Class: Module
Overview
*********************************************************************
A Module is a collection of methods and constants. The
methods in a module may be instance methods or module methods.
Instance methods appear as methods in a class when the module is
included, module methods do not. Conversely, module methods may be
called without creating an encapsulating object, while instance
methods may not. (See Module#module_function.)
In the descriptions that follow, the parameter <i>sym</i> refers
to a symbol, which is either a quoted string or a
Symbol (such as <code>:name</code>).
module Mod
include Math
CONST = 1
def meth
# ...
end
end
Mod.class #=> Module
Mod.constants #=> [:CONST, :PI, :E]
Mod.instance_methods #=> [:meth]
Direct Known Subclasses
Class Method Summary collapse
-
.constants(*args) ⇒ Object
In the first form, returns an array of the names of all constants accessible from the point of call.
-
.nesting ⇒ Array
Returns the list of
Modules
nested at the point of call. -
.used_modules ⇒ Array
Returns an array of all modules used in the current scope.
Instance Method Summary collapse
-
#<(other) ⇒ true, ...
Returns true if mod is a subclass of other.
-
#<=(other) ⇒ true, ...
Returns true if mod is a subclass of other or is the same as other.
-
#<=>(other_module) ⇒ -1, ...
Comparison—Returns -1, 0, +1 or nil depending on whether
module
includesother_module
, they are the same, or ifmodule
is included byother_module
. -
#==(obj2) ⇒ Object
Equality — At the Object level, #== returns
true
only ifobj
andother
are the same object. -
#===(obj) ⇒ Boolean
Case Equality—Returns
true
if obj is an instance of mod or an instance of one of mod’s descendants. -
#>(other) ⇒ true, ...
Returns true if mod is an ancestor of other.
-
#>=(other) ⇒ true, ...
Returns true if mod is an ancestor of other, or the two modules are the same.
-
#alias_method(new_name, old_name) ⇒ Object
Makes new_name a new copy of the method old_name.
-
#ancestors ⇒ Array
Returns a list of modules included/prepended in mod (including mod itself).
-
#append_features(mod) ⇒ Object
private
When this module is included in another, Ruby calls #append_features in this module, passing it the receiving module in mod.
-
#attr(*args) ⇒ Object
The first form is equivalent to #attr_reader.
-
#attr_accessor(*args) ⇒ Object
Defines a named attribute for this module, where the name is symbol.
id2name
, creating an instance variable (@name
) and a corresponding access method to read it. -
#attr_reader(*args) ⇒ Object
Creates instance variables and corresponding methods that return the value of each instance variable.
-
#attr_writer(*args) ⇒ Object
Creates an accessor method to allow assignment to the attribute symbol
.id2name
. -
#autoload ⇒ nil
Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed in the namespace of mod.
-
#autoload?(name, inherit = true) ⇒ String?
Returns filename to be loaded if name is registered as
autoload
in the namespace of mod or one of its ancestors. -
#class_eval(*args) ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected.
-
#class_exec(*args) ⇒ Object
Evaluates the given block in the context of the class/module.
-
#class_variable_defined?(iv) ⇒ Object
Returns
true
if the given class variable is defined in obj. -
#class_variable_get(iv) ⇒ Object
Returns the value of the given class variable (or throws a NameError exception).
-
#class_variable_set(iv, val) ⇒ Object
Sets the class variable named by symbol to the given object.
-
#class_variables(inherit = true) ⇒ Array
Returns an array of the names of class variables in mod.
-
#const_defined?(*args) ⇒ Object
Says whether mod or its ancestors have a constant with the given name:.
-
#const_get(*args) ⇒ Object
Checks for a constant with the given name in mod.
-
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod.
-
#const_set(name, value) ⇒ Object
Sets the named constant to the given object, returning that object.
-
#const_source_location(*args) ⇒ Object
Returns the Ruby source filename and line number containing the definition of the constant specified.
-
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod.
-
#define_method(*args) ⇒ Object
Defines an instance method in the receiver.
-
#deprecate_constant(symbol, ...) ⇒ Object
Makes a list of existing constants deprecated.
-
#extend_object(obj) ⇒ Object
private
Extends the specified object by adding this module’s constants and methods (which are added as singleton methods).
-
#extended(_y) ⇒ Object
private
call-seq: extended(othermod).
-
#freeze ⇒ Object
Prevents further modifications to mod.
-
#include ⇒ self
Invokes Module.append_features on each parameter in reverse order.
-
#include? ⇒ Boolean
Returns
true
if module is included or prepended in mod or one of mod’s ancestors. -
#included(_y) ⇒ Object
private
call-seq: included(othermod).
-
#included_modules ⇒ Array
Returns the list of modules included or prepended in mod or one of mod’s ancestors.
-
#initialize ⇒ Object
constructor
Creates a new anonymous module.
-
#initialize_clone(*args) ⇒ Object
:nodoc:.
