Method: Kernel#select
- Defined in:
- io.c
#select(read_array[, write_array [, error_array [, timeout]]]) ⇒ Array?
Calls select(2) system call. It monitors given arrays of IO objects, waits until one or more of IO objects are ready for reading, are ready for writing, and have pending exceptions respectively, and returns an array that contains arrays of those IO objects. It will return nil
if optional timeout value is given and no IO object is ready in timeout seconds.
IO.select peeks the buffer of IO objects for testing readability. If the IO buffer is not empty, IO.select immediately notifies readability. This “peek” only happens for IO objects. It does not happen for IO-like objects such as OpenSSL::SSL::SSLSocket.
The best way to use IO.select is invoking it after nonblocking methods such as #read_nonblock, #write_nonblock, etc. The methods raise an exception which is extended by IO::WaitReadable or IO::WaitWritable. The modules notify how the caller should wait with IO.select. If IO::WaitReadable is raised, the caller should wait for reading. If IO::WaitWritable is raised, the caller should wait for writing.
So, blocking read (#readpartial) can be emulated using #read_nonblock and IO.select as follows:
begin
result = io_like.read_nonblock(maxlen)
rescue IO::WaitReadable
IO.select([io_like])
retry
rescue IO::WaitWritable
IO.select(nil, [io_like])
retry
end
Especially, the combination of nonblocking methods and IO.select is preferred for IO like objects such as OpenSSL::SSL::SSLSocket. It has #to_io method to return underlying IO object. IO.select calls #to_io to obtain the file descriptor to wait.
This means that readability notified by IO.select doesn’t mean readability from OpenSSL::SSL::SSLSocket object.
The most likely situation is that OpenSSL::SSL::SSLSocket buffers some data. IO.select doesn’t see the buffer. So IO.select can block when OpenSSL::SSL::SSLSocket#readpartial doesn’t block.
However, several more complicated situations exist.
SSL is a protocol which is sequence of records. The record consists of multiple bytes. So, the remote side of SSL sends a partial record, IO.select notifies readability but OpenSSL::SSL::SSLSocket cannot decrypt a byte and OpenSSL::SSL::SSLSocket#readpartial will block.
Also, the remote side can request SSL renegotiation which forces the local SSL engine to write some data. This means OpenSSL::SSL::SSLSocket#readpartial may invoke #write system call and it can block. In such a situation, OpenSSL::SSL::SSLSocket#read_nonblock raises IO::WaitWritable instead of blocking. So, the caller should wait for ready for writability as above example.
The combination of nonblocking methods and IO.select is also useful for streams such as tty, pipe socket socket when multiple processes read from a stream.
Finally, Linux kernel developers don’t guarantee that readability of select(2) means readability of following read(2) even for a single process. See select(2) manual on GNU/Linux system.
Invoking IO.select before IO#readpartial works well as usual. However it is not the best way to use IO.select.
The writability notified by select(2) doesn’t show how many bytes are writable. IO#write method blocks until given whole string is written. So, IO#write(two or more bytes)
can block after writability is notified by IO.select. IO#write_nonblock is required to avoid the blocking.
Blocking write (#write) can be emulated using #write_nonblock and IO.select as follows: IO::WaitReadable should also be rescued for SSL renegotiation in OpenSSL::SSL::SSLSocket.
while 0 < string.bytesize
begin
written = io_like.write_nonblock(string)
rescue IO::WaitReadable
IO.select([io_like])
retry
rescue IO::WaitWritable
IO.select(nil, [io_like])
retry
end
string = string.byteslice(written..-1)
end
Parameters
- read_array
-
an array of IO objects that wait until ready for read
- write_array
-
an array of IO objects that wait until ready for write
- error_array
-
an array of IO objects that wait for exceptions
- timeout
-
a numeric value in second
Example
rp, wp = IO.pipe
mesg = "ping "
100.times {
# IO.select follows IO#read. Not the best way to use IO.select.
rs, ws, = IO.select([rp], [wp])
if r = rs[0]
ret = r.read(5)
print ret
case ret
when /ping/
mesg = "pong\n"
when /pong/
mesg = "ping "
end
end
if w = ws[0]
w.write(mesg)
end
}
produces:
ping pong
ping pong
ping pong
(snipped)
ping
9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 |
# File 'io.c', line 9742
static VALUE
rb_f_select(int argc, VALUE *argv, VALUE obj)
{
VALUE timeout;
struct select_args args;
struct timeval timerec;
int i;
rb_scan_args(argc, argv, "13", &args.read, &args.write, &args.except, &timeout);
if (NIL_P(timeout)) {
args.timeout = 0;
}
else {
timerec = rb_time_interval(timeout);
args.timeout = &timerec;
}
for (i = 0; i < numberof(args.fdsets); ++i)
rb_fd_init(&args.fdsets[i]);
return rb_ensure(select_call, (VALUE)&args, select_end, (VALUE)&args);
}
|