Module: Process
- Defined in:
- process.c
Defined Under Namespace
Modules: GID, Sys, UID Classes: Status
Constant Summary collapse
- WNOHANG =
see Process.wait
INT2FIX(0)
- WUNTRACED =
see Process.wait
INT2FIX(0)
- PRIO_PROCESS =
see Process.setpriority
INT2FIX(PRIO_PROCESS)
- PRIO_PGRP =
see Process.setpriority
INT2FIX(PRIO_PGRP)
- PRIO_USER =
see Process.setpriority
INT2FIX(PRIO_USER)
- RLIM_SAVED_MAX =
see Process.setrlimit
v
- RLIM_INFINITY =
see Process.setrlimit
inf
- RLIM_SAVED_CUR =
see Process.setrlimit
v
- RLIMIT_AS =
Maximum size of the process’s virtual memory (address space) in bytes.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_AS)
- RLIMIT_CORE =
Maximum size of the core file.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_CORE)
- RLIMIT_CPU =
CPU time limit in seconds.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_CPU)
- RLIMIT_DATA =
Maximum size of the process’s data segment.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_DATA)
- RLIMIT_FSIZE =
Maximum size of files that the process may create.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_FSIZE)
- RLIMIT_MEMLOCK =
Maximum number of bytes of memory that may be locked into RAM.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_MEMLOCK)
- RLIMIT_MSGQUEUE =
Specifies the limit on the number of bytes that can be allocated for POSIX message queues for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_MSGQUEUE)
- RLIMIT_NICE =
Specifies a ceiling to which the process’s nice value can be raised.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_NICE)
- RLIMIT_NOFILE =
Specifies a value one greater than the maximum file descriptor number that can be opened by this process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_NOFILE)
- RLIMIT_NPROC =
The maximum number of processes that can be created for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_NPROC)
- RLIMIT_RSS =
Specifies the limit (in pages) of the process’s resident set.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_RSS)
- RLIMIT_RTPRIO =
Specifies a ceiling on the real-time priority that may be set for this process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_RTPRIO)
- RLIMIT_RTTIME =
Specifies limit on CPU time this process scheduled under a real-time scheduling policy can consume.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_RTTIME)
- RLIMIT_SBSIZE =
Maximum size of the socket buffer.
INT2FIX(RLIMIT_SBSIZE)
- RLIMIT_SIGPENDING =
Specifies a limit on the number of signals that may be queued for the real user ID of the calling process.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_SIGPENDING)
- RLIMIT_STACK =
Maximum size of the stack, in bytes.
see the system getrlimit(2) manual for details.
INT2FIX(RLIMIT_STACK)
- CLOCK_REALTIME =
RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
- CLOCK_MONOTONIC =
RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
- CLOCK_PROCESS_CPUTIME_ID =
RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
- CLOCK_THREAD_CPUTIME_ID =
CLOCKID2NUM(CLOCK_THREAD_CPUTIME_ID)
- CLOCK_VIRTUAL =
CLOCKID2NUM(CLOCK_VIRTUAL)
- CLOCK_PROF =
CLOCKID2NUM(CLOCK_PROF)
- CLOCK_REALTIME_FAST =
CLOCKID2NUM(CLOCK_REALTIME_FAST)
- CLOCK_REALTIME_PRECISE =
CLOCKID2NUM(CLOCK_REALTIME_PRECISE)
- CLOCK_REALTIME_COARSE =
CLOCKID2NUM(CLOCK_REALTIME_COARSE)
- CLOCK_REALTIME_ALARM =
CLOCKID2NUM(CLOCK_REALTIME_ALARM)
- CLOCK_MONOTONIC_FAST =
CLOCKID2NUM(CLOCK_MONOTONIC_FAST)
- CLOCK_MONOTONIC_PRECISE =
CLOCKID2NUM(CLOCK_MONOTONIC_PRECISE)
- CLOCK_MONOTONIC_RAW =
CLOCKID2NUM(CLOCK_MONOTONIC_RAW)
- CLOCK_MONOTONIC_COARSE =
CLOCKID2NUM(CLOCK_MONOTONIC_COARSE)
- CLOCK_BOOTTIME =
CLOCKID2NUM(CLOCK_BOOTTIME)
- CLOCK_BOOTTIME_ALARM =
CLOCKID2NUM(CLOCK_BOOTTIME_ALARM)
- CLOCK_UPTIME =
CLOCKID2NUM(CLOCK_UPTIME)
- CLOCK_UPTIME_FAST =
CLOCKID2NUM(CLOCK_UPTIME_FAST)
- CLOCK_UPTIME_PRECISE =
CLOCKID2NUM(CLOCK_UPTIME_PRECISE)
- CLOCK_SECOND =
CLOCKID2NUM(CLOCK_SECOND)
Class Method Summary collapse
-
.abort ⇒ Object
Terminate execution immediately, effectively by calling
Kernel.exit(false)
. -
.argv0 ⇒ Object
Returns the name of the script being executed.
-
.clock_getres(clock_id[, unit]) ⇒ Numeric
Returns the time resolution returned by POSIX clock_getres() function.
-
.clock_gettime(clock_id[, unit]) ⇒ Numeric
Returns a time returned by POSIX clock_gettime() function.
-
.daemon ⇒ Object
Detach the process from controlling terminal and run in the background as system daemon.
-
.detach(pid) ⇒ Object
Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of
wait()
. If the parent never collects this status, the child stays around as a zombie process.Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Usedetach
only when you do not intent to explicitly wait for the child to terminate. -
.egid ⇒ Object
Returns the effective group ID for this process.
- .egid= ⇒ Object
-
.euid ⇒ Object
Returns the effective user ID for this process.
-
.euid=(user) ⇒ Object
Sets the effective user ID for this process.
-
.exec([env,][,options]) ⇒ Object
Replaces the current process by running the given external command, which can take one of the following forms:.
-
.exit ⇒ Object
Initiates the termination of the Ruby script by raising the
SystemExit
exception. -
.exit!(status = false) ⇒ Object
Exits the process immediately.
-
.fork ⇒ Object
Creates a subprocess.
-
.getpgid(pid) ⇒ Integer
Returns the process group ID for the given process id.
-
.getpgrp ⇒ Integer
Returns the process group ID for this process.
-
.getpriority(kind, integer) ⇒ Fixnum
Gets the scheduling priority for specified process, process group, or user.
-
.getrlimit(resource) ⇒ Array
Gets the resource limit of the process.
-
.getsid ⇒ Object
Returns the session ID for for the given process id.
-
.gid ⇒ Object
Returns the (real) group ID for this process.
-
.gid=(fixnum) ⇒ Fixnum
Sets the group ID for this process.
-
.groups ⇒ Array
Get an
Array
of the gids of groups in the supplemental group access list for this process. -
.groups=(array) ⇒ Array
Set the supplemental group access list to the given
Array
of group IDs. -
.initgroups(username, gid) ⇒ Array
Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member.
-
.kill(signal, pid, ...) ⇒ Fixnum
Sends the given signal to the specified process id(s) if pid is positive.
-
.maxgroups ⇒ Fixnum
Returns the maximum number of gids allowed in the supplemental group access list.
-
.maxgroups=(fixnum) ⇒ Fixnum
Sets the maximum number of gids allowed in the supplemental group access list.
-
.pid ⇒ Fixnum
Returns the process id of this process.
-
.ppid ⇒ Fixnum
Returns the process id of the parent of this process.
-
.setpgid(pid, integer) ⇒ 0
Sets the process group ID of pid (0 indicates this process) to integer.
-
.setpgrp ⇒ 0
Equivalent to
setpgid(0,0)
. -
.setpriority(kind, integer, priority) ⇒ 0
See
Process#getpriority
. -
.setproctitle(string) ⇒ String
Sets the process title that appears on the ps(1) command.
-
.setrlimit ⇒ Object
Sets the resource limit of the process.
-
.setsid ⇒ Fixnum
Establishes this process as a new session and process group leader, with no controlling tty.
-
.spawn ⇒ Object
spawn executes specified command and return its pid.
-
.times ⇒ aProcessTms
Returns a
Tms
structure (seeProcess::Tms
) that contains user and system CPU times for this process, and also for children processes. -
.uid ⇒ Object
Returns the (real) user ID of this process.
-
.uid=(user) ⇒ Numeric
Sets the (user) user ID for this process.
-
.wait ⇒ Object
Waits for a child process to exit, returns its process id, and sets
$?
to aProcess::Status
object containing information on that process. -
.wait2 ⇒ Object
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a
Process::Status
object) of that child. -
.waitall ⇒ Array
Waits for all children, returning an array of pid/status pairs (where status is a
Process::Status
object). -
.waitpid ⇒ Object
Waits for a child process to exit, returns its process id, and sets
$?
to aProcess::Status
object containing information on that process. -
.waitpid2 ⇒ Object
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a
Process::Status
object) of that child.
Instance Method Summary collapse
-
#clock_getres(clock_id[, unit]) ⇒ Numeric
private
Returns the time resolution returned by POSIX clock_getres() function.
-
#clock_gettime(clock_id[, unit]) ⇒ Numeric
private
Returns a time returned by POSIX clock_gettime() function.
-
#daemon ⇒ 0
private
Detach the process from controlling terminal and run in the background as system daemon.
-
#detach(pid) ⇒ Object
private
Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of
wait()
. If the parent never collects this status, the child stays around as a zombie process.Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Usedetach
only when you do not intent to explicitly wait for the child to terminate. -
#egid ⇒ Fixnum
private
Returns the effective group ID for this process.
- #egid= ⇒ Object private
-
#euid ⇒ Fixnum
private
Returns the effective user ID for this process.
-
#euid=(user) ⇒ Object
private
Sets the effective user ID for this process.
-
#getpgid(pid) ⇒ Integer
private
Returns the process group ID for the given process id.
-
#getpgrp ⇒ Integer
private
Returns the process group ID for this process.
-
#getpriority(kind, integer) ⇒ Fixnum
private
Gets the scheduling priority for specified process, process group, or user.
-
#getrlimit(resource) ⇒ Array
private
Gets the resource limit of the process.
-
#getsid ⇒ Integer
private
Returns the session ID for for the given process id.
-
#gid ⇒ Fixnum
private
Returns the (real) group ID for this process.
-
#gid=(fixnum) ⇒ Fixnum
private
Sets the group ID for this process.
-
#groups ⇒ Array
private
Get an
Array
of the gids of groups in the supplemental group access list for this process. -
#groups=(array) ⇒ Array
private
Set the supplemental group access list to the given
Array
of group IDs. -
#initgroups(username, gid) ⇒ Array
private
Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member.
-
#kill(signal, pid, ...) ⇒ Fixnum
private
Sends the given signal to the specified process id(s) if pid is positive.
-
#maxgroups ⇒ Fixnum
private
Returns the maximum number of gids allowed in the supplemental group access list.
