returns
true
if the given class variable is defined in obj. -
#class_variable_get ⇒ Object
Returns the value of the given class variable (or throws a
NameError
exception). -
#class_variable_set ⇒ Object
Sets the class variable named by symbol to the given object.
-
#class_variables(inherit = true) ⇒ Array
Returns an array of the names of class variables in mod.
-
#const_defined? ⇒ Boolean
Says whether mod or its ancestors have a constant with the given name:.
-
#const_get ⇒ Object
Checks for a constant with the given name in mod.
-
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod.
-
#const_set ⇒ Object
Sets the named constant to the given object, returning that object.
-
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod.
-
#define_method ⇒ Object
private
Defines an instance method in the receiver.
-
#extend_object(obj) ⇒ Object
private
Extends the specified object by adding this module’s constants and methods (which are added as singleton methods).
-
#extended ⇒ Object
private
Not documented.
-
#freeze ⇒ Object
Prevents further modifications to mod.
-
#include ⇒ self
Invokes
Module.append_features
on each parameter in reverse order. -
#include? ⇒ Boolean
Returns
true
if module is included in mod or one of mod’s ancestors. -
#included ⇒ Object
private
Not documented.
-
#included_modules ⇒ Array
Returns the list of modules included in mod.
-
#initialize ⇒ Object
constructor
Creates a new anonymous module.
-
#initialize_copy ⇒ Object
:nodoc:.
-
#instance_method(symbol) ⇒ Object
Returns an
UnboundMethod
representing the given instance method in mod. -
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver.
-
#method_added ⇒ Object
private
Not documented.
-
#method_defined? ⇒ Boolean
Returns
true
if the named method is defined by mod (or its included modules and, if mod is a class, its ancestors). -
#method_removed ⇒ Object
private
Not documented.
-
#method_undefined ⇒ Object
private
Not documented.
-
#module_eval ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected.
-
#module_exec ⇒ Object
Evaluates the given block in the context of the class/module.
-
#module_function ⇒ Object
private
Creates module functions for the named methods.
-
#name ⇒ String
Returns the name of the module mod.
-
#prepend ⇒ self
Invokes
Module.prepend_features
on each parameter in reverse order. -
#prepend_features(mod) ⇒ Object
private
When this module is prepended in another, Ruby calls
prepend_features
in this module, passing it the receiving module in mod. -
#prepended ⇒ Object
private
Not documented.
-
#private ⇒ Object
private
With no arguments, sets the default visibility for subsequently defined methods to private.
-
#private_class_method ⇒ Object
Makes existing class methods private.
-
#private_constant(symbol, ...) ⇒ Object
Makes a list of existing constants private.
-
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod.
-
#private_method_defined? ⇒ Boolean
Returns
true
if the named private method is defined by _ mod_ (or its included modules and, if mod is a class, its ancestors). -
#protected ⇒ Object
private
With no arguments, sets the default visibility for subsequently defined methods to protected.
-
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod.
-
#protected_method_defined? ⇒ Boolean
Returns
true
if the named protected method is defined by mod (or its included modules and, if mod is a class, its ancestors). -
#public ⇒ Object
private
With no arguments, sets the default visibility for subsequently defined methods to public.
-
#public_class_method ⇒ Object
Makes a list of existing class methods public.
-
#public_constant(symbol, ...) ⇒ Object
Makes a list of existing constants public.
-
#public_instance_method(symbol) ⇒ Object
Similar to instance_method, searches public method only.
-
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod.
-
#public_method_defined? ⇒ Boolean
Returns
true
if the named public method is defined by mod (or its included modules and, if mod is a class, its ancestors). -
#refine(klass) { ... } ⇒ Object
private
Refine klass in the receiver.
-
#remove_class_variable(sym) ⇒ Object
Removes the definition of the sym, returning that constant’s value.
-
#remove_const(sym) ⇒ Object
private
Removes the definition of the given constant, returning that constant’s previous value.
-
#remove_method ⇒ Object
private
Removes the method identified by symbol from the current class.
-
#singleton_class? ⇒ Boolean
Returns
true
if mod is a singleton class orfalse
if it is an ordinary class or module. -
#to_s ⇒ String
(also: #inspect)
Returns a string representing this module or class.
-
#undef_method ⇒ Object
private
Prevents the current class from responding to calls to the named method.
-
#using ⇒ self
private
Import class refinements from module into the current class or module definition.
Constructor Details
#new ⇒ Object #new {|mod| ... } ⇒ Object
Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module using module_eval
.
fred = Module.new do
def meth1
"hello"
end
def meth2
"bye"
end
end
a = "my string"
a.extend(fred) #=> "my string"
a.meth1 #=> "hello"
a.meth2 #=> "bye"
Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.
1709 1710 1711 1712 1713 1714 1715 1716 |
# File 'object.c', line 1709
static VALUE
rb_mod_initialize(VALUE module)
{
if (rb_block_given_p()) {
rb_mod_module_exec(1, &module, module);
}
return Qnil;
}
|
Class Method Details
.constants ⇒ Array .constants(inherited) ⇒ Array
In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.
Module.constants.first(4)
# => [:ARGF, :ARGV, :ArgumentError, :Array]
Module.constants.include?(:SEEK_SET) # => false
class IO
Module.constants.include?(:SEEK_SET) # => true
end
The second form calls the instance method constants
.
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# File 'eval.c', line 375
static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
const NODE *cref = rb_vm_cref();
VALUE klass;
VALUE cbase = 0;
void *data = 0;
if (argc > 0 || mod != rb_cModule) {
return rb_mod_constants(argc, argv, mod);
}
while (cref) {
klass = cref->nd_clss;
if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) &&
!NIL_P(klass)) {
data = rb_mod_const_at(cref->nd_clss, data);
if (!cbase) {
cbase = klass;
}
}
cref = cref->nd_next;
}
if (cbase) {
data = rb_mod_const_of(cbase, data);
}
return rb_const_list(data);
}
|
.nesting ⇒ Array
Returns the list of Modules
nested at the point of call.
module M1
module M2
$a = Module.nesting
end
end
$a #=> [M1::M2, M1]
$a[0].name #=> "M1::M2"
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# File 'eval.c', line 336
static VALUE
rb_mod_nesting(void)
{
VALUE ary = rb_ary_new();
const NODE *cref = rb_vm_cref();
while (cref && cref->nd_next) {
VALUE klass = cref->nd_clss;
if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) &&
!NIL_P(klass)) {
rb_ary_push(ary, klass);
}
cref = cref->nd_next;
}
return ary;
}
|
Instance Method Details
#<(other) ⇒ true, ...