-
#initialize_copy(orig) ⇒ Object
:nodoc:.
-
#instance_method(symbol) ⇒ Object
Returns an
UnboundMethod
representing the given instance method in mod. -
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver.
-
#method_added(_y) ⇒ Object
private
call-seq: method_added(method_name).
-
#method_defined?(*args) ⇒ Object
Returns
true
if the named method is defined by mod. -
#method_removed(_y) ⇒ Object
private
call-seq: method_removed(method_name).
- #method_undefined(_y) ⇒ Object private
-
#module_eval(*args) ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected.
-
#module_exec(*args) ⇒ Object
Evaluates the given block in the context of the class/module.
-
#module_function(*args) ⇒ Object
private
Creates module functions for the named methods.
-
#name ⇒ String
Returns the name of the module mod.
-
#prepend ⇒ self
Invokes Module.prepend_features on each parameter in reverse order.
-
#prepend_features(mod) ⇒ Object
private
When this module is prepended in another, Ruby calls #prepend_features in this module, passing it the receiving module in mod.
-
#prepended(_y) ⇒ Object
private
call-seq: prepended(othermod).
-
#private(*args) ⇒ Object
private
With no arguments, sets the default visibility for subsequently defined methods to private.
-
#private_class_method(*args) ⇒ Object
Makes existing class methods private.
-
#private_constant(symbol, ...) ⇒ Object
Makes a list of existing constants private.
-
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod.
-
#private_method_defined?(*args) ⇒ Object
Returns
true
if the named private method is defined by mod. -
#protected(*args) ⇒ Object
private
With no arguments, sets the default visibility for subsequently defined methods to protected.
-
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod.
-
#protected_method_defined?(*args) ⇒ Object
Returns
true
if the named protected method is defined mod. -
#public(*args) ⇒ Object
private
With no arguments, sets the default visibility for subsequently defined methods to public.
-
#public_class_method(*args) ⇒ Object
Makes a list of existing class methods public.
-
#public_constant(symbol, ...) ⇒ Object
Makes a list of existing constants public.
-
#public_instance_method(symbol) ⇒ Object
Similar to instance_method, searches public method only.
-
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod.
-
#public_method_defined?(*args) ⇒ Object
Returns
true
if the named public method is defined by mod. -
#refine(mod) { ... } ⇒ Object
private
Refine mod in the receiver.
-
#remove_class_variable(sym) ⇒ Object
Removes the named class variable from the receiver, returning that variable’s value.
-
#remove_const(sym) ⇒ Object
private
Removes the definition of the given constant, returning that constant’s previous value.
-
#remove_method(*args) ⇒ Object
Removes the method identified by symbol from the current class.
-
#ruby2_keywords(method_name, ...) ⇒ nil
private
For the given method names, marks the method as passing keywords through a normal argument splat.
-
#singleton_class? ⇒ Boolean
Returns
true
if mod is a singleton class orfalse
if it is an ordinary class or module. -
#to_s ⇒ String
(also: #inspect)
Returns a string representing this module or class.
-
#undef_method(*args) ⇒ Object
Prevents the current class from responding to calls to the named method.
-
#using ⇒ self
private
Import class refinements from module into the current class or module definition.
Constructor Details
#new ⇒ Object #new {|mod| ... } ⇒ Object
Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module like #module_eval.
fred = Module.new do
def meth1
"hello"
end
def meth2
"bye"
end
end
a = "my string"
a.extend(fred) #=> "my string"
a.meth1 #=> "hello"
a.meth2 #=> "bye"
Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.
1911 1912 1913 1914 1915 1916 1917 1918 |
# File 'object.c', line 1911
static VALUE
rb_mod_initialize(VALUE module)
{
if (rb_block_given_p()) {
rb_mod_module_exec(1, &module, module);
}
return Qnil;
}
|
Class Method Details
.constants ⇒ Array .constants(inherited) ⇒ Array
In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.
Module.constants.first(4)
# => [:ARGF, :ARGV, :ArgumentError, :Array]
Module.constants.include?(:SEEK_SET) # => false
class IO
Module.constants.include?(:SEEK_SET) # => true
end
The second form calls the instance method constants
.