-
#maxgroups=(fixnum) ⇒ Fixnum
private
Sets the maximum number of gids allowed in the supplemental group access list.
-
#pid ⇒ Fixnum
private
Returns the process id of this process.
-
#ppid ⇒ Fixnum
private
Returns the process id of the parent of this process.
-
#setpgid(pid, integer) ⇒ 0
private
Sets the process group ID of pid (0 indicates this process) to integer.
-
#setpgrp ⇒ 0
private
Equivalent to
setpgid(0,0)
. -
#setpriority(kind, integer, priority) ⇒ 0
private
See
Process#getpriority
. -
#setproctitle(string) ⇒ String
private
Sets the process title that appears on the ps(1) command.
-
#setrlimit ⇒ nil
private
Sets the resource limit of the process.
-
#setsid ⇒ Fixnum
private
Establishes this process as a new session and process group leader, with no controlling tty.
-
#times ⇒ aProcessTms
private
Returns a
Tms
structure (seeProcess::Tms
) that contains user and system CPU times for this process, and also for children processes. -
#uid ⇒ Fixnum
private
Returns the (real) user ID of this process.
-
#uid=(user) ⇒ Numeric
private
Sets the (user) user ID for this process.
-
#wait ⇒ Fixnum
private
Waits for a child process to exit, returns its process id, and sets
$?
to aProcess::Status
object containing information on that process. -
#wait2 ⇒ Array
private
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a
Process::Status
object) of that child. -
#waitall ⇒ Array
private
Waits for all children, returning an array of pid/status pairs (where status is a
Process::Status
object). -
#waitpid ⇒ Fixnum
private
Waits for a child process to exit, returns its process id, and sets
$?
to aProcess::Status
object containing information on that process. -
#waitpid2 ⇒ Array
private
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a
Process::Status
object) of that child.
Class Method Details
.abort ⇒ Object .Kernel::abort([msg]) ⇒ Object .Process::abort([msg]) ⇒ Object
Terminate execution immediately, effectively by calling Kernel.exit(false)
. If msg is given, it is written to STDERR prior to terminating.
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 |
# File 'process.c', line 3731
VALUE
rb_f_abort(int argc, VALUE *argv)
{
if (argc == 0) {
if (!NIL_P(GET_THREAD()->errinfo)) {
ruby_error_print();
}
rb_exit(EXIT_FAILURE);
}
else {
VALUE args[2];
rb_scan_args(argc, argv, "1", &args[1]);
StringValue(argv[0]);
rb_io_puts(argc, argv, rb_stderr);
args[0] = INT2NUM(EXIT_FAILURE);
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
UNREACHABLE;
}
|
.argv0 ⇒ Object
Returns the name of the script being executed. The value is not affected by assigning a new value to $0.
This method first appeared in Ruby 2.1 to serve as a global variable free means to get the script name.
1794 1795 1796 1797 1798 |
# File 'ruby.c', line 1794
static VALUE
proc_argv0(VALUE process)
{
return rb_orig_progname;
}
|
.clock_getres(clock_id[, unit]) ⇒ Numeric
Returns the time resolution returned by POSIX clock_getres() function.
clock_id
specifies a kind of clock. See the document of Process.clock_gettime
for details.
clock_id
can be a symbol as Process.clock_gettime
. However the result may not be accurate. For example, Process.clock_getres(:GETTIMEOFDAY_BASED_CLOCK_REALTIME) returns 1.0e-06 which means 1 microsecond, but actual resolution can be more coarse.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies a type of the return value. Process.clock_getres
accepts unit
as Process.clock_gettime
. The default value, :float_second
, is also same as Process.clock_gettime
.
Process.clock_getres
also accepts :hertz
as unit
. :hertz
means a the reciprocal of :float_second
.
:hertz
can be used to obtain the exact value of the clock ticks per second for times() function and CLOCKS_PER_SEC for clock() function.
Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns the clock ticks per second.
Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns CLOCKS_PER_SEC.
p Process.clock_getres(Process::CLOCK_MONOTONIC)
#=> 1.0e-09
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 |
# File 'process.c', line 7287
VALUE
rb_clock_getres(int argc, VALUE *argv)
{
VALUE clk_id, unit;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
rb_scan_args(argc, argv, "11", &clk_id, &unit);
if (SYMBOL_P(clk_id)) {
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
tt.giga_count = 1;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#endif
#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
tt.count = 1;
tt.giga_count = 0;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETRES)
struct timespec ts;
clockid_t c = NUM2CLOCKID(clk_id);
int ret = clock_getres(c, &ts);
if (ret == -1)
rb_sys_fail("clock_getres");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_getres behavior when clock_id is invalid. */
errno = EINVAL;
rb_sys_fail(0);
success:
if (unit == ID2SYM(rb_intern("hertz"))) {
return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
}
else {
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
}
|
.clock_gettime(clock_id[, unit]) ⇒ Numeric
Returns a time returned by POSIX clock_gettime() function.
p Process.clock_gettime(Process::CLOCK_MONOTONIC)
#=> 896053.968060096
clock_id
specifies a kind of clock. It is specifed as a constant which begins with Process::CLOCK_
such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.
The supported constants depends on OS and version. Ruby provides following types of clock_id
if available.
- CLOCK_REALTIME
-
SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1
- CLOCK_MONOTONIC
-
SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4
- CLOCK_PROCESS_CPUTIME_ID
-
SUSv3 to 4, Linux 2.5.63
- CLOCK_THREAD_CPUTIME_ID
-
SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1
- CLOCK_VIRTUAL
-
FreeBSD 3.0, OpenBSD 2.1
- CLOCK_PROF
-
FreeBSD 3.0, OpenBSD 2.1
- CLOCK_REALTIME_FAST
-
FreeBSD 8.1
- CLOCK_REALTIME_PRECISE
-
FreeBSD 8.1
- CLOCK_REALTIME_COARSE
-
Linux 2.6.32
- CLOCK_REALTIME_ALARM
-
Linux 3.0
- CLOCK_MONOTONIC_FAST
-
FreeBSD 8.1
- CLOCK_MONOTONIC_PRECISE
-
FreeBSD 8.1
- CLOCK_MONOTONIC_COARSE
-
Linux 2.6.32
- CLOCK_MONOTONIC_RAW
-
Linux 2.6.28
- CLOCK_BOOTTIME
-
Linux 2.6.39
- CLOCK_BOOTTIME_ALARM
-
Linux 3.0
- CLOCK_UPTIME
-
FreeBSD 7.0
- CLOCK_UPTIME_FAST
-
FreeBSD 8.1
- CLOCK_UPTIME_PRECISE
-
FreeBSD 8.1
- CLOCK_SECOND
-
FreeBSD 8.1
Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime is defined in the POSIX part. SUS defines CLOCK_REALTIME mandatory but CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.
Also, several symbols are accepted as clock_id
. There are emulations for clock_gettime().
For example, Process::CLOCK_REALTIME is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME
when clock_gettime() is not available.
Emulations for CLOCK_REALTIME
:
- :GETTIMEOFDAY_BASED_CLOCK_REALTIME
-
Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.
- :TIME_BASED_CLOCK_REALTIME
-
Use time() defined by ISO C. The resolution is 1 second.
Emulations for CLOCK_MONOTONIC
:
- :MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
-
Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.
- :TIMES_BASED_CLOCK_MONOTONIC
-
Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.
Emulations for CLOCK_PROCESS_CPUTIME_ID
:
- :GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.
- :TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.
- :CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies a type of the return value.
- :float_second
-
number of seconds as a float (default)
- :float_millisecond
-
number of milliseconds as a float
- :float_microsecond
-
number of microseconds as a float
- :second
-
number of seconds as an integer
- :millisecond
-
number of milliseconds as an integer
- :microsecond
-
number of microseconds as an integer
- :nanosecond
-
number of nanoseconds as an integer
The underlying function, clock_gettime(), returns a number of nanoseconds. Float object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME. If the exact nanoseconds value is required, use :nanoseconds
as the unit
.
The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.
The origin in CLOCK_REALTIME is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now is recommended over CLOCK_REALTIME.
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 |
# File 'process.c', line 7091
VALUE
rb_clock_gettime(int argc, VALUE *argv)
{
VALUE clk_id, unit;
int ret;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
rb_scan_args(argc, argv, "11", &clk_id, &unit);
if (SYMBOL_P(clk_id)) {
/*
* Non-clock_gettime clocks are provided by symbol clk_id.
*
* gettimeofday is always available on platforms supported by Ruby.
* GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
* CLOCK_REALTIME if clock_gettime is not available.
*/
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(rb_intern("GETTIMEOFDAY_BASED_CLOCK_REALTIME"))
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
struct timeval tv;
ret = gettimeofday(&tv, 0);
if (ret != 0)
rb_sys_fail("gettimeofday");
tt.giga_count = tv.tv_sec;
tt.count = (int32_t)tv.tv_usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(rb_intern("TIME_BASED_CLOCK_REALTIME"))
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
time_t t;
t = time(NULL);
if (t == (time_t)-1)
rb_sys_fail("time");
tt.giga_count = t;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC \
ID2SYM(rb_intern("TIMES_BASED_CLOCK_MONOTONIC"))
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
struct tms buf;
clock_t c;
unsigned_clock_t uc;
c = times(&buf);
if (c == (clock_t)-1)
rb_sys_fail("times");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = (uc / 1000000000);
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(rb_intern("GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID"))
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct rusage usage;
int32_t usec;
ret = getrusage(RUSAGE_SELF, &usage);
if (ret != 0)
rb_sys_fail("getrusage");
tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
if (1000000 <= usec) {
tt.giga_count++;
usec -= 1000000;
}
tt.count = usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(rb_intern("TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID"))
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct tms buf;
unsigned_clock_t utime, stime;
if (times(&buf) == (clock_t)-1)
rb_sys_fail("times");
utime = (unsigned_clock_t)buf.tms_utime;
stime = (unsigned_clock_t)buf.tms_stime;
tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
if (1000000000 <= tt.count) {
tt.count -= 1000000000;
tt.giga_count++;
}
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(rb_intern("CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID"))
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
clock_t c;
unsigned_clock_t uc;
errno = 0;
c = clock();
if (c == (clock_t)-1)
rb_sys_fail("clock");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = uc / 1000000000;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#ifdef __APPLE__
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(rb_intern("MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC"))
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
uint64_t t = mach_absolute_time();
tt.count = (int32_t)(t % 1000000000);
tt.giga_count = t / 1000000000;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETTIME)
struct timespec ts;
clockid_t c;
c = NUM2CLOCKID(clk_id);
ret = clock_gettime(c, &ts);
if (ret == -1)
rb_sys_fail("clock_gettime");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_gettime behavior when clock_id is invalid. */
errno = EINVAL;
rb_sys_fail(0);
success:
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
|
.daemon ⇒ 0 .daemon(nochdir = nil, noclose = nil) ⇒ 0
Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 |
# File 'process.c', line 5846
static VALUE
proc_daemon(int argc, VALUE *argv)
{
VALUE nochdir, noclose;
int n;
rb_secure(2);
rb_scan_args(argc, argv, "02", &nochdir, &noclose);
prefork();
n = rb_daemon(RTEST(nochdir), RTEST(noclose));
if (n < 0) rb_sys_fail("daemon");
return INT2FIX(n);
}
|
.detach(pid) ⇒ Object
Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of wait()
. If the parent never collects this status, the child stays around as a zombie process. Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Use detach
only when you do not intent to explicitly wait for the child to terminate.