Returns true if mod is a subclass of other. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “A<B”.)
1590 1591 1592 1593 1594 1595 |
# File 'object.c', line 1590
static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_class_inherited_p(mod, arg);
}
|
#<=(other) ⇒ true, ...
Returns true if mod is a subclass of other or is the same as other. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “A<B”.)
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 |
# File 'object.c', line 1559
VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
VALUE start = mod;
if (mod == arg) return Qtrue;
if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
rb_raise(rb_eTypeError, "compared with non class/module");
}
arg = RCLASS_ORIGIN(arg);
if (class_search_ancestor(mod, arg)) {
return Qtrue;
}
/* not mod < arg; check if mod > arg */
if (class_search_ancestor(arg, start)) {
return Qfalse;
}
return Qnil;
}
|
#<=>(other_module) ⇒ -1, ...
Comparison—Returns -1, 0, +1 or nil depending on whether module
includes other_module
, they are the same, or if module
is included by other_module
. This is the basis for the tests in Comparable.
Returns nil
if module
has no relationship with other_module
, if other_module
is not a module, or if the two values are incomparable.
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 |
# File 'object.c', line 1650
static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
VALUE cmp;
if (mod == arg) return INT2FIX(0);
if (!CLASS_OR_MODULE_P(arg)) {
return Qnil;
}
cmp = rb_class_inherited_p(mod, arg);
if (NIL_P(cmp)) return Qnil;
if (cmp) {
return INT2FIX(-1);
}
return INT2FIX(1);
}
|
#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean
Equality — At the Object
level, ==
returns true
only if obj
and other
are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.
Unlike ==
, the equal?
method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b)
if and only if a
is the same object as b
):
obj = "a"
other = obj.dup
obj == other #=> true
obj.equal? other #=> false
obj.equal? obj #=> true
The eql?
method returns true
if obj
and other
refer to the same hash key. This is used by Hash to test members for equality. For objects of class Object
, eql?
is synonymous with ==
. Subclasses normally continue this tradition by aliasing eql?
to their overridden ==
method, but there are exceptions. Numeric
types, for example, perform type conversion across ==
, but not across eql?
, so:
1 == 1.0 #=> true
1.eql? 1.0 #=> false
141 142 143 144 145 146 |
# File 'object.c', line 141
VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
|
#===(obj) ⇒ Boolean
Case Equality—Returns true
if obj is an instance of mod or one of mod’s descendants. Of limited use for modules, but can be used in case
statements to classify objects by class.
1541 1542 1543 1544 1545 |
# File 'object.c', line 1541
static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
return rb_obj_is_kind_of(arg, mod);
}
|
#>(other) ⇒ true, ...
Returns true if mod is an ancestor of other. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “B>A”.)
1631 1632 1633 1634 1635 1636 |
# File 'object.c', line 1631
static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_mod_ge(mod, arg);
}
|
#>=(other) ⇒ true, ...
Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “B>A”.)
1610 1611 1612 1613 1614 1615 1616 1617 1618 |
# File 'object.c', line 1610
static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
if (!CLASS_OR_MODULE_P(arg)) {
rb_raise(rb_eTypeError, "compared with non class/module");
}
return rb_class_inherited_p(arg, mod);
}
|
#alias_method(new_name, old_name) ⇒ self (private)
Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.
module Mod
alias_method :orig_exit, :exit
def exit(code=0)
puts "Exiting with code #{code}"
orig_exit(code)
end
end
include Mod
exit(99)
produces:
Exiting with code 99
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 |
# File 'vm_method.c', line 1317
static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
ID oldid = rb_check_id(&oldname);
if (!oldid) {
rb_print_undef_str(mod, oldname);
}
rb_alias(mod, rb_to_id(newname), oldid);
return mod;
}
|
#ancestors ⇒ Array
Returns a list of modules included in mod (including mod itself).
module Mod
include Math
include Comparable
end
Mod.ancestors #=> [Mod, Comparable, Math]
Math.ancestors #=> [Math]
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 |
# File 'class.c', line 1036
VALUE
rb_mod_ancestors(VALUE mod)
{
VALUE p, ary = rb_ary_new();
for (p = mod; p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, RBASIC(p)->klass);
}
else if (p == RCLASS_ORIGIN(p)) {
rb_ary_push(ary, p);
}
}
return ary;
}
|
#append_features(mod) ⇒ Object (private)
When this module is included in another, Ruby calls append_features
in this module, passing it the receiving module in mod. Ruby’s default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include
.
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 |
# File 'eval.c', line 1006
static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
if (!CLASS_OR_MODULE_P(include)) {
Check_Type(include, T_CLASS);
}
rb_include_module(include, module);
return module;
}
|
#attr ⇒ Object (private)
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 |
# File 'object.c', line 1984
VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
rb_warning("optional boolean argument is obsoleted");
rb_attr(klass, id_for_attr(argv[0]), 1, RTEST(argv[1]), TRUE);
return Qnil;
}
return rb_mod_attr_reader(argc, argv, klass);
}
|
#attr_accessor(symbol, ...) ⇒ nil (private) #attr_accessor(string, ...) ⇒ nil (private)
Defines a named attribute for this module, where the name is symbol.id2name
, creating an instance variable (@name
) and a corresponding access method to read it. Also creates a method called name=
to set the attribute. String arguments are converted to symbols.
module Mod
attr_accessor(:one, :two)
end
Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 |
# File 'object.c', line 2033
static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, id_for_attr(argv[i]), TRUE, TRUE, TRUE);
}
return Qnil;
}
|
#attr_reader(symbol, ...) ⇒ nil (private) #attr(symbol, ...) ⇒ nil (private) #attr_reader(string, ...) ⇒ nil (private) #attr(string, ...) ⇒ nil (private)
Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr
:name” on each name in turn. String arguments are converted to symbols.