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# File 'eval.c', line 440
static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
const rb_cref_t *cref = rb_vm_cref();
VALUE klass;
VALUE cbase = 0;
void *data = 0;
if (argc > 0 || mod != rb_cModule) {
return rb_mod_constants(argc, argv, mod);
}
while (cref) {
klass = CREF_CLASS(cref);
if (!CREF_PUSHED_BY_EVAL(cref) &&
!NIL_P(klass)) {
data = rb_mod_const_at(CREF_CLASS(cref), data);
if (!cbase) {
cbase = klass;
}
}
cref = CREF_NEXT(cref);
}
if (cbase) {
data = rb_mod_const_of(cbase, data);
}
return rb_const_list(data);
}
|
.nesting ⇒ Array
Returns the list of Modules
nested at the point of call.
module M1
module M2
$a = Module.nesting
end
end
$a #=> [M1::M2, M1]
$a[0].name #=> "M1::M2"
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# File 'eval.c', line 401
static VALUE
rb_mod_nesting(VALUE _)
{
VALUE ary = rb_ary_new();
const rb_cref_t *cref = rb_vm_cref();
while (cref && CREF_NEXT(cref)) {
VALUE klass = CREF_CLASS(cref);
if (!CREF_PUSHED_BY_EVAL(cref) &&
!NIL_P(klass)) {
rb_ary_push(ary, klass);
}
cref = CREF_NEXT(cref);
}
return ary;
}
|
.used_modules ⇒ Array
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 |
# File 'eval.c', line 1683
static VALUE
rb_mod_s_used_modules(VALUE _)
{
const rb_cref_t *cref = rb_vm_cref();
VALUE ary = rb_ary_new();
while (cref) {
if (!NIL_P(CREF_REFINEMENTS(cref))) {
rb_hash_foreach(CREF_REFINEMENTS(cref), used_modules_i, ary);
}
cref = CREF_NEXT(cref);
}
return rb_funcall(ary, rb_intern("uniq"), 0);
}
|
Instance Method Details
#<(other) ⇒ true, ...
Returns true if mod is a subclass of other. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)
1792 1793 1794 1795 1796 1797 |
# File 'object.c', line 1792
static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_class_inherited_p(mod, arg);
}
|
#<=(other) ⇒ true, ...
Returns true if mod is a subclass of other or is the same as other. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 |
# File 'object.c', line 1764
VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
if (mod == arg) return Qtrue;
if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
rb_raise(rb_eTypeError, "compared with non class/module");
}
if (class_search_ancestor(mod, RCLASS_ORIGIN(arg))) {
return Qtrue;
}
/* not mod < arg; check if mod > arg */
if (class_search_ancestor(arg, mod)) {
return Qfalse;
}
return Qnil;
}
|
#<=>(other_module) ⇒ -1, ...
Comparison—Returns -1, 0, +1 or nil depending on whether module
includes other_module
, they are the same, or if module
is included by other_module
.
Returns nil
if module
has no relationship with other_module
, if other_module
is not a module, or if the two values are incomparable.
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 |
# File 'object.c', line 1852
static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
VALUE cmp;
if (mod == arg) return INT2FIX(0);
if (!CLASS_OR_MODULE_P(arg)) {
return Qnil;
}
cmp = rb_class_inherited_p(mod, arg);
if (NIL_P(cmp)) return Qnil;
if (cmp) {
return INT2FIX(-1);
}
return INT2FIX(1);
}
|
#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean
Equality — At the Object level, #== returns true
only if obj
and other
are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.
Unlike #==, the #equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b)
if and only if a
is the same object as b
):
obj = "a"
other = obj.dup
obj == other #=> true
obj.equal? other #=> false
obj.equal? obj #=> true
The #eql? method returns true
if obj
and other
refer to the same hash key. This is used by Hash to test members for equality. For any pair of objects where #eql? returns true
, the #hash value of both objects must be equal. So any subclass that overrides #eql? should also override #hash appropriately.
For objects of class Object, #eql? is synonymous with #==. Subclasses normally continue this tradition by aliasing #eql? to their overridden #== method, but there are exceptions. Numeric types, for example, perform type conversion across #==, but not across #eql?, so:
1 == 1.0 #=> true
1.eql? 1.0 #=> false
234 235 236 237 238 239 |
# File 'object.c', line 234
MJIT_FUNC_EXPORTED VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
|
#===(obj) ⇒ Boolean
Case Equality—Returns true
if obj is an instance of mod or an instance of one of mod’s descendants. Of limited use for modules, but can be used in case
statements to classify objects by class.
1738 1739 1740 1741 1742 |
# File 'object.c', line 1738
static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
return rb_obj_is_kind_of(arg, mod);
}
|
#>(other) ⇒ true, ...
Returns true if mod is an ancestor of other. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)
1833 1834 1835 1836 1837 1838 |
# File 'object.c', line 1833
static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_mod_ge(mod, arg);
}
|
#>=(other) ⇒ true, ...
Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil
if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)
1812 1813 1814 1815 1816 1817 1818 1819 1820 |
# File 'object.c', line 1812
static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
if (!CLASS_OR_MODULE_P(arg)) {
rb_raise(rb_eTypeError, "compared with non class/module");
}
return rb_class_inherited_p(arg, mod);
}
|
#alias_method(new_name, old_name) ⇒ Object
Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.
module Mod
alias_method :orig_exit, :exit #=> :orig_exit
def exit(code=0)
puts "Exiting with code #{code}"
orig_exit(code)
end
end
include Mod
exit(99)
produces:
Exiting with code 99
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 |
# File 'vm_method.c', line 1994
static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
ID oldid = rb_check_id(&oldname);
if (!oldid) {
rb_print_undef_str(mod, oldname);
}
VALUE id = rb_to_id(newname);
rb_alias(mod, id, oldid);
return ID2SYM(id);
}
|
#ancestors ⇒ Array
Returns a list of modules included/prepended in mod (including mod itself).
module Mod
include Math
include Comparable
prepend Enumerable
end
Mod.ancestors #=> [Enumerable, Mod, Comparable, Math]
Math.ancestors #=> [Math]
Enumerable.ancestors #=> [Enumerable]
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 |
# File 'class.c', line 1289
VALUE
rb_mod_ancestors(VALUE mod)
{
VALUE p, ary = rb_ary_new();
for (p = mod; p; p = RCLASS_SUPER(p)) {
if (p != RCLASS_ORIGIN(p)) continue;
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, RBASIC(p)->klass);
}
else {
rb_ary_push(ary, p);
}
}
return ary;
}
|
#append_features(mod) ⇒ Object (private)
When this module is included in another, Ruby calls #append_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include.
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 |
# File 'eval.c', line 1296
static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
if (!CLASS_OR_MODULE_P(include)) {
Check_Type(include, T_CLASS);
}
rb_include_module(include, module);
return module;
}
|
#attr(name, ...) ⇒ Array #attr(name, true) ⇒ Array #attr(name, false) ⇒ Array
The first form is equivalent to #attr_reader. The second form is equivalent to attr_accessor(name)
but deprecated. The last form is equivalent to attr_reader(name)
but deprecated. Returns an array of defined method names as symbols.
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 |
# File 'object.c', line 2298
VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
ID id = id_for_attr(klass, argv[0]);
VALUE names = rb_ary_new();
rb_category_warning(RB_WARN_CATEGORY_DEPRECATED, "optional boolean argument is obsoleted");
rb_attr(klass, id, 1, RTEST(argv[1]), TRUE);
rb_ary_push(names, ID2SYM(id));
if (argv[1] == Qtrue) rb_ary_push(names, ID2SYM(rb_id_attrset(id)));
return names;
}
return rb_mod_attr_reader(argc, argv, klass);
}
|
#attr_accessor(symbol, ...) ⇒ Array #attr_accessor(string, ...) ⇒ Array
Defines a named attribute for this module, where the name is symbol.id2name
, creating an instance variable (@name
) and a corresponding access method to read it. Also creates a method called name=
to set the attribute. String arguments are converted to symbols. Returns an array of defined method names as symbols.
module Mod
attr_accessor(:one, :two) #=> [:one, :one=, :two, :two=]
end
Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 |
# File 'object.c', line 2357
static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
int i;
VALUE names = rb_ary_new2(argc * 2);
for (i=0; i<argc; i++) {
ID id = id_for_attr(klass, argv[i]);
rb_attr(klass, id, TRUE, TRUE, TRUE);
rb_ary_push(names, ID2SYM(id));
rb_ary_push(names, ID2SYM(rb_id_attrset(id)));
}
return names;
}
|
#attr_reader(symbol, ...) ⇒ Array #attr(symbol, ...) ⇒ Array #attr_reader(string, ...) ⇒ Array #attr(string, ...) ⇒ Array
Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr
:name” on each name in turn. String arguments are converted to symbols. Returns an array of defined method names as symbols.
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 |
# File 'object.c', line 2269
static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
int i;
VALUE names = rb_ary_new2(argc);
for (i=0; i<argc; i++) {
ID id = id_for_attr(klass, argv[i]);
rb_attr(klass, id, TRUE, FALSE, TRUE);
rb_ary_push(names, ID2SYM(id));
}
return names;
}
|
#attr_writer(symbol, ...) ⇒ Array #attr_writer(string, ...) ⇒ Array
Creates an accessor method to allow assignment to the attribute symbol.id2name
. String arguments are converted to symbols. Returns an array of defined method names as symbols.
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 |
# File 'object.c', line 2325
static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
int i;
VALUE names = rb_ary_new2(argc);
for (i=0; i<argc; i++) {
ID id = id_for_attr(klass, argv[i]);
rb_attr(klass, id, FALSE, TRUE, TRUE);
rb_ary_push(names, ID2SYM(rb_id_attrset(id)));
}
return names;
}
|
#autoload ⇒ nil
Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed in the namespace of mod.
module A
end
A.autoload(:B, "b")
A::B.doit # autoloads "b"
1199 1200 1201 1202 1203 1204 1205 1206 1207 |
# File 'load.c', line 1199
static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
ID id = rb_to_id(sym);
FilePathValue(file);
rb_autoload_str(mod, id, file);
return Qnil;
}
|
#autoload?(name, inherit = true) ⇒ String?