The waiting thread returns the exit status of the detached process when it terminates, so you can use Thread#join
to know the result. If specified pid is not a valid child process ID, the thread returns nil
immediately.
The waiting thread has pid
method which returns the pid.
In this first example, we don’t reap the first child process, so it appears as a zombie in the process status display.
p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")
produces:
27389 Z
In the next example, Process::detach
is used to reap the child automatically.
p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.detach(p1)
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")
(produces no output)
1083 1084 1085 1086 1087 1088 |
# File 'process.c', line 1083
static VALUE
proc_detach(VALUE obj, VALUE pid)
{
rb_secure(2);
return rb_detach_process(NUM2PIDT(pid));
}
|
.egid ⇒ Fixnum .Process::GID.eid ⇒ Fixnum .Process::Sys.geteid ⇒ Fixnum
Returns the effective group ID for this process. Not available on all platforms.
Process.egid #=> 500
6240 6241 6242 6243 6244 6245 6246 |
# File 'process.c', line 6240
static VALUE
proc_getegid(VALUE obj)
{
rb_gid_t egid = getegid();
return GIDT2NUM(egid);
}
|
.egid= ⇒ Object
.euid ⇒ Fixnum .Process::UID.eid ⇒ Fixnum .Process::Sys.geteuid ⇒ Fixnum
Returns the effective user ID for this process.
Process.euid #=> 501
6116 6117 6118 6119 6120 6121 |
# File 'process.c', line 6116
static VALUE
proc_geteuid(VALUE obj)
{
rb_uid_t euid = geteuid();
return UIDT2NUM(euid);
}
|
.euid=(user) ⇒ Object
Sets the effective user ID for this process. Not available on all platforms.
6155 6156 6157 6158 6159 6160 6161 |
# File 'process.c', line 6155
static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
check_uid_switch();
proc_seteuid(OBJ2UID(euid));
return euid;
}
|
.exec([env,][,options]) ⇒ Object
Replaces the current process by running the given external command, which can take one of the following forms:
exec(commandline)
-
command line string which is passed to the standard shell
exec(cmdname, arg1, ...)
-
command name and one or more arguments (no shell)
exec([cmdname, argv0], arg1, ...)
-
command name, argv and zero or more arguments (no shell)
In the first form, the string is taken as a command line that is subject to shell expansion before being executed.
The standard shell always means
"/bin/sh"
on Unix-like systems, same asENV["RUBYSHELL"]
(orENV["COMSPEC"]
on Windows NT series), and similar.If the string from the first form (
exec("command")
) follows these simple rules:-
no meta characters
-
no shell reserved word and no special built-in
-
Ruby invokes the command directly without shell
You can force shell invocation by adding “;” to the string (because “;” is a meta character).
Note that this behavior is observable by pid obtained (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked command, not shell.
In the second form (
exec("command1", "arg1", ...)
), the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.In the third form (
exec(["command", "argv0"], "arg1", ...)
), starting a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as theargv[0]
value, which may show up in process listings.In order to execute the command, one of the
exec(2)
system calls are used, so the running command may inherit some of the environment of the original program (including open file descriptors).This behavior is modified by the given
env
andoptions
parameters. See ::spawn for details.If the command fails to execute (typically
Errno::ENOENT
when it was not found) a SystemCallError exception is raised.This method modifies process attributes according to given
options
beforeexec(2)
system call. See ::spawn for more details about the givenoptions
.The modified attributes may be retained when
exec(2)
system call fails.For example, hard resource limits are not restorable.
Consider to create a child process using ::spawn or Kernel#system if this is not acceptable.
exec "echo *" # echoes list of files in current directory # never get here exec "echo", "*" # echoes an asterisk # never get here
-
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 |
# File 'process.c', line 2481
VALUE
rb_f_exec(int argc, VALUE *argv)
{
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
#define CHILD_ERRMSG_BUFLEN 80
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
execarg_obj = rb_execarg_new(argc, argv, TRUE);
eargp = rb_execarg_get(execarg_obj);
rb_execarg_fixup(execarg_obj);
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
#if defined(__APPLE__) || defined(__HAIKU__)
rb_exec_without_timer_thread(eargp, errmsg, sizeof(errmsg));
#else
rb_exec_async_signal_safe(eargp, errmsg, sizeof(errmsg));
#endif
RB_GC_GUARD(execarg_obj);
if (errmsg[0])
rb_sys_fail(errmsg);
rb_sys_fail_str(fail_str);
return Qnil; /* dummy */
}
|
.exit(status = true) ⇒ Object .Kernel::exit(status = true) ⇒ Object .Process::exit(status = true) ⇒ Object
Initiates the termination of the Ruby script by raising the SystemExit
exception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. true
and FALSE
of status means success and failure respectively. The interpretation of other integer values are system dependent.
begin
exit
puts "never get here"
rescue SystemExit
puts "rescued a SystemExit exception"
end
puts "after begin block"
produces:
rescued a SystemExit exception
after begin block
Just prior to termination, Ruby executes any at_exit
functions (see Kernel::at_exit) and runs any object finalizers (see ObjectSpace::define_finalizer).
at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string", proc { puts "in finalizer" })
exit
produces:
at_exit function
in finalizer
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 |
# File 'process.c', line 3702
VALUE
rb_f_exit(int argc, VALUE *argv)
{
VALUE status;
int istatus;
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
istatus = exit_status_code(status);
}
else {
istatus = EXIT_SUCCESS;
}
rb_exit(istatus);
UNREACHABLE;
}
|
.exit!(status = false) ⇒ Object
Exits the process immediately. No exit handlers are run. status is returned to the underlying system as the exit status.
Process.exit!(true)
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 |
# File 'process.c', line 3629
static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
VALUE status;
int istatus;
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
istatus = exit_status_code(status);
}
else {
istatus = EXIT_FAILURE;
}
_exit(istatus);
UNREACHABLE;
}
|
.fork { ... } ⇒ Fixnum? .fork { ... } ⇒ Fixnum?
Creates a subprocess. If a block is specified, that block is run in the subprocess, and the subprocess terminates with a status of zero. Otherwise, the fork
call returns twice, once in the parent, returning the process ID of the child, and once in the child, returning nil. The child process can exit using Kernel.exit!
to avoid running any at_exit
functions. The parent process should use Process.wait
to collect the termination statuses of its children or use Process.detach
to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
The thread calling fork is the only thread in the created child process. fork doesn’t copy other threads.
If fork is not usable, Process.respond_to?(:fork) returns false.
Note that fork(2) is not avaiable on some platforms like Windows and NetBSD 4. Therefore you should use spawn() instead of fork().
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 |
# File 'process.c', line 3565
static VALUE
rb_f_fork(VALUE obj)
{
rb_pid_t pid;
rb_secure(2);
switch (pid = rb_fork_ruby(NULL)) {
case 0:
rb_thread_atfork();
if (rb_block_given_p()) {
int status;
rb_protect(rb_yield, Qundef, &status);
ruby_stop(status);
}
return Qnil;
case -1:
rb_sys_fail("fork(2)");
return Qnil;
default:
return PIDT2NUM(pid);
}
}
|
.getpgid(pid) ⇒ Integer
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 |
# File 'process.c', line 4312
static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
rb_pid_t i;
rb_secure(2);
i = getpgid(NUM2PIDT(pid));
if (i < 0) rb_sys_fail(0);
return PIDT2NUM(i);
}
|
.getpgrp ⇒ Integer
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 |
# File 'process.c', line 4251
static VALUE
proc_getpgrp(void)
{
rb_pid_t pgrp;
rb_secure(2);
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
pgrp = getpgrp();
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
pgrp = getpgid(0);
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#endif
}
|
.getpriority(kind, integer) ⇒ Fixnum
Gets the scheduling priority for specified process, process group, or user. kind indicates the kind of entity to find: one of Process::PRIO_PGRP
, Process::PRIO_USER
, or Process::PRIO_PROCESS
. integer is an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.
Process.getpriority(Process::PRIO_USER, 0) #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 |
# File 'process.c', line 4464
static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
int prio, iwhich, iwho;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
errno = 0;
prio = getpriority(iwhich, iwho);
if (errno) rb_sys_fail(0);
return INT2FIX(prio);
}
|
.getrlimit(resource) ⇒ Array
Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
resource indicates the kind of resource to limit. It is specified as a symbol such as :CORE
, a string such as "CORE"
or a constant such as Process::RLIMIT_CORE
. See Process.setrlimit for details.
cur_limit and max_limit may be Process::RLIM_INFINITY
, Process::RLIM_SAVED_MAX
or Process::RLIM_SAVED_CUR
. See Process.setrlimit and the system getrlimit(2) manual for details.
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 |
# File 'process.c', line 4734
static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
struct rlimit rlim;
rb_secure(2);
if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("getrlimit");
}
return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}
|
.getsid ⇒ Integer .getsid(pid) ⇒ Integer
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 |
# File 'process.c', line 4366
static VALUE
proc_getsid(int argc, VALUE *argv)
{
rb_pid_t sid;
VALUE pid;
rb_secure(2);
rb_scan_args(argc, argv, "01", &pid);
if (NIL_P(pid))
pid = INT2FIX(0);
sid = getsid(NUM2PIDT(pid));
if (sid < 0) rb_sys_fail(0);
return PIDT2NUM(sid);
}
|
.gid ⇒ Fixnum .Process::GID.rid ⇒ Fixnum .Process::Sys.getgid ⇒ Fixnum
Returns the (real) group ID for this process.
Process.gid #=> 500
5561 5562 5563 5564 5565 5566 |
# File 'process.c', line 5561
static VALUE
proc_getgid(VALUE obj)
{
rb_gid_t gid = getgid();
return GIDT2NUM(gid);
}
|
.gid=(fixnum) ⇒ Fixnum
Sets the group ID for this process.
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 |
# File 'process.c', line 5577
static VALUE
proc_setgid(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
{
if (getegid() == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return GIDT2NUM(gid);
}
|
.groups ⇒ Array
Get an Array
of the gids of groups in the supplemental group access list for this process.