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 |
# File 'object.c', line 1973
static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, id_for_attr(argv[i]), TRUE, FALSE, TRUE);
}
return Qnil;
}
|
#attr_writer(symbol, ...) ⇒ nil (private) #attr_writer(string, ...) ⇒ nil (private)
Creates an accessor method to allow assignment to the attribute symbol.id2name
. String arguments are converted to symbols.
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 |
# File 'object.c', line 2005
static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, id_for_attr(argv[i]), FALSE, TRUE, TRUE);
}
return Qnil;
}
|
#autoload ⇒ nil
Registers filename to be loaded (using Kernel::require
) the first time that module (which may be a String
or a symbol) is accessed in the namespace of mod.
module A
end
A.autoload(:B, "b")
A::B.doit # autoloads "b"
1083 1084 1085 1086 1087 1088 1089 1090 1091 |
# File 'load.c', line 1083
static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
ID id = rb_to_id(sym);
FilePathValue(file);
rb_autoload(mod, id, RSTRING_PTR(file));
return Qnil;
}
|
#autoload?(name) ⇒ String?
Returns filename to be loaded if name is registered as autoload
in the namespace of mod.
module A
end
A.autoload(:B, "b")
A.autoload?(:B) #=> "b"
1106 1107 1108 1109 1110 1111 1112 1113 1114 |
# File 'load.c', line 1106
static VALUE
rb_mod_autoload_p(VALUE mod, VALUE sym)
{
ID id = rb_check_id(&sym);
if (!id) {
return Qnil;
}
return rb_autoload_p(mod, id);
}
|
#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval
returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.
class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there!
dummy:123:in `module_eval': undefined local variable
or method `code' for Thing:Class
1678 1679 1680 1681 1682 |
# File 'vm_eval.c', line 1678
VALUE
rb_mod_module_eval(int argc, VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod);
}
|
#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.
class Thing
end
Thing.class_exec{
def hello() "Hello there!" end
}
puts Thing.new.hello()
produces:
Hello there!
1706 1707 1708 1709 1710 |
# File 'vm_eval.c', line 1706
VALUE
rb_mod_module_exec(int argc, VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
|
#class_variable_defined?(symbol) ⇒ Boolean #class_variable_defined?(string) ⇒ Boolean
Returns true
if the given class variable is defined in obj. String arguments are converted to symbols.
class Fred
@@foo = 99
end
Fred.class_variable_defined?(:@@foo) #=> true
Fred.class_variable_defined?(:@@bar) #=> false
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 |
# File 'object.c', line 2539
static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
ID id = rb_check_id(&iv);
if (!id) {
if (rb_is_class_name(iv)) {
return Qfalse;
}
else {
rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as a class variable name",
QUOTE(iv));
}
}
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a class variable name",
QUOTE_ID(id));
}
return rb_cvar_defined(obj, id);
}
|
#class_variable_get(symbol) ⇒ Object #class_variable_get(string) ⇒ Object
Returns the value of the given class variable (or throws a NameError
exception). The @@
part of the variable name should be included for regular class variables. String arguments are converted to symbols.
class Fred
@@foo = 99
end
Fred.class_variable_get(:@@foo) #=> 99
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 |
# File 'object.c', line 2473
static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
ID id = rb_check_id(&iv);
if (!id) {
if (rb_is_class_name(iv)) {
rb_name_error_str(iv, "uninitialized class variable %"PRIsVALUE" in %"PRIsVALUE"",
iv, rb_class_name(obj));
}
else {
rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as a class variable name",
QUOTE(iv));
}
}
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a class variable name",
QUOTE_ID(id));
}
return rb_cvar_get(obj, id);
}
|
#class_variable_set(symbol, obj) ⇒ Object #class_variable_set(string, obj) ⇒ Object
Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.
class Fred
@@foo = 99
def foo
@@foo
end
end
Fred.class_variable_set(:@@foo, 101) #=> 101
Fred.new.foo #=> 101
2515 2516 2517 2518 2519 2520 2521 |
# File 'object.c', line 2515
static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
ID id = id_for_setter(iv, class, "`%"PRIsVALUE"' is not allowed as a class variable name");
rb_cvar_set(obj, id, val);
return val;
}
|
#class_variables(inherit = true) ⇒ Array
Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false
.
class One
@@var1 = 1
end
class Two < One
@@var2 = 2
end
One.class_variables #=> [:@@var1]
Two.class_variables #=> [:@@var2, :@@var1]
Two.class_variables(false) #=> [:@@var2]
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 |
# File 'variable.c', line 2527
VALUE
rb_mod_class_variables(int argc, VALUE *argv, VALUE mod)
{
VALUE inherit;
st_table *tbl;
if (argc == 0) {
inherit = Qtrue;
}
else {
rb_scan_args(argc, argv, "01", &inherit);
}
if (RTEST(inherit)) {
tbl = mod_cvar_of(mod, 0);
}
else {
tbl = mod_cvar_at(mod, 0);
}
return cvar_list(tbl);
}
|
#const_defined?(sym, inherit = true) ⇒ Boolean #const_defined?(str, inherit = true) ⇒ Boolean
Says whether mod or its ancestors have a constant with the given name:
Float.const_defined?(:EPSILON) #=> true, found in Float itself
Float.const_defined?("String") #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash) #=> false
If mod is a Module
, additionally Object
and its ancestors are checked:
Math.const_defined?(:String) #=> true, found in Object
In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true
is returned directly without autoloading:
module Admin
autoload :User, 'admin/user'
end
Admin.const_defined?(:User) #=> true
If the constant is not found the callback const_missing
is not called and the method returns false
.
If inherit
is false, the lookup only checks the constants in the receiver:
IO.const_defined?(:SYNC) #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false) #=> false, not found in IO itself
In this case, the same logic for autoloading applies.