Returns filename to be loaded if name is registered as autoload
in the namespace of mod or one of its ancestors.
module A
end
A.autoload(:B, "b")
A.autoload?(:B) #=> "b"
If inherit
is false, the lookup only checks the autoloads in the receiver:
class A
autoload :CONST, "const.rb"
end
class B < A
end
B.autoload?(:CONST) #=> "const.rb", found in A (ancestor)
B.autoload?(:CONST, false) #=> nil, not found in B itself
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 |
# File 'load.c', line 1235
static VALUE
rb_mod_autoload_p(int argc, VALUE *argv, VALUE mod)
{
int recur = (rb_check_arity(argc, 1, 2) == 1) ? TRUE : RTEST(argv[1]);
VALUE sym = argv[0];
ID id = rb_check_id(&sym);
if (!id) {
return Qnil;
}
return rb_autoload_at_p(mod, id, recur);
}
|
#class_eval(string[, filename [, lineno]]) ⇒ Object #class_eval {|mod| ... } ⇒ Object #module_eval(string[, filename [, lineno]]) ⇒ Object #module_eval {|mod| ... } ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval
returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.
class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there!
dummy:123:in `module_eval': undefined local variable
or method `code' for Thing:Class
2157 2158 2159 2160 2161 |
# File 'vm_eval.c', line 2157
static VALUE
rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod, RB_PASS_CALLED_KEYWORDS);
}
|
#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.
class Thing
end
Thing.class_exec{
def hello() "Hello there!" end
}
puts Thing.new.hello()
produces:
Hello there!
2191 2192 2193 2194 2195 |
# File 'vm_eval.c', line 2191
static VALUE
rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, argc, argv, RB_PASS_CALLED_KEYWORDS);
}
|
#class_variable_defined?(symbol) ⇒ Boolean #class_variable_defined?(string) ⇒ Boolean
Returns true
if the given class variable is defined in obj. String arguments are converted to symbols.
class Fred
@@foo = 99
end
Fred.class_variable_defined?(:@@foo) #=> true
Fred.class_variable_defined?(:@@bar) #=> false
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 |
# File 'object.c', line 3016
static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
ID id = id_for_var(obj, iv, class);
if (!id) {
return Qfalse;
}
return rb_cvar_defined(obj, id);
}
|
#class_variable_get(symbol) ⇒ Object #class_variable_get(string) ⇒ Object
Returns the value of the given class variable (or throws a NameError exception). The @@
part of the variable name should be included for regular class variables. String arguments are converted to symbols.
class Fred
@@foo = 99
end
Fred.class_variable_get(:@@foo) #=> 99
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 |
# File 'object.c', line 2959
static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
ID id = id_for_var(obj, iv, class);
if (!id) {
rb_name_err_raise("uninitialized class variable %1$s in %2$s",
obj, iv);
}
return rb_cvar_get(obj, id);
}
|
#class_variable_set(symbol, obj) ⇒ Object #class_variable_set(string, obj) ⇒ Object
Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.
class Fred
@@foo = 99
def foo
@@foo
end
end
Fred.class_variable_set(:@@foo, 101) #=> 101
Fred.new.foo #=> 101
2991 2992 2993 2994 2995 2996 2997 2998 |
# File 'object.c', line 2991
static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
ID id = id_for_var(obj, iv, class);
if (!id) id = rb_intern_str(iv);
rb_cvar_set(obj, id, val);
return val;
}
|
#class_variables(inherit = true) ⇒ Array
Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false
.
class One
@@var1 = 1
end
class Two < One
@@var2 = 2
end
One.class_variables #=> [:@@var1]
Two.class_variables #=> [:@@var2, :@@var1]
Two.class_variables(false) #=> [:@@var2]
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 |
# File 'variable.c', line 3511
VALUE
rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod)
{
bool inherit = true;
st_table *tbl;
if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
if (inherit) {
tbl = mod_cvar_of(mod, 0);
}
else {
tbl = mod_cvar_at(mod, 0);
}
return cvar_list(tbl);
}
|
#const_defined?(sym, inherit = true) ⇒ Boolean #const_defined?(str, inherit = true) ⇒ Boolean
Says whether mod or its ancestors have a constant with the given name:
Float.const_defined?(:EPSILON) #=> true, found in Float itself
Float.const_defined?("String") #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash) #=> false
If mod is a Module
, additionally Object
and its ancestors are checked:
Math.const_defined?(:String) #=> true, found in Object
In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true
is returned directly without autoloading:
module Admin
autoload :User, 'admin/user'
end
Admin.const_defined?(:User) #=> true
If the constant is not found the callback const_missing
is not called and the method returns false
.
If inherit
is false, the lookup only checks the constants in the receiver:
IO.const_defined?(:SYNC) #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false) #=> false, not found in IO itself
In this case, the same logic for autoloading applies.