Process.groups #=> [27, 6, 10, 11]
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 |
# File 'process.c', line 5668
static VALUE
proc_getgroups(VALUE obj)
{
VALUE ary, tmp;
int i, ngroups;
rb_gid_t *groups;
ngroups = getgroups(0, NULL);
if (ngroups == -1)
rb_sys_fail(0);
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
ngroups = getgroups(ngroups, groups);
if (ngroups == -1)
rb_sys_fail(0);
ary = rb_ary_new();
for (i = 0; i < ngroups; i++)
rb_ary_push(ary, GIDT2NUM(groups[i]));
ALLOCV_END(tmp);
return ary;
}
|
.groups=(array) ⇒ Array
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 |
# File 'process.c', line 5712
static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
int ngroups, i;
rb_gid_t *groups;
VALUE tmp;
PREPARE_GETGRNAM;
Check_Type(ary, T_ARRAY);
ngroups = RARRAY_LENINT(ary);
if (ngroups > maxgroups())
rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
for (i = 0; i < ngroups; i++) {
VALUE g = RARRAY_AREF(ary, i);
groups[i] = OBJ2GID1(g);
}
FINISH_GETGRNAM;
if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
rb_sys_fail(0);
ALLOCV_END(tmp);
return proc_getgroups(obj);
}
|
.initgroups(username, gid) ⇒ Array
Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gid is also added to the list. Returns the resulting Array
of the gids of all the groups in the supplementary group access list. Not available on all platforms.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11]
Process.groups #=> [30, 6, 10, 11]
5765 5766 5767 5768 5769 5770 5771 5772 |
# File 'process.c', line 5765
static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
if (initgroups(StringValuePtr(uname), OBJ2GID(base_grp)) != 0) {
rb_sys_fail(0);
}
return proc_getgroups(obj);
}
|
.kill(signal, pid, ...) ⇒ Fixnum
Sends the given signal to the specified process id(s) if pid is positive. If pid is zero signal is sent to all processes whose group ID is equal to the group ID of the process. signal may be an integer signal number or a POSIX signal name (either with or without a SIG
prefix). If signal is negative (or starts with a minus sign), kills process groups instead of processes. Not all signals are available on all platforms.
pid = fork do
Signal.trap("HUP") { puts "Ouch!"; exit }
# ... do some work ...
end
# ...
Process.kill("HUP", pid)
Process.wait
produces:
Ouch!
If signal is an integer but wrong for signal, Errno::EINVAL
or RangeError
will be raised. Otherwise unless signal is a String
or a Symbol
, and a known signal name, ArgumentError
will be raised.
Also, Errno::ESRCH
or RangeError
for invalid pid, Errno::EPERM
when failed because of no privilege, will be raised. In these cases, signals may have been sent to preceding processes.
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
# File 'signal.c', line 384
VALUE
rb_f_kill(int argc, VALUE *argv)
{
#ifndef HAVE_KILLPG
#define killpg(pg, sig) kill(-(pg), (sig))
#endif
int negative = 0;
int sig;
int i;
volatile VALUE str;
const char *s;
rb_secure(2);
rb_check_arity(argc, 2, UNLIMITED_ARGUMENTS);
switch (TYPE(argv[0])) {
case T_FIXNUM:
sig = FIX2INT(argv[0]);
break;
case T_SYMBOL:
s = rb_id2name(SYM2ID(argv[0]));
if (!s) rb_raise(rb_eArgError, "bad signal");
goto str_signal;
case T_STRING:
s = RSTRING_PTR(argv[0]);
str_signal:
if (s[0] == '-') {
negative++;
s++;
}
if (strncmp("SIG", s, 3) == 0)
s += 3;
if ((sig = signm2signo(s)) == 0)
rb_raise(rb_eArgError, "unsupported name `SIG%s'", s);
if (negative)
sig = -sig;
break;
default:
str = rb_check_string_type(argv[0]);
if (!NIL_P(str)) {
s = RSTRING_PTR(str);
goto str_signal;
}
rb_raise(rb_eArgError, "bad signal type %s",
rb_obj_classname(argv[0]));
break;
}
if (argc <= 1) return INT2FIX(0);
if (sig < 0) {
sig = -sig;
for (i=1; i<argc; i++) {
if (killpg(NUM2PIDT(argv[i]), sig) < 0)
rb_sys_fail(0);
}
}
else {
const rb_pid_t self = (GET_THREAD() == GET_VM()->main_thread) ? getpid() : -1;
int wakeup = 0;
for (i=1; i<argc; i++) {
rb_pid_t pid = NUM2PIDT(argv[i]);
if ((sig != 0) && (self != -1) && (pid == self)) {
int t;
/*
* When target pid is self, many caller assume signal will be
* delivered immediately and synchronously.
*/
switch (sig) {
case SIGSEGV:
#ifdef SIGBUS
case SIGBUS:
#endif
#ifdef SIGKILL
case SIGKILL:
#endif
#ifdef SIGSTOP
case SIGSTOP:
#endif
ruby_kill(pid, sig);
break;
default:
t = signal_ignored(sig);
if (t) {
if (t < 0 && kill(pid, sig))
rb_sys_fail(0);
break;
}
signal_enque(sig);
wakeup = 1;
}
}
else if (kill(pid, sig) < 0) {
rb_sys_fail(0);
}
}
if (wakeup) {
rb_threadptr_check_signal(GET_VM()->main_thread);
}
}
rb_thread_execute_interrupts(rb_thread_current());
return INT2FIX(i-1);
}
|
.maxgroups ⇒ Fixnum
Returns the maximum number of gids allowed in the supplemental group access list.
Process.maxgroups #=> 32
5788 5789 5790 5791 5792 |
# File 'process.c', line 5788
static VALUE
proc_getmaxgroups(VALUE obj)
{
return INT2FIX(maxgroups());
}
|
.maxgroups=(fixnum) ⇒ Fixnum
Sets the maximum number of gids allowed in the supplemental group access list.
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 |
# File 'process.c', line 5806
static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
int ngroups = FIX2INT(val);
int ngroups_max = get_sc_ngroups_max();
if (ngroups <= 0)
rb_raise(rb_eArgError, "maxgroups %d shold be positive", ngroups);
if (ngroups > RB_MAX_GROUPS)
ngroups = RB_MAX_GROUPS;
if (ngroups_max > 0 && ngroups > ngroups_max)
ngroups = ngroups_max;
_maxgroups = ngroups;
return INT2FIX(_maxgroups);
}
|
.pid ⇒ Fixnum
Returns the process id of this process. Not available on all platforms.
Process.pid #=> 27415
256 257 258 259 260 261 |
# File 'process.c', line 256
static VALUE
get_pid(void)
{
rb_secure(2);
return PIDT2NUM(getpid());
}
|
.ppid ⇒ Fixnum
280 281 282 283 284 285 |
# File 'process.c', line 280
static VALUE
get_ppid(void)
{
rb_secure(2);
return PIDT2NUM(getppid());
}
|
.setpgid(pid, integer) ⇒ 0
Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 |
# File 'process.c', line 4336
static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
rb_pid_t ipid, ipgrp;
rb_secure(2);
ipid = NUM2PIDT(pid);
ipgrp = NUM2PIDT(pgrp);
if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
return INT2FIX(0);
}
|
.setpgrp ⇒ 0
Equivalent to setpgid(0,0)
. Not available on all platforms.
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 |
# File 'process.c', line 4281
static VALUE
proc_setpgrp(void)
{
rb_secure(2);
/* check for posix setpgid() first; this matches the posix */
/* getpgrp() above. It appears that configure will set SETPGRP_VOID */
/* even though setpgrp(0,0) would be preferred. The posix call avoids */
/* this confusion. */
#ifdef HAVE_SETPGID
if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
if (setpgrp() < 0) rb_sys_fail(0);
#endif
return INT2FIX(0);
}
|
.setpriority(kind, integer, priority) ⇒ 0
See Process#getpriority
.
Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0
Process.getpriority(Process::PRIO_USER, 0) #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 |
# File 'process.c', line 4496
static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
int iwhich, iwho, iprio;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
iprio = NUM2INT(prio);
if (setpriority(iwhich, iwho, iprio) < 0)
rb_sys_fail(0);
return INT2FIX(0);
}
|
.setproctitle(string) ⇒ String
Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError be raised even if the platform does not support the feature.
Calling this method does not affect the value of $0.
Process.setproctitle('myapp: worker #%d' % worker_id)
This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.
1817 1818 1819 1820 1821 1822 1823 1824 1825 |
# File 'ruby.c', line 1817
static VALUE
proc_setproctitle(VALUE process, VALUE title)
{
StringValue(title);
setproctitle("%.*s", RSTRING_LENINT(title), RSTRING_PTR(title));
return title;
}
|
.setrlimit(resource, cur_limit, max_limit) ⇒ nil .setrlimit(resource, cur_limit) ⇒ nil
Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
If max_limit is not given, cur_limit is used.
resource indicates the kind of resource to limit. It should be a symbol such as :CORE
, a string such as "CORE"
or a constant such as Process::RLIMIT_CORE
. The available resources are OS dependent. Ruby may support following resources.
- AS
-
total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)
- CORE
-
core size (bytes) (SUSv3)
- CPU
-
CPU time (seconds) (SUSv3)
- DATA
-
data segment (bytes) (SUSv3)
- FSIZE
-
file size (bytes) (SUSv3)
- MEMLOCK
-
total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)
- MSGQUEUE
-
allocation for POSIX message queues (bytes) (GNU/Linux)
- NICE
-
ceiling on process’s nice(2) value (number) (GNU/Linux)
- NOFILE
-
file descriptors (number) (SUSv3)
- NPROC
-
number of processes for the user (number) (4.4BSD, GNU/Linux)
- RSS
-
resident memory size (bytes) (4.2BSD, GNU/Linux)
- RTPRIO
-
ceiling on the process’s real-time priority (number) (GNU/Linux)
- RTTIME
-
CPU time for real-time process (us) (GNU/Linux)
- SBSIZE
-
all socket buffers (bytes) (NetBSD, FreeBSD)
- SIGPENDING
-
number of queued signals allowed (signals) (GNU/Linux)
- STACK
-
stack size (bytes) (SUSv3)
cur_limit and max_limit may be :INFINITY
, "INFINITY"
or Process::RLIM_INFINITY
, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX
, Process::RLIM_SAVED_CUR
and corresponding symbols and strings too. See system setrlimit(2) manual for details.
The following example raises the soft limit of core size to the hard limit to try to make core dump possible.
Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 |
# File 'process.c', line 4802
static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
VALUE resource, rlim_cur, rlim_max;
struct rlimit rlim;
rb_secure(2);
rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max);
if (rlim_max == Qnil)
rlim_max = rlim_cur;
rlim.rlim_cur = rlimit_resource_value(rlim_cur);
rlim.rlim_max = rlimit_resource_value(rlim_max);
if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("setrlimit");
}
return Qnil;
}
|
.setsid ⇒ Fixnum
Establishes this process as a new session and process group leader, with no controlling tty. Returns the session id. Not available on all platforms.
Process.setsid #=> 27422
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 |
# File 'process.c', line 4403
static VALUE
proc_setsid(void)
{
rb_pid_t pid;
rb_secure(2);
pid = setsid();
if (pid < 0) rb_sys_fail(0);
return PIDT2NUM(pid);
}
|
.spawn([env,][,options]) ⇒ Object .spawn([env,][,options]) ⇒ Object
spawn executes specified command and return its pid.
pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2")
Process.wait pid
pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'")
Process.wait pid
This method is similar to Kernel#system but it doesn’t wait for the command to finish.
The parent process should use Process.wait
to collect the termination status of its child or use Process.detach
to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
spawn has bunch of options to specify process attributes:
env: hash
name => val : set the environment variable
name => nil : unset the environment variable
command...:
commandline : command line string which is passed to the standard shell
cmdname, arg1, ... : command name and one or more arguments (This form does not use the shell. See below for caveats.)
[cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
options: hash
clearing environment variables:
:unsetenv_others => true : clear environment variables except specified by env
:unsetenv_others => false : don't clear (default)
process group:
:pgroup => true or 0 : make a new process group
:pgroup => pgid : join to specified process group
:pgroup => nil : don't change the process group (default)
create new process group: Windows only
:new_pgroup => true : the new process is the root process of a new process group
:new_pgroup => false : don't create a new process group (default)
resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit.
:rlimit_resourcename => limit
:rlimit_resourcename => [cur_limit, max_limit]
umask:
:umask => int
redirection:
key:
FD : single file descriptor in child process
[FD, FD, ...] : multiple file descriptor in child process
value:
FD : redirect to the file descriptor in parent process
string : redirect to file with open(string, "r" or "w")
[string] : redirect to file with open(string, File::RDONLY)
[string, open_mode] : redirect to file with open(string, open_mode, 0644)
[string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
[:child, FD] : redirect to the redirected file descriptor
:close : close the file descriptor in child process
FD is one of follows
:in : the file descriptor 0 which is the standard input
:out : the file descriptor 1 which is the standard output
:err : the file descriptor 2 which is the standard error
integer : the file descriptor of specified the integer
io : the file descriptor specified as io.fileno
file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
:close_others => true : don't inherit
current directory:
:chdir => str
The 'cmdname, arg1, ...' form does not use the shell. However,
on different OSes, different things are provided as built-in
commands. An example of this is 'echo', which is a built-in
on Windows, but is a normal program on Linux and Mac OS X.
This means that `Process.spawn 'echo', '%Path%'` will display
the contents of the `%Path%` environment variable on Windows,
but `Process.spawn 'echo', '$PATH'` prints the literal '$PATH'.
If a hash is given as env
, the environment is updated by env
before exec(2)
in the child process. If a pair in env
has nil as the value, the variable is deleted.
# set FOO as BAR and unset BAZ.
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
If a hash is given as options
, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.
The :unsetenv_others
key in options
specifies to clear environment variables, other than specified by env
.
pid = spawn(command, :unsetenv_others=>true) # no environment variable
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
The :pgroup
key in options
specifies a process group. The corresponding value should be true, zero or positive integer. true and zero means the process should be a process leader of a new process group. Other values specifies a process group to be belongs.
pid = spawn(command, :pgroup=>true) # process leader
pid = spawn(command, :pgroup=>10) # belongs to the process group 10
The :new_pgroup
key in options
specifies to pass CREATE_NEW_PROCESS_GROUP
flag to CreateProcessW()
that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid)
on the subprocess. :new_pgroup is false by default.
pid = spawn(command, :new_pgroup=>true) # new process group
pid = spawn(command, :new_pgroup=>false) # same process group
The :rlimit_
foo key specifies a resource limit. foo should be one of resource types such as core
. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for Process.setrlimit.
cur, max = Process.getrlimit(:CORE)
pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
pid = spawn(command, :rlimit_core=>max) # enable core dump
pid = spawn(command, :rlimit_core=>0) # never dump core.
The :umask
key in options
specifies the umask.
pid = spawn(command, :umask=>077)
The :in, :out, :err, a fixnum, an IO and an array key specifies a redirection. The redirection maps a file descriptor in the child process.
For example, stderr can be merged into stdout as follows:
pid = spawn(command, :err=>:out)
pid = spawn(command, 2=>1)
pid = spawn(command, STDERR=>:out)
pid = spawn(command, STDERR=>STDOUT)
The hash keys specifies a file descriptor in the child process started by spawn
. :err, 2 and STDERR specifies the standard error stream (stderr).
The hash values specifies a file descriptor in the parent process which invokes spawn
. :out, 1 and STDOUT specifies the standard output stream (stdout).
In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.
The standard input stream (stdin) can be specified by :in, 0 and STDIN.
A filename can be specified as a hash value.
pid = spawn(command, :in=>"/dev/null") # read mode
pid = spawn(command, :out=>"/dev/null") # write mode
pid = spawn(command, :err=>"log") # write mode
pid = spawn(command, 3=>"/dev/null") # read mode
For stdout and stderr, it is opened in write mode. Otherwise read mode is used.
For specifying flags and permission of file creation explicitly, an array is used instead.
pid = spawn(command, :in=>["file"]) # read mode is assumed
pid = spawn(command, :in=>["file", "r"])
pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
pid = spawn(command, :out=>["log", "w", 0600])
pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.
If an array of IOs and integers are specified as a hash key, all the elements are redirected.
# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, [:out, :err]=>["log", "w"])
Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.
# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])
[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.
io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
p io.read #=> "out\nerr\n"
The :chdir
key in options
specifies the current directory.
pid = spawn(command, :chdir=>"/var/tmp")
spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn’t affect the standard descriptors which are closed only if :close is specified explicitly.
pid = spawn(command, :close_others=>true) # close 3,4,5,... (default)
pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
:close_others is true by default for spawn and IO.popen.
Note that fds which close-on-exec flag is already set are closed regardless of :close_others option.
So IO.pipe and spawn can be used as IO.popen.
# similar to r = IO.popen(command)
r, w = IO.pipe
pid = spawn(command, :out=>w) # r, w is closed in the child process.
w.close
:close is specified as a hash value to close a fd individually.
f = open(foo)
system(command, f=>:close) # don't inherit f.
If a file descriptor need to be inherited, io=>io can be used.
# valgrind has --log-fd option for log destination.
# log_w=>log_w indicates log_w.fileno inherits to child process.
log_r, log_w = IO.pipe
pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
log_w.close
p log_r.read
It is also possible to exchange file descriptors.
pid = spawn(command, :out=>:err, :err=>:out)
The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawn
uses an extra file descriptor to resolve such cyclic file descriptor mapping.
See Kernel.exec
for the standard shell.
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 |
# File 'process.c', line 4172
static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
rb_pid_t pid;
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
execarg_obj = rb_execarg_new(argc, argv, TRUE);
eargp = rb_execarg_get(execarg_obj);
rb_execarg_fixup(execarg_obj);
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
pid = rb_spawn_process(eargp, errmsg, sizeof(errmsg));
RB_GC_GUARD(execarg_obj);
if (pid == -1) {
const char *prog = errmsg;
if (!prog[0]) {
rb_sys_fail_str(fail_str);
}
rb_sys_fail(prog);
}
#if defined(HAVE_FORK) || defined(HAVE_SPAWNV)
return PIDT2NUM(pid);
#else
return Qnil;
#endif
}
|
.times ⇒ aProcessTms
Returns a Tms
structure (see Process::Tms
) that contains user and system CPU times for this process, and also for children processes.
t = Process.times
[ t.utime, t.stime, t.cutime, t.cstime ] #=> [0.0, 0.02, 0.00, 0.00]
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 |
# File 'process.c', line 6744
VALUE
rb_proc_times(VALUE obj)
{
const double hertz = get_clk_tck();
struct tms buf;
VALUE utime, stime, cutime, cstime, ret;
times(&buf);
utime = DBL2NUM(buf.tms_utime / hertz);
stime = DBL2NUM(buf.tms_stime / hertz);
cutime = DBL2NUM(buf.tms_cutime / hertz);
cstime = DBL2NUM(buf.tms_cstime / hertz);
ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
RB_GC_GUARD(utime);
RB_GC_GUARD(stime);
RB_GC_GUARD(cutime);
RB_GC_GUARD(cstime);
return ret;
}
|
.uid ⇒ Fixnum .Process::UID.rid ⇒ Fixnum .Process::Sys.getuid ⇒ Fixnum
Returns the (real) user ID of this process.
Process.uid #=> 501
5149 5150 5151 5152 5153 5154 |
# File 'process.c', line 5149
static VALUE
proc_getuid(VALUE obj)
{
rb_uid_t uid = getuid();
return UIDT2NUM(uid);
}
|
.uid=(user) ⇒ Numeric
Sets the (user) user ID for this process. Not available on all platforms.
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 |
# File 'process.c', line 5166
static VALUE
proc_setuid(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
{
if (geteuid() == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return id;
}
|
.wait ⇒ Fixnum .wait(pid = -1, flags = 0) ⇒ Fixnum .waitpid(pid = -1, flags = 0) ⇒ Fixnum
Waits for a child process to exit, returns its process id, and sets $?
to a Process::Status
object containing information on that process. Which child it waits on depends on the value of pid:
- > 0
-
Waits for the child whose process ID equals pid.
- 0
-
Waits for any child whose process group ID equals that of the calling process.
- -1
-
Waits for any child process (the default if no pid is given).
- < -1
-
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values Process::WNOHANG
(do not block if no child available) or Process::WUNTRACED
(return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process
fork { exit 99 } #=> 27429
wait #=> 27429
$?.exitstatus #=> 99
pid = fork { sleep 3 } #=> 27440
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG) #=> nil
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0) #=> 27440
Time.now #=> 2008-03-08 19:56:19 +0900
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
# File 'process.c', line 884
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
|
.wait2(pid = -1, flags = 0) ⇒ Array .waitpid2(pid = -1, flags = 0) ⇒ Array
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status
object) of that child. Raises a SystemCallError if there are no child processes.