If the argument is not a valid constant name a NameError
is raised with the message “wrong constant name name”:
Hash.const_defined? 'foobar' #=> NameError: wrong constant name foobar
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 |
# File 'object.c', line 2245
static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
rb_encoding *enc;
const char *pbeg, *p, *path, *pend;
ID id;
if (argc == 1) {
name = argv[0];
recur = Qtrue;
}
else {
rb_scan_args(argc, argv, "11", &name, &recur);
}
if (SYMBOL_P(name)) {
id = SYM2ID(name);
if (!rb_is_const_id(id)) goto wrong_id;
return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
}
path = StringValuePtr(name);
enc = rb_enc_get(name);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(name);
if (p >= pend || !*p) {
wrong_name:
rb_raise(rb_eNameError, "wrong constant name %"PRIsVALUE,
QUOTE(name));
}
if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
mod = rb_cObject;
p += 2;
pbeg = p;
}
while (p < pend) {
VALUE part;
long len, beglen;
while (p < pend && *p != ':') p++;
if (pbeg == p) goto wrong_name;
id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
beglen = pbeg-path;
if (p < pend && p[0] == ':') {
if (p + 2 >= pend || p[1] != ':') goto wrong_name;
p += 2;
pbeg = p;
}
if (!id) {
part = rb_str_subseq(name, beglen, len);
OBJ_FREEZE(part);
if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) {
rb_name_error_str(part, "wrong constant name %"PRIsVALUE,
QUOTE(part));
}
else {
return Qfalse;
}
}
if (!rb_is_const_id(id)) {
wrong_id:
rb_name_error(id, "wrong constant name %"PRIsVALUE,
QUOTE_ID(id));
}
if (RTEST(recur)) {
if (!rb_const_defined(mod, id))
return Qfalse;
mod = rb_const_get(mod, id);
}
else {
if (!rb_const_defined_at(mod, id))
return Qfalse;
mod = rb_const_get_at(mod, id);
}
recur = Qfalse;
if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
QUOTE(name));
}
}
return Qtrue;
}
|
#const_get(sym, inherit = true) ⇒ Object #const_get(str, inherit = true) ⇒ Object
Checks for a constant with the given name in mod. If inherit
is set, the lookup will also search the ancestors (and Object
if mod is a Module
).
The value of the constant is returned if a definition is found, otherwise a NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
This method will recursively look up constant names if a namespaced class name is provided. For example:
module Foo; class Bar; end end
Object.const_get 'Foo::Bar'
The inherit
flag is respected on each lookup. For example:
module Foo
class Bar
VAL = 10
end
class Baz < Bar; end
end
Object.const_get 'Foo::Baz::VAL' # => 10
Object.const_get 'Foo::Baz::VAL', false # => NameError
If the argument is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_get ‘foobar’ #=> NameError: wrong constant name foobar
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 |
# File 'object.c', line 2084
static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
rb_encoding *enc;
const char *pbeg, *p, *path, *pend;
ID id;
if (argc == 1) {
name = argv[0];
recur = Qtrue;
}
else {
rb_scan_args(argc, argv, "11", &name, &recur);
}
if (SYMBOL_P(name)) {
id = SYM2ID(name);
if (!rb_is_const_id(id)) goto wrong_id;
return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
}
path = StringValuePtr(name);
enc = rb_enc_get(name);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(name);
if (p >= pend || !*p) {
wrong_name:
rb_raise(rb_eNameError, "wrong constant name %"PRIsVALUE,
QUOTE(name));
}
if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
mod = rb_cObject;
p += 2;
pbeg = p;
}
while (p < pend) {
VALUE part;
long len, beglen;
while (p < pend && *p != ':') p++;
if (pbeg == p) goto wrong_name;
id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
beglen = pbeg-path;
if (p < pend && p[0] == ':') {
if (p + 2 >= pend || p[1] != ':') goto wrong_name;
p += 2;
pbeg = p;
}
if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
QUOTE(name));
}
if (!id) {
part = rb_str_subseq(name, beglen, len);
OBJ_FREEZE(part);
if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) {
rb_name_error_str(part, "wrong constant name %"PRIsVALUE,
QUOTE(part));
}
else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
id = rb_intern_str(part);
}
else {
rb_name_error_str(part, "uninitialized constant %"PRIsVALUE"%"PRIsVALUE,
rb_str_subseq(name, 0, beglen),
QUOTE(part));
}
}
if (!rb_is_const_id(id)) {
wrong_id:
rb_name_error(id, "wrong constant name %"PRIsVALUE,
QUOTE_ID(id));
}
mod = RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
}
return mod;
}
|
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:
def Foo.const_missing(name)
name # return the constant name as Symbol
end
Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred
is assumed to be in file fred.rb
). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and Module#autoload.
def Object.const_missing(name)
@looked_for ||= {}
str_name = name.to_s
raise "Class not found: #{name}" if @looked_for[str_name]
@looked_for[str_name] = 1
file = str_name.downcase
require file
klass = const_get(name)
return klass if klass
raise "Class not found: #{name}"
end
1518 1519 1520 1521 1522 1523 1524 1525 |
# File 'variable.c', line 1518
VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
rb_vm_pop_cfunc_frame();
uninitialized_constant(klass, rb_to_id(name));
UNREACHABLE;
}
|
#const_set(sym, obj) ⇒ Object #const_set(str, obj) ⇒ Object
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
If sym
or str
is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_set(‘foobar’, 42) #=> NameError: wrong constant name foobar
2196 2197 2198 2199 2200 2201 2202 |
# File 'object.c', line 2196
static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
ID id = id_for_setter(name, const, "wrong constant name %"PRIsVALUE);
rb_const_set(mod, id, value);
return value;
}
|
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false
.
IO.constants.include?(:SYNC) #=> true
IO.constants(false).include?(:SYNC) #=> false
Also see Module::const_defined?
.
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 |
# File 'variable.c', line 2067
VALUE
rb_mod_constants(int argc, VALUE *argv, VALUE mod)
{
VALUE inherit;
if (argc == 0) {
inherit = Qtrue;
}
else {
rb_scan_args(argc, argv, "01", &inherit);
}
if (RTEST(inherit)) {
return rb_const_list(rb_mod_const_of(mod, 0));
}
else {
return rb_local_constants(mod);
}
}
|
#define_method(symbol, method) ⇒ Object (private) #define_method(symbol) { ... } ⇒ Object (private)
Defines an instance method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body. This block is evaluated using instance_eval
, a point that is tricky to demonstrate because define_method
is private. (This is why we resort to the send
hack in this example.)
class A
def fred
puts "In Fred"
end
def create_method(name, &block)
self.class.send(:define_method, name, &block)
end
define_method(:wilma) { puts "Charge it!" }
end
class B < A
define_method(:barney, instance_method(:fred))
end
a = B.new
a.
a.wilma
a.create_method(:betty) { p self }
a.betty
produces:
In Fred
Charge it!