If the argument is not a valid constant name a NameError
is raised with the message “wrong constant name name”:
Hash.const_defined? 'foobar' #=> NameError: wrong constant name foobar
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 |
# File 'object.c', line 2586
static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
rb_encoding *enc;
const char *pbeg, *p, *path, *pend;
ID id;
rb_check_arity(argc, 1, 2);
name = argv[0];
recur = (argc == 1) ? Qtrue : argv[1];
if (SYMBOL_P(name)) {
if (!rb_is_const_sym(name)) goto wrong_name;
id = rb_check_id(&name);
if (!id) return Qfalse;
return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
}
path = StringValuePtr(name);
enc = rb_enc_get(name);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(name);
if (p >= pend || !*p) {
goto wrong_name;
}
if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
mod = rb_cObject;
p += 2;
pbeg = p;
}
while (p < pend) {
VALUE part;
long len, beglen;
while (p < pend && *p != ':') p++;
if (pbeg == p) goto wrong_name;
id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
beglen = pbeg-path;
if (p < pend && p[0] == ':') {
if (p + 2 >= pend || p[1] != ':') goto wrong_name;
p += 2;
pbeg = p;
}
if (!id) {
part = rb_str_subseq(name, beglen, len);
OBJ_FREEZE(part);
if (!rb_is_const_name(part)) {
name = part;
goto wrong_name;
}
else {
return Qfalse;
}
}
if (!rb_is_const_id(id)) {
name = ID2SYM(id);
goto wrong_name;
}
#if 0
mod = rb_const_search(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
if (mod == Qundef) return Qfalse;
#else
if (!RTEST(recur)) {
if (!rb_const_defined_at(mod, id))
return Qfalse;
if (p == pend) return Qtrue;
mod = rb_const_get_at(mod, id);
}
else if (beglen == 0) {
if (!rb_const_defined(mod, id))
return Qfalse;
if (p == pend) return Qtrue;
mod = rb_const_get(mod, id);
}
else {
if (!rb_const_defined_from(mod, id))
return Qfalse;
if (p == pend) return Qtrue;
mod = rb_const_get_from(mod, id);
}
#endif
if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
QUOTE(name));
}
}
return Qtrue;
wrong_name:
rb_name_err_raise(wrong_constant_name, mod, name);
UNREACHABLE_RETURN(Qundef);
}
|
#const_get(sym, inherit = true) ⇒ Object #const_get(str, inherit = true) ⇒ Object
Checks for a constant with the given name in mod. If inherit
is set, the lookup will also search the ancestors (and Object
if mod is a Module
).
The value of the constant is returned if a definition is found, otherwise a NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
This method will recursively look up constant names if a namespaced class name is provided. For example:
module Foo; class Bar; end end
Object.const_get 'Foo::Bar'
The inherit
flag is respected on each lookup. For example:
module Foo
class Bar
VAL = 10
end
class Baz < Bar; end
end
Object.const_get 'Foo::Baz::VAL' # => 10
Object.const_get 'Foo::Baz::VAL', false # => NameError
If the argument is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_get ‘foobar’ #=> NameError: wrong constant name foobar
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 |
# File 'object.c', line 2413
static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
rb_encoding *enc;
const char *pbeg, *p, *path, *pend;
ID id;
rb_check_arity(argc, 1, 2);
name = argv[0];
recur = (argc == 1) ? Qtrue : argv[1];
if (SYMBOL_P(name)) {
if (!rb_is_const_sym(name)) goto wrong_name;
id = rb_check_id(&name);
if (!id) return rb_const_missing(mod, name);
return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
}
path = StringValuePtr(name);
enc = rb_enc_get(name);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(name);
if (p >= pend || !*p) {
goto wrong_name;
}
if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
mod = rb_cObject;
p += 2;
pbeg = p;
}
while (p < pend) {
VALUE part;
long len, beglen;
while (p < pend && *p != ':') p++;
if (pbeg == p) goto wrong_name;
id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
beglen = pbeg-path;
if (p < pend && p[0] == ':') {
if (p + 2 >= pend || p[1] != ':') goto wrong_name;
p += 2;
pbeg = p;
}
if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
QUOTE(name));
}
if (!id) {
part = rb_str_subseq(name, beglen, len);
OBJ_FREEZE(part);
if (!rb_is_const_name(part)) {
name = part;
goto wrong_name;
}
else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
part = rb_str_intern(part);
mod = rb_const_missing(mod, part);
continue;
}
else {
rb_mod_const_missing(mod, part);
}
}
if (!rb_is_const_id(id)) {
name = ID2SYM(id);
goto wrong_name;
}
#if 0
mod = rb_const_get_0(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
#else
if (!RTEST(recur)) {
mod = rb_const_get_at(mod, id);
}
else if (beglen == 0) {
mod = rb_const_get(mod, id);
}
else {
mod = rb_const_get_from(mod, id);
}
#endif
}
return mod;
wrong_name:
rb_name_err_raise(wrong_constant_name, mod, name);
UNREACHABLE_RETURN(Qundef);
}
|
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:
def Foo.const_missing(name)
name # return the constant name as Symbol
end
Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred
is assumed to be in file fred.rb
). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and Module#autoload.