Process.fork { exit 99 } #=> 27437
pid, status = Process.wait2
pid #=> 27437
status.exitstatus #=> 99
929 930 931 932 933 934 935 |
# File 'process.c', line 929
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
|
.waitall ⇒ Array
Waits for all children, returning an array of pid/status pairs (where status is a Process::Status
object).
fork { sleep 0.2; exit 2 } #=> 27432
fork { sleep 0.1; exit 1 } #=> 27433
fork { exit 0 } #=> 27434
p Process.waitall
produces:
[[30982, #<Process::Status: pid 30982 exit 0>],
[30979, #<Process::Status: pid 30979 exit 1>],
[30976, #<Process::Status: pid 30976 exit 2>]]
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 |
# File 'process.c', line 958
static VALUE
proc_waitall(void)
{
VALUE result;
rb_pid_t pid;
int status;
rb_secure(2);
result = rb_ary_new();
#ifdef NO_WAITPID
if (pid_tbl) {
st_foreach(pid_tbl, waitall_each, result);
}
#else
rb_last_status_clear();
#endif
for (pid = -1;;) {
#ifdef NO_WAITPID
pid = wait(&status);
#else
pid = rb_waitpid(-1, &status, 0);
#endif
if (pid == -1) {
if (errno == ECHILD)
break;
#ifdef NO_WAITPID
if (errno == EINTR) {
rb_thread_schedule();
continue;
}
#endif
rb_sys_fail(0);
}
#ifdef NO_WAITPID
rb_last_status_set(status, pid);
#endif
rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
}
return result;
}
|
.wait ⇒ Fixnum .wait(pid = -1, flags = 0) ⇒ Fixnum .waitpid(pid = -1, flags = 0) ⇒ Fixnum
Waits for a child process to exit, returns its process id, and sets $?
to a Process::Status
object containing information on that process. Which child it waits on depends on the value of pid:
- > 0
-
Waits for the child whose process ID equals pid.
- 0
-
Waits for any child whose process group ID equals that of the calling process.
- -1
-
Waits for any child process (the default if no pid is given).
- < -1
-
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values Process::WNOHANG
(do not block if no child available) or Process::WUNTRACED
(return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process
fork { exit 99 } #=> 27429
wait #=> 27429
$?.exitstatus #=> 99
pid = fork { sleep 3 } #=> 27440
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG) #=> nil
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0) #=> 27440
Time.now #=> 2008-03-08 19:56:19 +0900
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
# File 'process.c', line 884
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
|
.wait2(pid = -1, flags = 0) ⇒ Array .waitpid2(pid = -1, flags = 0) ⇒ Array
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status
object) of that child. Raises a SystemCallError if there are no child processes.
Process.fork { exit 99 } #=> 27437
pid, status = Process.wait2
pid #=> 27437
status.exitstatus #=> 99
929 930 931 932 933 934 935 |
# File 'process.c', line 929
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
|
Instance Method Details
#clock_getres(clock_id[, unit]) ⇒ Numeric (private)
Returns the time resolution returned by POSIX clock_getres() function.
clock_id
specifies a kind of clock. See the document of Process.clock_gettime
for details.
clock_id
can be a symbol as Process.clock_gettime
. However the result may not be accurate. For example, Process.clock_getres(:GETTIMEOFDAY_BASED_CLOCK_REALTIME) returns 1.0e-06 which means 1 microsecond, but actual resolution can be more coarse.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies a type of the return value. Process.clock_getres
accepts unit
as Process.clock_gettime
. The default value, :float_second
, is also same as Process.clock_gettime
.
Process.clock_getres
also accepts :hertz
as unit
. :hertz
means a the reciprocal of :float_second
.
:hertz
can be used to obtain the exact value of the clock ticks per second for times() function and CLOCKS_PER_SEC for clock() function.
Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns the clock ticks per second.
Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns CLOCKS_PER_SEC.
p Process.clock_getres(Process::CLOCK_MONOTONIC)
#=> 1.0e-09
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 |
# File 'process.c', line 7287
VALUE
rb_clock_getres(int argc, VALUE *argv)
{
VALUE clk_id, unit;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
rb_scan_args(argc, argv, "11", &clk_id, &unit);
if (SYMBOL_P(clk_id)) {
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
tt.giga_count = 1;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#endif
#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
tt.count = 1;
tt.giga_count = 0;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETRES)
struct timespec ts;
clockid_t c = NUM2CLOCKID(clk_id);
int ret = clock_getres(c, &ts);
if (ret == -1)
rb_sys_fail("clock_getres");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_getres behavior when clock_id is invalid. */
errno = EINVAL;
rb_sys_fail(0);
success:
if (unit == ID2SYM(rb_intern("hertz"))) {
return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
}
else {
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
}
|
#clock_gettime(clock_id[, unit]) ⇒ Numeric (private)
Returns a time returned by POSIX clock_gettime() function.
p Process.clock_gettime(Process::CLOCK_MONOTONIC)
#=> 896053.968060096
clock_id
specifies a kind of clock. It is specifed as a constant which begins with Process::CLOCK_
such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.
The supported constants depends on OS and version. Ruby provides following types of clock_id
if available.
- CLOCK_REALTIME
-
SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1
- CLOCK_MONOTONIC
-
SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4
- CLOCK_PROCESS_CPUTIME_ID
-
SUSv3 to 4, Linux 2.5.63
- CLOCK_THREAD_CPUTIME_ID
-
SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1
- CLOCK_VIRTUAL
-
FreeBSD 3.0, OpenBSD 2.1
- CLOCK_PROF
-
FreeBSD 3.0, OpenBSD 2.1
- CLOCK_REALTIME_FAST
-
FreeBSD 8.1
- CLOCK_REALTIME_PRECISE
-
FreeBSD 8.1
- CLOCK_REALTIME_COARSE
-
Linux 2.6.32
- CLOCK_REALTIME_ALARM
-
Linux 3.0
- CLOCK_MONOTONIC_FAST
-
FreeBSD 8.1
- CLOCK_MONOTONIC_PRECISE
-
FreeBSD 8.1
- CLOCK_MONOTONIC_COARSE
-
Linux 2.6.32
- CLOCK_MONOTONIC_RAW
-
Linux 2.6.28
- CLOCK_BOOTTIME
-
Linux 2.6.39
- CLOCK_BOOTTIME_ALARM
-
Linux 3.0
- CLOCK_UPTIME
-
FreeBSD 7.0
- CLOCK_UPTIME_FAST
-
FreeBSD 8.1
- CLOCK_UPTIME_PRECISE
-
FreeBSD 8.1
- CLOCK_SECOND
-
FreeBSD 8.1
Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime is defined in the POSIX part. SUS defines CLOCK_REALTIME mandatory but CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.
Also, several symbols are accepted as clock_id
. There are emulations for clock_gettime().
For example, Process::CLOCK_REALTIME is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME
when clock_gettime() is not available.
Emulations for CLOCK_REALTIME
:
- :GETTIMEOFDAY_BASED_CLOCK_REALTIME
-
Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.
- :TIME_BASED_CLOCK_REALTIME
-
Use time() defined by ISO C. The resolution is 1 second.
Emulations for CLOCK_MONOTONIC
:
- :MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
-
Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.
- :TIMES_BASED_CLOCK_MONOTONIC
-
Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.
Emulations for CLOCK_PROCESS_CPUTIME_ID
:
- :GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.
- :TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.
- :CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
-
Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.
If the given clock_id
is not supported, Errno::EINVAL is raised.
unit
specifies a type of the return value.
- :float_second
-
number of seconds as a float (default)
- :float_millisecond
-
number of milliseconds as a float
- :float_microsecond
-
number of microseconds as a float
- :second
-
number of seconds as an integer
- :millisecond
-
number of milliseconds as an integer
- :microsecond
-
number of microseconds as an integer
- :nanosecond
-
number of nanoseconds as an integer
The underlying function, clock_gettime(), returns a number of nanoseconds. Float object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME. If the exact nanoseconds value is required, use :nanoseconds
as the unit
.
The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.
The origin in CLOCK_REALTIME is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now is recommended over CLOCK_REALTIME.
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 |
# File 'process.c', line 7091
VALUE
rb_clock_gettime(int argc, VALUE *argv)
{
VALUE clk_id, unit;
int ret;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
rb_scan_args(argc, argv, "11", &clk_id, &unit);
if (SYMBOL_P(clk_id)) {
/*
* Non-clock_gettime clocks are provided by symbol clk_id.
*
* gettimeofday is always available on platforms supported by Ruby.
* GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
* CLOCK_REALTIME if clock_gettime is not available.
*/
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(rb_intern("GETTIMEOFDAY_BASED_CLOCK_REALTIME"))
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
struct timeval tv;
ret = gettimeofday(&tv, 0);
if (ret != 0)
rb_sys_fail("gettimeofday");
tt.giga_count = tv.tv_sec;
tt.count = (int32_t)tv.tv_usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(rb_intern("TIME_BASED_CLOCK_REALTIME"))
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
time_t t;
t = time(NULL);
if (t == (time_t)-1)
rb_sys_fail("time");
tt.giga_count = t;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC \
ID2SYM(rb_intern("TIMES_BASED_CLOCK_MONOTONIC"))
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
struct tms buf;
clock_t c;
unsigned_clock_t uc;
c = times(&buf);
if (c == (clock_t)-1)
rb_sys_fail("times");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = (uc / 1000000000);
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(rb_intern("GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID"))
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct rusage usage;
int32_t usec;
ret = getrusage(RUSAGE_SELF, &usage);
if (ret != 0)
rb_sys_fail("getrusage");
tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
if (1000000 <= usec) {
tt.giga_count++;
usec -= 1000000;
}
tt.count = usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(rb_intern("TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID"))
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct tms buf;
unsigned_clock_t utime, stime;
if (times(&buf) == (clock_t)-1)
rb_sys_fail("times");
utime = (unsigned_clock_t)buf.tms_utime;
stime = (unsigned_clock_t)buf.tms_stime;
tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
if (1000000000 <= tt.count) {
tt.count -= 1000000000;
tt.giga_count++;
}
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(rb_intern("CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID"))
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
clock_t c;
unsigned_clock_t uc;
errno = 0;
c = clock();
if (c == (clock_t)-1)
rb_sys_fail("clock");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = uc / 1000000000;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#ifdef __APPLE__
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(rb_intern("MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC"))
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
uint64_t t = mach_absolute_time();
tt.count = (int32_t)(t % 1000000000);
tt.giga_count = t / 1000000000;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETTIME)
struct timespec ts;
clockid_t c;
c = NUM2CLOCKID(clk_id);
ret = clock_gettime(c, &ts);
if (ret == -1)
rb_sys_fail("clock_gettime");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_gettime behavior when clock_id is invalid. */
errno = EINVAL;
rb_sys_fail(0);
success:
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
|
#daemon ⇒ 0 (private) #daemon(nochdir = nil, noclose = nil) ⇒ 0 (private)
Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 |
# File 'process.c', line 5846
static VALUE
proc_daemon(int argc, VALUE *argv)
{
VALUE nochdir, noclose;
int n;
rb_secure(2);
rb_scan_args(argc, argv, "02", &nochdir, &noclose);
prefork();
n = rb_daemon(RTEST(nochdir), RTEST(noclose));
if (n < 0) rb_sys_fail("daemon");
return INT2FIX(n);
}
|
#detach(pid) ⇒ Object (private)
Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of wait()
. If the parent never collects this status, the child stays around as a zombie process. Process::detach
prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Use detach
only when you do not intent to explicitly wait for the child to terminate.
