Method: Array#product
- Defined in:
- array.c
#product(*other_arrays) ⇒ Object #product(*other_arrays) {|combination| ... } ⇒ self
Computes and returns or yields all combinations of elements from all the Arrays, including both self
and other_arrays
.
-
The number of combinations is the product of the sizes of all the arrays, including both
self
andother_arrays
. -
The order of the returned combinations is indeterminate.
When no block is given, returns the combinations as an Array of Arrays:
a = [0, 1, 2]
a1 = [3, 4]
a2 = [5, 6]
p = a.product(a1)
p.size # => 6 # a.size * a1.size
p # => [[0, 3], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4]]
p = a.product(a1, a2)
p.size # => 12 # a.size * a1.size * a2.size
p # => [[0, 3, 5], [0, 3, 6], [0, 4, 5], [0, 4, 6], [1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5], [2, 3, 6], [2, 4, 5], [2, 4, 6]]
If any argument is an empty Array, returns an empty Array.
If no argument is given, returns an Array of 1-element Arrays, each containing an element of self
:
a.product # => [[0], [1], [2]]
When a block is given, yields each combination as an Array; returns self
:
a.product(a1) {|combination| p combination }
Output:
[0, 3]
[0, 4]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
If any argument is an empty Array, does not call the block:
a.product(a1, a2, []) {|combination| fail 'Cannot happen' }
If no argument is given, yields each element of self
as a 1-element Array:
a.product {|combination| p combination }
Output:
[0]
[1]
[2]
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 |
# File 'array.c', line 7185
static VALUE
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
int n = argc+1; /* How many arrays we're operating on */
volatile VALUE t0 = tmpary(n);
volatile VALUE t1 = Qundef;
VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
int *counters = ALLOCV_N(int, t1, n); /* The current position in each one */
VALUE result = Qnil; /* The array we'll be returning, when no block given */
long i,j;
long resultlen = 1;
RBASIC_CLEAR_CLASS(t0);
/* initialize the arrays of arrays */
ARY_SET_LEN(t0, n);
arrays[0] = ary;
for (i = 1; i < n; i++) arrays[i] = Qnil;
for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
/* initialize the counters for the arrays */
for (i = 0; i < n; i++) counters[i] = 0;
/* Otherwise, allocate and fill in an array of results */
if (rb_block_given_p()) {
/* Make defensive copies of arrays; exit if any is empty */
for (i = 0; i < n; i++) {
if (RARRAY_LEN(arrays[i]) == 0) goto done;
arrays[i] = ary_make_shared_copy(arrays[i]);
}
}
else {
/* Compute the length of the result array; return [] if any is empty */
for (i = 0; i < n; i++) {
long k = RARRAY_LEN(arrays[i]);
if (k == 0) {
result = rb_ary_new2(0);
goto done;
}
if (MUL_OVERFLOW_LONG_P(resultlen, k))
rb_raise(rb_eRangeError, "too big to product");
resultlen *= k;
}
result = rb_ary_new2(resultlen);
}
for (;;) {
int m;
/* fill in one subarray */
VALUE subarray = rb_ary_new2(n);
for (j = 0; j < n; j++) {
rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
}
/* put it on the result array */
if (NIL_P(result)) {
FL_SET(t0, FL_USER5);
rb_yield(subarray);
if (! FL_TEST(t0, FL_USER5)) {
rb_raise(rb_eRuntimeError, "product reentered");
}
else {
FL_UNSET(t0, FL_USER5);
}
}
else {
rb_ary_push(result, subarray);
}
/*
* Increment the last counter. If it overflows, reset to 0
* and increment the one before it.
*/
m = n-1;
counters[m]++;
while (counters[m] == RARRAY_LEN(arrays[m])) {
counters[m] = 0;
/* If the first counter overflows, we are done */
if (--m < 0) goto done;
counters[m]++;
}
}
done:
tmpary_discard(t0);
ALLOCV_END(t1);
return NIL_P(result) ? ary : result;
}
|