#<B:0x401b39e8>
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 |
# File 'proc.c', line 1602
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
ID id;
VALUE body;
int noex = NOEX_PUBLIC;
const NODE *cref = rb_vm_cref_in_context(mod);
if (cref && cref->nd_clss == mod) {
noex = (int)cref->nd_visi;
}
if (argc == 1) {
id = rb_to_id(argv[0]);
body = rb_block_lambda();
}
else {
rb_check_arity(argc, 1, 2);
id = rb_to_id(argv[0]);
body = argv[1];
if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected Proc/Method)",
rb_obj_classname(body));
}
}
if (rb_obj_is_method(body)) {
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
VALUE rclass = method->rclass;
if (rclass != mod && !RB_TYPE_P(rclass, T_MODULE) &&
!RTEST(rb_class_inherited_p(mod, rclass))) {
if (FL_TEST(rclass, FL_SINGLETON)) {
rb_raise(rb_eTypeError,
"can't bind singleton method to a different class");
}
else {
rb_raise(rb_eTypeError,
"bind argument must be a subclass of % "PRIsVALUE,
rb_class_name(rclass));
}
}
rb_method_entry_set(mod, id, method->me, noex);
if (noex == NOEX_MODFUNC) {
rb_method_entry_set(rb_singleton_class(mod), id, method->me, NOEX_PUBLIC);
}
RB_GC_GUARD(body);
}
else if (rb_obj_is_proc(body)) {
rb_proc_t *proc;
body = proc_dup(body);
GetProcPtr(body, proc);
if (BUILTIN_TYPE(proc->block.iseq) != T_NODE) {
proc->block.iseq->defined_method_id = id;
RB_OBJ_WRITE(proc->block.iseq->self, &proc->block.iseq->klass, mod);
proc->is_lambda = TRUE;
proc->is_from_method = TRUE;
proc->block.klass = mod;
}
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, noex);
if (noex == NOEX_MODFUNC) {
rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, NOEX_PUBLIC);
}
}
else {
/* type error */
rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)");
}
return ID2SYM(id);
}
|
#extend_object(obj) ⇒ Object (private)
Extends the specified object by adding this module’s constants and methods (which are added as singleton methods). This is the callback method used by Object#extend
.
module Picky
def Picky.extend_object(o)
if String === o
puts "Can't add Picky to a String"
else
puts "Picky added to #{o.class}"
super
end
end
end
(s = Array.new).extend Picky # Call Object.extend
(s = "quick brown fox").extend Picky
produces:
Picky added to Array
Can't add Picky to a String
1350 1351 1352 1353 1354 1355 |
# File 'eval.c', line 1350
static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
rb_extend_object(obj, mod);
return obj;
}
|
#extended ⇒ Object (private)
Not documented
923 924 925 926 927 |
# File 'object.c', line 923
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#freeze ⇒ Object
Prevents further modifications to mod.
This method returns self.
1524 1525 1526 1527 1528 1529 |
# File 'object.c', line 1524
static VALUE
rb_mod_freeze(VALUE mod)
{
rb_class_name(mod);
return rb_obj_freeze(mod);
}
|
#include ⇒ self
Invokes Module.append_features
on each parameter in reverse order.
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 |
# File 'eval.c', line 1024
static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_append_features, id_included;
CONST_ID(id_append_features, "append_features");
CONST_ID(id_included, "included");
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_append_features, 1, module);
rb_funcall(argv[argc], id_included, 1, module);
}
return module;
}
|
#include? ⇒ Boolean
Returns true
if module is included in mod or one of mod’s ancestors.
module A
end
class B
include A
end
class C < B
end
B.include?(A) #=> true
C.include?(A) #=> true
A.include?(A) #=> false
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 |
# File 'class.c', line 1006
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
VALUE p;
Check_Type(mod2, T_MODULE);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
if (RBASIC(p)->klass == mod2) return Qtrue;
}
}
return Qfalse;
}
|
#included ⇒ Object (private)
Not documented
923 924 925 926 927 |
# File 'object.c', line 923
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#included_modules ⇒ Array
Returns the list of modules included in mod.
module Mixin
end
module Outer
include Mixin
end
Mixin.included_modules #=> []
Outer.included_modules #=> [Mixin]
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 |
# File 'class.c', line 970
VALUE
rb_mod_included_modules(VALUE mod)
{
VALUE ary = rb_ary_new();
VALUE p;
VALUE origin = RCLASS_ORIGIN(mod);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (p != origin && BUILTIN_TYPE(p) == T_ICLASS) {
VALUE m = RBASIC(p)->klass;
if (RB_TYPE_P(m, T_MODULE))
rb_ary_push(ary, m);
}
}
return ary;
}
|
#initialize_copy ⇒ Object
:nodoc:
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# File 'class.c', line 299
VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
if (RB_TYPE_P(clone, T_CLASS)) {
class_init_copy_check(clone, orig);
}
if (!OBJ_INIT_COPY(clone, orig)) return clone;
if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
}
RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator;
if (RCLASS_IV_TBL(clone)) {
st_free_table(RCLASS_IV_TBL(clone));
RCLASS_IV_TBL(clone) = 0;
}
if (RCLASS_CONST_TBL(clone)) {
rb_free_const_table(RCLASS_CONST_TBL(clone));
RCLASS_CONST_TBL(clone) = 0;
}
if (RCLASS_M_TBL_WRAPPER(clone)) {
rb_free_m_tbl_wrapper(RCLASS_M_TBL_WRAPPER(clone));
RCLASS_M_TBL_WRAPPER(clone) = 0;
}
if (RCLASS_IV_TBL(orig)) {
st_data_t id;
RCLASS_IV_TBL(clone) = rb_st_copy(clone, RCLASS_IV_TBL(orig));
CONST_ID(id, "__tmp_classpath__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
CONST_ID(id, "__classpath__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
CONST_ID(id, "__classid__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
}
if (RCLASS_CONST_TBL(orig)) {
struct clone_const_arg arg;
RCLASS_CONST_TBL(clone) = st_init_numtable();
arg.klass = clone;
arg.tbl = RCLASS_CONST_TBL(clone);
st_foreach(RCLASS_CONST_TBL(orig), clone_const_i, (st_data_t)&arg);
}
if (RCLASS_M_TBL(orig)) {
RCLASS_M_TBL_INIT(clone);
st_foreach(RCLASS_M_TBL(orig), clone_method_i, (st_data_t)clone);
}
return clone;
}
|
#instance_method(symbol) ⇒ Object
Returns an UnboundMethod
representing the given instance method in mod.