The waiting thread returns the exit status of the detached process when it terminates, so you can use Thread#join
to know the result. If specified pid is not a valid child process ID, the thread returns nil
immediately.
The waiting thread has pid
method which returns the pid.
In this first example, we don’t reap the first child process, so it appears as a zombie in the process status display.
p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")
produces:
27389 Z
In the next example, Process::detach
is used to reap the child automatically.
p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.detach(p1)
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")
(produces no output)
1083 1084 1085 1086 1087 1088 |
# File 'process.c', line 1083
static VALUE
proc_detach(VALUE obj, VALUE pid)
{
rb_secure(2);
return rb_detach_process(NUM2PIDT(pid));
}
|
#egid ⇒ Fixnum (private) #Process::GID.eid ⇒ Fixnum (private) #Process::Sys.geteid ⇒ Fixnum (private)
6240 6241 6242 6243 6244 6245 6246 |
# File 'process.c', line 6240
static VALUE
proc_getegid(VALUE obj)
{
rb_gid_t egid = getegid();
return GIDT2NUM(egid);
}
|
#egid= ⇒ Object (private)
#euid ⇒ Fixnum (private) #Process::UID.eid ⇒ Fixnum (private) #Process::Sys.geteuid ⇒ Fixnum (private)
6116 6117 6118 6119 6120 6121 |
# File 'process.c', line 6116
static VALUE
proc_geteuid(VALUE obj)
{
rb_uid_t euid = geteuid();
return UIDT2NUM(euid);
}
|
#euid=(user) ⇒ Object (private)
Sets the effective user ID for this process. Not available on all platforms.
6155 6156 6157 6158 6159 6160 6161 |
# File 'process.c', line 6155
static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
check_uid_switch();
proc_seteuid(OBJ2UID(euid));
return euid;
}
|
#getpgid(pid) ⇒ Integer (private)
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 |
# File 'process.c', line 4312
static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
rb_pid_t i;
rb_secure(2);
i = getpgid(NUM2PIDT(pid));
if (i < 0) rb_sys_fail(0);
return PIDT2NUM(i);
}
|
#getpgrp ⇒ Integer (private)
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 |
# File 'process.c', line 4251
static VALUE
proc_getpgrp(void)
{
rb_pid_t pgrp;
rb_secure(2);
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
pgrp = getpgrp();
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
pgrp = getpgid(0);
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#endif
}
|
#getpriority(kind, integer) ⇒ Fixnum (private)
Gets the scheduling priority for specified process, process group, or user. kind indicates the kind of entity to find: one of Process::PRIO_PGRP
, Process::PRIO_USER
, or Process::PRIO_PROCESS
. integer is an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.
Process.getpriority(Process::PRIO_USER, 0) #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 |
# File 'process.c', line 4464
static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
int prio, iwhich, iwho;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
errno = 0;
prio = getpriority(iwhich, iwho);
if (errno) rb_sys_fail(0);
return INT2FIX(prio);
}
|
#getrlimit(resource) ⇒ Array (private)
Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
resource indicates the kind of resource to limit. It is specified as a symbol such as :CORE
, a string such as "CORE"
or a constant such as Process::RLIMIT_CORE
. See Process.setrlimit for details.
cur_limit and max_limit may be Process::RLIM_INFINITY
, Process::RLIM_SAVED_MAX
or Process::RLIM_SAVED_CUR
. See Process.setrlimit and the system getrlimit(2) manual for details.
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 |
# File 'process.c', line 4734
static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
struct rlimit rlim;
rb_secure(2);
if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("getrlimit");
}
return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}
|
#getsid ⇒ Integer (private) #getsid(pid) ⇒ Integer (private)
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 |
# File 'process.c', line 4366
static VALUE
proc_getsid(int argc, VALUE *argv)
{
rb_pid_t sid;
VALUE pid;
rb_secure(2);
rb_scan_args(argc, argv, "01", &pid);
if (NIL_P(pid))
pid = INT2FIX(0);
sid = getsid(NUM2PIDT(pid));
if (sid < 0) rb_sys_fail(0);
return PIDT2NUM(sid);
}
|
#gid ⇒ Fixnum (private) #Process::GID.rid ⇒ Fixnum (private) #Process::Sys.getgid ⇒ Fixnum (private)
5561 5562 5563 5564 5565 5566 |
# File 'process.c', line 5561
static VALUE
proc_getgid(VALUE obj)
{
rb_gid_t gid = getgid();
return GIDT2NUM(gid);
}
|
#gid=(fixnum) ⇒ Fixnum (private)
Sets the group ID for this process.
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 |
# File 'process.c', line 5577
static VALUE
proc_setgid(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
{
if (getegid() == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return GIDT2NUM(gid);
}
|
#groups ⇒ Array (private)
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 |
# File 'process.c', line 5668
static VALUE
proc_getgroups(VALUE obj)
{
VALUE ary, tmp;
int i, ngroups;
rb_gid_t *groups;
ngroups = getgroups(0, NULL);
if (ngroups == -1)
rb_sys_fail(0);
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
ngroups = getgroups(ngroups, groups);
if (ngroups == -1)
rb_sys_fail(0);
ary = rb_ary_new();
for (i = 0; i < ngroups; i++)
rb_ary_push(ary, GIDT2NUM(groups[i]));
ALLOCV_END(tmp);
return ary;
}
|
#groups=(array) ⇒ Array (private)
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 |
# File 'process.c', line 5712
static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
int ngroups, i;
rb_gid_t *groups;
VALUE tmp;
PREPARE_GETGRNAM;
Check_Type(ary, T_ARRAY);
ngroups = RARRAY_LENINT(ary);
if (ngroups > maxgroups())
rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
for (i = 0; i < ngroups; i++) {
VALUE g = RARRAY_AREF(ary, i);
groups[i] = OBJ2GID1(g);
}
FINISH_GETGRNAM;
if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
rb_sys_fail(0);
ALLOCV_END(tmp);
return proc_getgroups(obj);
}
|
#initgroups(username, gid) ⇒ Array (private)
Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gid is also added to the list. Returns the resulting Array
of the gids of all the groups in the supplementary group access list. Not available on all platforms.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11]
Process.groups #=> [30, 6, 10, 11]
5765 5766 5767 5768 5769 5770 5771 5772 |
# File 'process.c', line 5765
static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
if (initgroups(StringValuePtr(uname), OBJ2GID(base_grp)) != 0) {
rb_sys_fail(0);
}
return proc_getgroups(obj);
}
|
#kill(signal, pid, ...) ⇒ Fixnum (private)
Sends the given signal to the specified process id(s) if pid is positive. If pid is zero signal is sent to all processes whose group ID is equal to the group ID of the process. signal may be an integer signal number or a POSIX signal name (either with or without a SIG
prefix). If signal is negative (or starts with a minus sign), kills process groups instead of processes. Not all signals are available on all platforms.
pid = fork do
Signal.trap("HUP") { puts "Ouch!"; exit }
# ... do some work ...
end
# ...
Process.kill("HUP", pid)
Process.wait
produces:
Ouch!
If signal is an integer but wrong for signal, Errno::EINVAL
or RangeError
will be raised. Otherwise unless signal is a String
or a Symbol
, and a known signal name, ArgumentError
will be raised.
Also, Errno::ESRCH
or RangeError
for invalid pid, Errno::EPERM
when failed because of no privilege, will be raised. In these cases, signals may have been sent to preceding processes.
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
# File 'signal.c', line 384
VALUE
rb_f_kill(int argc, VALUE *argv)
{
#ifndef HAVE_KILLPG
#define killpg(pg, sig) kill(-(pg), (sig))
#endif
int negative = 0;
int sig;
int i;
volatile VALUE str;
const char *s;
rb_secure(2);
rb_check_arity(argc, 2, UNLIMITED_ARGUMENTS);
switch (TYPE(argv[0])) {
case T_FIXNUM:
sig = FIX2INT(argv[0]);
break;
case T_SYMBOL:
s = rb_id2name(SYM2ID(argv[0]));
if (!s) rb_raise(rb_eArgError, "bad signal");
goto str_signal;
case T_STRING:
s = RSTRING_PTR(argv[0]);
str_signal:
if (s[0] == '-') {
negative++;
s++;
}
if (strncmp("SIG", s, 3) == 0)
s += 3;
if ((sig = signm2signo(s)) == 0)
rb_raise(rb_eArgError, "unsupported name `SIG%s'", s);
if (negative)
sig = -sig;
break;
default:
str = rb_check_string_type(argv[0]);
if (!NIL_P(str)) {
s = RSTRING_PTR(str);
goto str_signal;
}
rb_raise(rb_eArgError, "bad signal type %s",
rb_obj_classname(argv[0]));
break;
}
if (argc <= 1) return INT2FIX(0);
if (sig < 0) {
sig = -sig;
for (i=1; i<argc; i++) {
if (killpg(NUM2PIDT(argv[i]), sig) < 0)
rb_sys_fail(0);
}
}
else {
const rb_pid_t self = (GET_THREAD() == GET_VM()->main_thread) ? getpid() : -1;
int wakeup = 0;
for (i=1; i<argc; i++) {
rb_pid_t pid = NUM2PIDT(argv[i]);
if ((sig != 0) && (self != -1) && (pid == self)) {
int t;
/*
* When target pid is self, many caller assume signal will be
* delivered immediately and synchronously.
*/
switch (sig) {
case SIGSEGV:
#ifdef SIGBUS
case SIGBUS:
#endif
#ifdef SIGKILL
case SIGKILL:
#endif
#ifdef SIGSTOP
case SIGSTOP:
#endif
ruby_kill(pid, sig);
break;
default:
t = signal_ignored(sig);
if (t) {
if (t < 0 && kill(pid, sig))
rb_sys_fail(0);
break;
}
signal_enque(sig);
wakeup = 1;
}
}
else if (kill(pid, sig) < 0) {
rb_sys_fail(0);
}
}
if (wakeup) {
rb_threadptr_check_signal(GET_VM()->main_thread);
}
}
rb_thread_execute_interrupts(rb_thread_current());
return INT2FIX(i-1);
}
|
#maxgroups ⇒ Fixnum (private)
5788 5789 5790 5791 5792 |
# File 'process.c', line 5788
static VALUE
proc_getmaxgroups(VALUE obj)
{
return INT2FIX(maxgroups());
}
|
#maxgroups=(fixnum) ⇒ Fixnum (private)
Sets the maximum number of gids allowed in the supplemental group access list.