def Object.const_missing(name)
@looked_for ||= {}
str_name = name.to_s
raise "Class not found: #{name}" if @looked_for[str_name]
@looked_for[str_name] = 1
file = str_name.downcase
require file
klass = const_get(name)
return klass if klass
raise "Class not found: #{name}"
end
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 |
# File 'variable.c', line 1959
VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
VALUE ref = GET_EC()->private_const_reference;
rb_vm_pop_cfunc_frame();
if (ref) {
rb_name_err_raise("private constant %2$s::%1$s referenced",
ref, name);
}
uninitialized_constant(klass, name);
UNREACHABLE_RETURN(Qnil);
}
|
#const_set(sym, obj) ⇒ Object #const_set(str, obj) ⇒ Object
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
If sym
or str
is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_set(‘foobar’, 42) #=> NameError: wrong constant name foobar
2535 2536 2537 2538 2539 2540 2541 2542 2543 |
# File 'object.c', line 2535
static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
ID id = id_for_var(mod, name, const);
if (!id) id = rb_intern_str(name);
rb_const_set(mod, id, value);
return value;
}
|
#const_source_location(sym, inherit = true) ⇒ Array, Integer #const_source_location(str, inherit = true) ⇒ Array, Integer
Returns the Ruby source filename and line number containing the definition of the constant specified. If the named constant is not found, nil
is returned. If the constant is found, but its source location can not be extracted (constant is defined in C code), empty array is returned.
inherit specifies whether to lookup in mod.ancestors
(true
by default).
# test.rb:
class A # line 1
C1 = 1
C2 = 2
end
module M # line 6
C3 = 3
end
class B < A # line 10
include M
C4 = 4
end
class A # continuation of A definition
C2 = 8 # constant redefinition; warned yet allowed
end
p B.const_source_location('C4') # => ["test.rb", 12]
p B.const_source_location('C3') # => ["test.rb", 7]
p B.const_source_location('C1') # => ["test.rb", 2]
p B.const_source_location('C3', false) # => nil -- don't lookup in ancestors
p A.const_source_location('C2') # => ["test.rb", 16] -- actual (last) definition place
p Object.const_source_location('B') # => ["test.rb", 10] -- top-level constant could be looked through Object
p Object.const_source_location('A') # => ["test.rb", 1] -- class reopening is NOT considered new definition
p B.const_source_location('A') # => ["test.rb", 1] -- because Object is in ancestors
p M.const_source_location('A') # => ["test.rb", 1] -- Object is not ancestor, but additionally checked for modules
p Object.const_source_location('A::C1') # => ["test.rb", 2] -- nesting is supported
p Object.const_source_location('String') # => [] -- constant is defined in C code
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 |
# File 'object.c', line 2746
static VALUE
rb_mod_const_source_location(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur, loc = Qnil;
rb_encoding *enc;
const char *pbeg, *p, *path, *pend;
ID id;
rb_check_arity(argc, 1, 2);
name = argv[0];
recur = (argc == 1) ? Qtrue : argv[1];
if (SYMBOL_P(name)) {
if (!rb_is_const_sym(name)) goto wrong_name;
id = rb_check_id(&name);
if (!id) return Qnil;
return RTEST(recur) ? rb_const_source_location(mod, id) : rb_const_source_location_at(mod, id);
}
path = StringValuePtr(name);
enc = rb_enc_get(name);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(name);
if (p >= pend || !*p) {
goto wrong_name;
}
if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
mod = rb_cObject;
p += 2;
pbeg = p;
}
while (p < pend) {
VALUE part;
long len, beglen;
while (p < pend && *p != ':') p++;
if (pbeg == p) goto wrong_name;
id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
beglen = pbeg-path;
if (p < pend && p[0] == ':') {
if (p + 2 >= pend || p[1] != ':') goto wrong_name;
p += 2;
pbeg = p;
}
if (!id) {
part = rb_str_subseq(name, beglen, len);
OBJ_FREEZE(part);
if (!rb_is_const_name(part)) {
name = part;
goto wrong_name;
}
else {
return Qnil;
}
}
if (!rb_is_const_id(id)) {
name = ID2SYM(id);
goto wrong_name;
}
if (p < pend) {
if (RTEST(recur)) {
mod = rb_const_get(mod, id);
}
else {
mod = rb_const_get_at(mod, id);
}
if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
QUOTE(name));
}
}
else {
if (RTEST(recur)) {
loc = rb_const_source_location(mod, id);
}
else {
loc = rb_const_source_location_at(mod, id);
}
break;
}
recur = Qfalse;
}
return loc;
wrong_name:
rb_name_err_raise(wrong_constant_name, mod, name);
UNREACHABLE_RETURN(Qundef);
}
|
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false
.