class Interpreter
def do_a() print "there, "; end
def do_d() print "Hello "; end
def do_e() print "!\n"; end
def do_v() print "Dave"; end
Dispatcher = {
"a" => instance_method(:do_a),
"d" => instance_method(:do_d),
"e" => instance_method(:do_e),
"v" => instance_method(:do_v)
}
def interpret(string)
string.each_char {|b| Dispatcher[b].bind(self).call }
end
end
interpreter = Interpreter.new
interpreter.interpret('dave')
produces:
Hello there, Dave!
1538 1539 1540 1541 1542 1543 1544 1545 1546 |
# File 'proc.c', line 1538
static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}
|
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. With no argument, or with an argument that is false
, the instance methods in mod are returned, otherwise the methods in mod and mod’s superclasses are returned.
module A
def method1() end
end
class B
def method2() end
end
class C < B
def method3() end
end
A.instance_methods #=> [:method1]
B.instance_methods(false) #=> [:method2]
C.instance_methods(false) #=> [:method3]
C.instance_methods(true).length #=> 43
1193 1194 1195 1196 1197 |
# File 'class.c', line 1193
VALUE
rb_class_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}
|
#method_added ⇒ Object (private)
Not documented
923 924 925 926 927 |
# File 'object.c', line 923
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#method_defined?(symbol) ⇒ Boolean #method_defined?(string) ⇒ Boolean
Returns true
if the named method is defined by mod (or its included modules and, if mod is a class, its ancestors). Public and protected methods are matched. String arguments are converted to symbols.
module A
def method1() end
end
class B
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.method_defined? "method1" #=> true
C.method_defined? "method2" #=> true
C.method_defined? "method3" #=> true
C.method_defined? "method4" #=> false
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 |
# File 'vm_method.c', line 1037
static VALUE
rb_mod_method_defined(VALUE mod, VALUE mid)
{
ID id = rb_check_id(&mid);
if (!id || !rb_method_boundp(mod, id, 1)) {
return Qfalse;
}
return Qtrue;
}
|
#method_removed ⇒ Object (private)
Not documented
923 924 925 926 927 |
# File 'object.c', line 923
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#method_undefined ⇒ Object (private)
Not documented
923 924 925 926 927 |
# File 'object.c', line 923
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval
returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.
class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there!
dummy:123:in `module_eval': undefined local variable
or method `code' for Thing:Class
1678 1679 1680 1681 1682 |
# File 'vm_eval.c', line 1678
VALUE
rb_mod_module_eval(int argc, VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod);
}
|
#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.
class Thing
end
Thing.class_exec{
def hello() "Hello there!" end
}
puts Thing.new.hello()
produces:
Hello there!
1706 1707 1708 1709 1710 |
# File 'vm_eval.c', line 1706
VALUE
rb_mod_module_exec(int argc, VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
|
#module_function(symbol, ...) ⇒ self (private) #module_function(string, ...) ⇒ self (private)
Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. String arguments are converted to symbols.
module Mod
def one
"This is one"
end
module_function :one
end
class Cls
include Mod
def call_one
one
end
end
Mod.one #=> "This is one"
c = Cls.new
c.call_one #=> "This is one"
module Mod
def one
"This is the new one"
end
end
Mod.one #=> "This is one"
c.call_one #=> "This is the new one"
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 |
# File 'vm_method.c', line 1542
static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
int i;
ID id;
const rb_method_entry_t *me;
if (!RB_TYPE_P(module, T_MODULE)) {
rb_raise(rb_eTypeError, "module_function must be called for modules");
}
if (argc == 0) {
SCOPE_SET(NOEX_MODFUNC);
return module;
}
set_method_visibility(module, argc, argv, NOEX_PRIVATE);
for (i = 0; i < argc; i++) {
VALUE m = module;
id = rb_to_id(argv[i]);
for (;;) {
me = search_method(m, id, 0);
if (me == 0) {
me = search_method(rb_cObject, id, 0);
}
if (UNDEFINED_METHOD_ENTRY_P(me)) {
rb_print_undef(module, id, 0);
}
if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
break; /* normal case: need not to follow 'super' link */
}
m = RCLASS_SUPER(m);
if (!m)
break;
}
rb_method_entry_set(rb_singleton_class(module), id, me, NOEX_PUBLIC);
}
return module;
}
|
#name ⇒ String
Returns the name of the module mod. Returns nil for anonymous modules.
205 206 207 208 209 210 211 212 213 |
# File 'variable.c', line 205
VALUE
rb_mod_name(VALUE mod)
{
int permanent;
VALUE path = classname(mod, &permanent);
if (!NIL_P(path)) return rb_str_dup(path);
return path;
}
|
#prepend ⇒ self
Invokes Module.prepend_features
on each parameter in reverse order.
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 |
# File 'eval.c', line 1072
static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_prepend_features, id_prepended;
CONST_ID(id_prepend_features, "prepend_features");
CONST_ID(id_prepended, "prepended");
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_prepend_features, 1, module);
rb_funcall(argv[argc], id_prepended, 1, module);
}
return module;
}
|
#prepend_features(mod) ⇒ Object (private)
When this module is prepended in another, Ruby calls prepend_features
in this module, passing it the receiving module in mod. Ruby’s default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#prepend
.