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 |
# File 'process.c', line 5806
static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
int ngroups = FIX2INT(val);
int ngroups_max = get_sc_ngroups_max();
if (ngroups <= 0)
rb_raise(rb_eArgError, "maxgroups %d shold be positive", ngroups);
if (ngroups > RB_MAX_GROUPS)
ngroups = RB_MAX_GROUPS;
if (ngroups_max > 0 && ngroups > ngroups_max)
ngroups = ngroups_max;
_maxgroups = ngroups;
return INT2FIX(_maxgroups);
}
|
#pid ⇒ Fixnum (private)
256 257 258 259 260 261 |
# File 'process.c', line 256
static VALUE
get_pid(void)
{
rb_secure(2);
return PIDT2NUM(getpid());
}
|
#ppid ⇒ Fixnum (private)
280 281 282 283 284 285 |
# File 'process.c', line 280
static VALUE
get_ppid(void)
{
rb_secure(2);
return PIDT2NUM(getppid());
}
|
#setpgid(pid, integer) ⇒ 0 (private)
Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 |
# File 'process.c', line 4336
static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
rb_pid_t ipid, ipgrp;
rb_secure(2);
ipid = NUM2PIDT(pid);
ipgrp = NUM2PIDT(pgrp);
if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
return INT2FIX(0);
}
|
#setpgrp ⇒ 0 (private)
Equivalent to setpgid(0,0)
. Not available on all platforms.
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 |
# File 'process.c', line 4281
static VALUE
proc_setpgrp(void)
{
rb_secure(2);
/* check for posix setpgid() first; this matches the posix */
/* getpgrp() above. It appears that configure will set SETPGRP_VOID */
/* even though setpgrp(0,0) would be preferred. The posix call avoids */
/* this confusion. */
#ifdef HAVE_SETPGID
if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
if (setpgrp() < 0) rb_sys_fail(0);
#endif
return INT2FIX(0);
}
|
#setpriority(kind, integer, priority) ⇒ 0 (private)
See Process#getpriority
.
Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0
Process.getpriority(Process::PRIO_USER, 0) #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 |
# File 'process.c', line 4496
static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
int iwhich, iwho, iprio;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
iprio = NUM2INT(prio);
if (setpriority(iwhich, iwho, iprio) < 0)
rb_sys_fail(0);
return INT2FIX(0);
}
|
#setproctitle(string) ⇒ String (private)
Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError be raised even if the platform does not support the feature.
Calling this method does not affect the value of $0.
Process.setproctitle('myapp: worker #%d' % worker_id)
This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.
1817 1818 1819 1820 1821 1822 1823 1824 1825 |
# File 'ruby.c', line 1817
static VALUE
proc_setproctitle(VALUE process, VALUE title)
{
StringValue(title);
setproctitle("%.*s", RSTRING_LENINT(title), RSTRING_PTR(title));
return title;
}
|
#setrlimit(resource, cur_limit, max_limit) ⇒ nil (private) #setrlimit(resource, cur_limit) ⇒ nil (private)
Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.
If max_limit is not given, cur_limit is used.
resource indicates the kind of resource to limit. It should be a symbol such as :CORE
, a string such as "CORE"
or a constant such as Process::RLIMIT_CORE
. The available resources are OS dependent. Ruby may support following resources.
- AS
-
total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)
- CORE
-
core size (bytes) (SUSv3)
- CPU
-
CPU time (seconds) (SUSv3)
- DATA
-
data segment (bytes) (SUSv3)
- FSIZE
-
file size (bytes) (SUSv3)
- MEMLOCK
-
total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)
- MSGQUEUE
-
allocation for POSIX message queues (bytes) (GNU/Linux)
- NICE
-
ceiling on process’s nice(2) value (number) (GNU/Linux)
- NOFILE
-
file descriptors (number) (SUSv3)
- NPROC
-
number of processes for the user (number) (4.4BSD, GNU/Linux)
- RSS
-
resident memory size (bytes) (4.2BSD, GNU/Linux)
- RTPRIO
-
ceiling on the process’s real-time priority (number) (GNU/Linux)
- RTTIME
-
CPU time for real-time process (us) (GNU/Linux)
- SBSIZE
-
all socket buffers (bytes) (NetBSD, FreeBSD)
- SIGPENDING
-
number of queued signals allowed (signals) (GNU/Linux)
- STACK
-
stack size (bytes) (SUSv3)
cur_limit and max_limit may be :INFINITY
, "INFINITY"
or Process::RLIM_INFINITY
, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX
, Process::RLIM_SAVED_CUR
and corresponding symbols and strings too. See system setrlimit(2) manual for details.
The following example raises the soft limit of core size to the hard limit to try to make core dump possible.
Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 |
# File 'process.c', line 4802
static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
VALUE resource, rlim_cur, rlim_max;
struct rlimit rlim;
rb_secure(2);
rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max);
if (rlim_max == Qnil)
rlim_max = rlim_cur;
rlim.rlim_cur = rlimit_resource_value(rlim_cur);
rlim.rlim_max = rlimit_resource_value(rlim_max);
if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("setrlimit");
}
return Qnil;
}
|
#setsid ⇒ Fixnum (private)
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 |
# File 'process.c', line 4403
static VALUE
proc_setsid(void)
{
rb_pid_t pid;
rb_secure(2);
pid = setsid();
if (pid < 0) rb_sys_fail(0);
return PIDT2NUM(pid);
}
|
#times ⇒ aProcessTms (private)
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 |
# File 'process.c', line 6744
VALUE
rb_proc_times(VALUE obj)
{
const double hertz = get_clk_tck();
struct tms buf;
VALUE utime, stime, cutime, cstime, ret;
times(&buf);
utime = DBL2NUM(buf.tms_utime / hertz);
stime = DBL2NUM(buf.tms_stime / hertz);
cutime = DBL2NUM(buf.tms_cutime / hertz);
cstime = DBL2NUM(buf.tms_cstime / hertz);
ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
RB_GC_GUARD(utime);
RB_GC_GUARD(stime);
RB_GC_GUARD(cutime);
RB_GC_GUARD(cstime);
return ret;
}
|
#uid ⇒ Fixnum (private) #Process::UID.rid ⇒ Fixnum (private) #Process::Sys.getuid ⇒ Fixnum (private)
5149 5150 5151 5152 5153 5154 |
# File 'process.c', line 5149
static VALUE
proc_getuid(VALUE obj)
{
rb_uid_t uid = getuid();
return UIDT2NUM(uid);
}
|
#uid=(user) ⇒ Numeric (private)
Sets the (user) user ID for this process. Not available on all platforms.
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 |
# File 'process.c', line 5166
static VALUE
proc_setuid(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
{
if (geteuid() == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return id;
}
|
#wait ⇒ Fixnum (private) #wait(pid = -1, flags = 0) ⇒ Fixnum (private) #waitpid(pid = -1, flags = 0) ⇒ Fixnum (private)
Waits for a child process to exit, returns its process id, and sets $?
to a Process::Status
object containing information on that process. Which child it waits on depends on the value of pid:
- > 0
-
Waits for the child whose process ID equals pid.
- 0
-
Waits for any child whose process group ID equals that of the calling process.
- -1
-
Waits for any child process (the default if no pid is given).
- < -1
-
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values Process::WNOHANG
(do not block if no child available) or Process::WUNTRACED
(return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process
fork { exit 99 } #=> 27429
wait #=> 27429
$?.exitstatus #=> 99
pid = fork { sleep 3 } #=> 27440
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG) #=> nil
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0) #=> 27440
Time.now #=> 2008-03-08 19:56:19 +0900
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
# File 'process.c', line 884
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
|
#wait2(pid = -1, flags = 0) ⇒ Array (private) #waitpid2(pid = -1, flags = 0) ⇒ Array (private)
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status
object) of that child. Raises a SystemCallError if there are no child processes.
Process.fork { exit 99 } #=> 27437
pid, status = Process.wait2
pid #=> 27437
status.exitstatus #=> 99
929 930 931 932 933 934 935 |
# File 'process.c', line 929
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
|
#waitall ⇒ Array (private)
Waits for all children, returning an array of pid/status pairs (where status is a Process::Status
object).
fork { sleep 0.2; exit 2 } #=> 27432
fork { sleep 0.1; exit 1 } #=> 27433
fork { exit 0 } #=> 27434
p Process.waitall
produces:
[[30982, #<Process::Status: pid 30982 exit 0>],
[30979, #<Process::Status: pid 30979 exit 1>],
[30976, #<Process::Status: pid 30976 exit 2>]]
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 |
# File 'process.c', line 958
static VALUE
proc_waitall(void)
{
VALUE result;
rb_pid_t pid;
int status;
rb_secure(2);
result = rb_ary_new();
#ifdef NO_WAITPID
if (pid_tbl) {
st_foreach(pid_tbl, waitall_each, result);
}
#else
rb_last_status_clear();
#endif
for (pid = -1;;) {
#ifdef NO_WAITPID
pid = wait(&status);
#else
pid = rb_waitpid(-1, &status, 0);
#endif
if (pid == -1) {
if (errno == ECHILD)
break;
#ifdef NO_WAITPID
if (errno == EINTR) {
rb_thread_schedule();
continue;
}
#endif
rb_sys_fail(0);
}
#ifdef NO_WAITPID
rb_last_status_set(status, pid);
#endif
rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
}
return result;
}
|
#wait ⇒ Fixnum (private) #wait(pid = -1, flags = 0) ⇒ Fixnum (private) #waitpid(pid = -1, flags = 0) ⇒ Fixnum (private)
Waits for a child process to exit, returns its process id, and sets $?
to a Process::Status
object containing information on that process. Which child it waits on depends on the value of pid:
- > 0
-
Waits for the child whose process ID equals pid.
- 0
-
Waits for any child whose process group ID equals that of the calling process.
- -1
-
Waits for any child process (the default if no pid is given).
- < -1
-
Waits for any child whose process group ID equals the absolute value of pid.
The flags argument may be a logical or of the flag values Process::WNOHANG
(do not block if no child available) or Process::WUNTRACED
(return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.
Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.
include Process
fork { exit 99 } #=> 27429
wait #=> 27429
$?.exitstatus #=> 99
pid = fork { sleep 3 } #=> 27440
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG) #=> nil
Time.now #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0) #=> 27440
Time.now #=> 2008-03-08 19:56:19 +0900
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
# File 'process.c', line 884
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
|
#wait2(pid = -1, flags = 0) ⇒ Array (private) #waitpid2(pid = -1, flags = 0) ⇒ Array (private)
Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status
object) of that child. Raises a SystemCallError if there are no child processes.
Process.fork { exit 99 } #=> 27437
pid, status = Process.wait2
pid #=> 27437
status.exitstatus #=> 99
929 930 931 932 933 934 935 |
# File 'process.c', line 929
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
|