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 |
# File 'eval.c', line 1054
static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
if (!CLASS_OR_MODULE_P(prepend)) {
Check_Type(prepend, T_CLASS);
}
rb_prepend_module(prepend, module);
return module;
}
|
#prepended ⇒ Object (private)
Not documented
923 924 925 926 927 |
# File 'object.c', line 923
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#private ⇒ self (private) #private(symbol, ...) ⇒ self (private) #private(string, ...) ⇒ self (private)
With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. String arguments are converted to symbols.
module Mod
def a() end
def b() end
private
def c() end
private :a
end
Mod.private_instance_methods #=> [:a, :c]
1418 1419 1420 1421 1422 |
# File 'vm_method.c', line 1418
static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
return set_visibility(argc, argv, module, NOEX_PRIVATE);
}
|
#private_class_method(symbol, ...) ⇒ Object #private_class_method(string, ...) ⇒ Object
Makes existing class methods private. Often used to hide the default constructor new
.
String arguments are converted to symbols.
class SimpleSingleton # Not thread safe
private_class_method :new
def SimpleSingleton.create(*args, &block)
@me = new(*args, &block) if ! @me
@me
end
end
1460 1461 1462 1463 1464 1465 |
# File 'vm_method.c', line 1460
static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(rb_singleton_class(obj), argc, argv, NOEX_PRIVATE);
return obj;
}
|
#private_constant(symbol, ...) ⇒ Object
Makes a list of existing constants private.
2287 2288 2289 2290 2291 2292 |
# File 'variable.c', line 2287
VALUE
rb_mod_private_constant(int argc, VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_PRIVATE);
return obj;
}
|
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod. If the optional parameter is not false
, the methods of any ancestors are included.
module Mod
def method1() end
private :method1
def method2() end
end
Mod.instance_methods #=> [:method2]
Mod.private_instance_methods #=> [:method1]
1231 1232 1233 1234 1235 |
# File 'class.c', line 1231
VALUE
rb_class_private_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}
|
#private_method_defined?(symbol) ⇒ Boolean #private_method_defined?(string) ⇒ Boolean
Returns true
if the named private method is defined by _ mod_ (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.
module A
def method1() end
end
class B
private
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.private_method_defined? "method1" #=> false
C.private_method_defined? "method2" #=> true
C.method_defined? "method2" #=> false
1126 1127 1128 1129 1130 |
# File 'vm_method.c', line 1126
static VALUE
rb_mod_private_method_defined(VALUE mod, VALUE mid)
{
return check_definition(mod, mid, NOEX_PRIVATE);
}
|
#protected ⇒ self (private) #protected(symbol, ...) ⇒ self (private) #protected(string, ...) ⇒ self (private)
With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. String arguments are converted to symbols.
1391 1392 1393 1394 1395 |
# File 'vm_method.c', line 1391
static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
return set_visibility(argc, argv, module, NOEX_PROTECTED);
}
|
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod. If the optional parameter is not false
, the methods of any ancestors are included.
1208 1209 1210 1211 1212 |
# File 'class.c', line 1208
VALUE
rb_class_protected_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}
|
#protected_method_defined?(symbol) ⇒ Boolean #protected_method_defined?(string) ⇒ Boolean
Returns true
if the named protected method is defined by mod (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.protected_method_defined? "method1" #=> false
C.protected_method_defined? "method2" #=> true
C.method_defined? "method2" #=> true
1160 1161 1162 1163 1164 |
# File 'vm_method.c', line 1160
static VALUE
rb_mod_protected_method_defined(VALUE mod, VALUE mid)
{
return check_definition(mod, mid, NOEX_PROTECTED);
}
|
#public ⇒ self (private) #public(symbol, ...) ⇒ self (private) #public(string, ...) ⇒ self (private)
With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. String arguments are converted to symbols.
1373 1374 1375 1376 1377 |
# File 'vm_method.c', line 1373
static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
return set_visibility(argc, argv, module, NOEX_PUBLIC);
}
|
#public_class_method(symbol, ...) ⇒ Object #public_class_method(string, ...) ⇒ Object
Makes a list of existing class methods public.
String arguments are converted to symbols.
1434 1435 1436 1437 1438 1439 |
# File 'vm_method.c', line 1434
static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(rb_singleton_class(obj), argc, argv, NOEX_PUBLIC);
return obj;
}
|
#public_constant(symbol, ...) ⇒ Object
Makes a list of existing constants public.
2301 2302 2303 2304 2305 2306 |
# File 'variable.c', line 2301
VALUE
rb_mod_public_constant(int argc, VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_PUBLIC);
return obj;
}
|
#public_instance_method(symbol) ⇒ Object
Similar to instance_method, searches public method only.
1555 1556 1557 1558 1559 1560 1561 1562 1563 |
# File 'proc.c', line 1555
static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}
|
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod. If the optional parameter is not false
, the methods of any ancestors are included.
1246 1247 1248 1249 1250 |
# File 'class.c', line 1246
VALUE
rb_class_public_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}
|
#public_method_defined?(symbol) ⇒ Boolean #public_method_defined?(string) ⇒ Boolean
Returns true
if the named public method is defined by mod (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.public_method_defined? "method1" #=> true
C.public_method_defined? "method2" #=> false
C.method_defined? "method2" #=> true
1092 1093 1094 1095 1096 |
# File 'vm_method.c', line 1092
static VALUE
rb_mod_public_method_defined(VALUE mod, VALUE mid)
{
return check_definition(mod, mid, NOEX_PUBLIC);
}
|
#refine(klass) { ... } ⇒ Object (private)
Refine klass in the receiver.
Returns an overlaid module.
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 |
# File 'eval.c', line 1238
static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
VALUE refinement;
ID id_refinements, id_activated_refinements,
id_refined_class, id_defined_at;
VALUE refinements, activated_refinements;
rb_thread_t *th = GET_THREAD();
rb_block_t *block = rb_vm_control_frame_block_ptr(th->cfp);
if (!block) {
rb_raise(rb_eArgError, "no block given");
}
if (block->proc) {
rb_raise(rb_eArgError,
"can't pass a Proc as a block to Module#refine");
}
Check_Type(klass, T_CLASS);
CONST_ID(id_refinements, "__refinements__");
refinements = rb_attr_get(module, id_refinements);
if (NIL_P(refinements)) {
refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_refinements, refinements);
}
CONST_ID(id_activated_refinements, "__activated_refinements__");
activated_refinements = rb_attr_get(module, id_activated_refinements);
if (NIL_P(activated_refinements)) {
activated_refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_activated_refinements,
activated_refinements);
}
refinement = rb_hash_lookup(refinements, klass);
if (NIL_P(refinement)) {
refinement = rb_module_new();
RCLASS_SET_SUPER(refinement, klass);
FL_SET(refinement, RMODULE_IS_REFINEMENT);
CONST_ID(id_refined_class, "__refined_class__");
rb_ivar_set(refinement, id_refined_class, klass);
CONST_ID(id_defined_at, "__defined_at__");
rb_ivar_set(refinement, id_defined_at, module);
rb_hash_aset(refinements, klass, refinement);
add_activated_refinement(activated_refinements, klass, refinement);
}
rb_yield_refine_block(refinement, activated_refinements);
return refinement;
}
|
#remove_class_variable(sym) ⇒ Object
Removes the definition of the sym, returning that constant’s value.
class Dummy
@@var = 99
puts @@var
remove_class_variable(:@@var)
p(defined? @@var)
end
produces:
99
nil
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 |
# File 'variable.c', line 2568
VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
const ID id = rb_check_id(&name);
st_data_t val, n = id;
if (!id) {
if (rb_is_class_name(name)) {
rb_name_error_str(name, "class variable %"PRIsVALUE" not defined for %"PRIsVALUE"",
name, rb_class_name(mod));
}
else {
rb_name_error_str(name, "wrong class variable name %"PRIsVALUE"", QUOTE(name));
}
}
if (!rb_is_class_id(id)) {
rb_name_error(id, "wrong class variable name %"PRIsVALUE"", QUOTE_ID(id));
}
rb_check_frozen(mod);
if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) {
return (VALUE)val;
}
if (rb_cvar_defined(mod, id)) {
rb_name_error(id, "cannot remove %"PRIsVALUE" for %"PRIsVALUE"",
QUOTE_ID(id), rb_class_name(mod));
}
rb_name_error(id, "class variable %"PRIsVALUE" not defined for %"PRIsVALUE"",
QUOTE_ID(id), rb_class_name(mod));
UNREACHABLE;
}
|
#remove_const(sym) ⇒ Object (private)
Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 |
# File 'variable.c', line 1919
VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
const ID id = rb_check_id(&name);
if (!id) {
if (rb_is_const_name(name)) {
rb_name_error_str(name, "constant %"PRIsVALUE"::%"PRIsVALUE" not defined",
rb_class_name(mod), name);
}
else {
rb_name_error_str(name, "`%"PRIsVALUE"' is not allowed as a constant name",
QUOTE(name));
}
}
if (!rb_is_const_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a constant name",
QUOTE_ID(id));
}
return rb_const_remove(mod, id);
}
|
#remove_method(symbol) ⇒ self (private) #remove_method(string) ⇒ self (private)
Removes the method identified by symbol from the current class. For an example, see Module.undef_method
. String arguments are converted to symbols.
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
# File 'vm_method.c', line 782
static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID id = rb_check_id(&v);
if (!id) {
rb_name_error_str(v, "method `%s' not defined in %s",
RSTRING_PTR(v), rb_class2name(mod));
}
remove_method(mod, id);
}
return mod;
}
|
#singleton_class? ⇒ Boolean
Returns true
if mod is a singleton class or false
if it is an ordinary class or module.
class C
end
C.singleton_class? #=> false
C.singleton_class.singleton_class? #=> true
2573 2574 2575 2576 2577 2578 2579 |
# File 'object.c', line 2573
static VALUE
rb_mod_singleton_p(VALUE klass)
{
if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON))
return Qtrue;
return Qfalse;
}
|
#to_s ⇒ String Also known as: inspect
Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we’re attached to as well.
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 |
# File 'object.c', line 1480
static VALUE
rb_mod_to_s(VALUE klass)
{
ID id_defined_at;
VALUE refined_class, defined_at;
if (FL_TEST(klass, FL_SINGLETON)) {
VALUE s = rb_usascii_str_new2("#<Class:");
VALUE v = rb_ivar_get(klass, id__attached__);
if (CLASS_OR_MODULE_P(v)) {
rb_str_append(s, rb_inspect(v));
}
else {
rb_str_append(s, rb_any_to_s(v));
}
rb_str_cat2(s, ">");
return s;
}
refined_class = rb_refinement_module_get_refined_class(klass);
if (!NIL_P(refined_class)) {
VALUE s = rb_usascii_str_new2("#<refinement:");
rb_str_concat(s, rb_inspect(refined_class));
rb_str_cat2(s, "@");
CONST_ID(id_defined_at, "__defined_at__");
defined_at = rb_attr_get(klass, id_defined_at);
rb_str_concat(s, rb_inspect(defined_at));
rb_str_cat2(s, ">");
return s;
}
return rb_str_dup(rb_class_name(klass));
}
|
#undef_method(symbol) ⇒ self (private) #undef_method(string) ⇒ self (private)
Prevents the current class from responding to calls to the named method. Contrast this with remove_method
, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver. String arguments are converted to symbols.
class Parent
def hello
puts "In parent"
end
end
class Child < Parent
def hello
puts "In child"
end
end
c = Child.new
c.hello
class Child
remove_method :hello # remove from child, still in parent
end
c.hello
class Child
undef_method :hello # prevent any calls to 'hello'
end
c.hello
produces:
In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 |
# File 'vm_method.c', line 994
static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID id = rb_check_id(&v);
if (!id) {
rb_method_name_error(mod, v);
}
rb_undef(mod, id);
}
return mod;
}
|
#using ⇒ self (private)
Import class refinements from module into the current class or module definition.
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 |
# File 'eval.c', line 1293
static VALUE
mod_using(VALUE self, VALUE module)
{
NODE *cref = rb_vm_cref();
rb_control_frame_t *prev_cfp = previous_frame(GET_THREAD());
if (prev_frame_func()) {
rb_raise(rb_eRuntimeError,
"Module#using is not permitted in methods");
}
if (prev_cfp && prev_cfp->self != self) {
rb_raise(rb_eRuntimeError, "Module#using is not called on self");
}
rb_using_module(cref, module);
return self;
}
|