The implementation makes no guarantees about the order in which the constants are yielded.
IO.constants.include?(:SYNC) #=> true
IO.constants(false).include?(:SYNC) #=> false
Also see Module#const_defined?.
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 |
# File 'variable.c', line 2871
VALUE
rb_mod_constants(int argc, const VALUE *argv, VALUE mod)
{
bool inherit = true;
if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
if (inherit) {
return rb_const_list(rb_mod_const_of(mod, 0));
}
else {
return rb_local_constants(mod);
}
}
|
#define_method(symbol, method) ⇒ Object #define_method(symbol) { ... } ⇒ Object
Defines an instance method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body. If a block or the method parameter has parameters, they’re used as method parameters. This block is evaluated using #instance_eval.
class A
def fred
puts "In Fred"
end
def create_method(name, &block)
self.class.define_method(name, &block)
end
define_method(:wilma) { puts "Charge it!" }
define_method(:flint) {|name| puts "I'm #{name}!"}
end
class B < A
define_method(:barney, instance_method(:fred))
end
a = B.new
a.
a.wilma
a.flint('Dino')
a.create_method(:betty) { p self }
a.betty
produces:
In Fred
Charge it!
I'm Dino!
#<B:0x401b39e8>
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 |
# File 'proc.c', line 2170
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
ID id;
VALUE body;
VALUE name;
const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
const rb_scope_visibility_t *scope_visi = &default_scope_visi;
int is_method = FALSE;
if (cref) {
scope_visi = CREF_SCOPE_VISI(cref);
}
rb_check_arity(argc, 1, 2);
name = argv[0];
id = rb_check_id(&name);
if (argc == 1) {
body = rb_block_lambda();
}
else {
body = argv[1];
if (rb_obj_is_method(body)) {
is_method = TRUE;
}
else if (rb_obj_is_proc(body)) {
is_method = FALSE;
}
else {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected Proc/Method/UnboundMethod)",
rb_obj_classname(body));
}
}
if (!id) id = rb_to_id(name);
if (is_method) {
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
!RTEST(rb_class_inherited_p(mod, method->me->owner))) {
if (FL_TEST(method->me->owner, FL_SINGLETON)) {
rb_raise(rb_eTypeError,
"can't bind singleton method to a different class");
}
else {
rb_raise(rb_eTypeError,
"bind argument must be a subclass of % "PRIsVALUE,
method->me->owner);
}
}
rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
if (scope_visi->module_func) {
rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
}
RB_GC_GUARD(body);
}
else {
VALUE procval = rb_proc_dup(body);
if (vm_proc_iseq(procval) != NULL) {
rb_proc_t *proc;
GetProcPtr(procval, proc);
proc->is_lambda = TRUE;
proc->is_from_method = TRUE;
}
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
if (scope_visi->module_func) {
rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
}
}
return ID2SYM(id);
}
|
#deprecate_constant(symbol, ...) ⇒ Object
Makes a list of existing constants deprecated. Attempt to refer to them will produce a warning.
module HTTP
NotFound = Exception.new
NOT_FOUND = NotFound # previous version of the library used this name
deprecate_constant :NOT_FOUND
end
HTTP::NOT_FOUND
# warning: constant HTTP::NOT_FOUND is deprecated
3280 3281 3282 3283 3284 3285 |
# File 'variable.c', line 3280
VALUE
rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED);
return obj;
}
|
#extend_object(obj) ⇒ Object (private)
Extends the specified object by adding this module’s constants and methods (which are added as singleton methods). This is the callback method used by Object#extend.
module Picky
def Picky.extend_object(o)
if String === o
puts "Can't add Picky to a String"
else
puts "Picky added to #{o.class}"
super
end
end
end
(s = Array.new).extend Picky # Call Object.extend
(s = "quick brown fox").extend Picky
produces:
Picky added to Array
Can't add Picky to a String
1762 1763 1764 1765 1766 1767 |
# File 'eval.c', line 1762
static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
rb_extend_object(obj, mod);
return obj;
}
|
#extended(_y) ⇒ Object (private)
call-seq:
extended(othermod)
The equivalent of included
, but for extended modules.
module A
def self.extended(mod)
puts "#{self} extended in #{mod}"
end
end
module Enumerable
extend A
end
# => prints "A extended in Enumerable"
1146 1147 1148 1149 1150 |
# File 'object.c', line 1146
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
return rb_obj_dummy();
}
|
#freeze ⇒ Object
Prevents further modifications to mod.
This method returns self.
1721 1722 1723 1724 1725 1726 |
# File 'object.c', line 1721
static VALUE
rb_mod_freeze(VALUE mod)
{
rb_class_name(mod);
return rb_obj_freeze(mod);
}
|
#include ⇒ self
Invokes Module.append_features on each parameter in reverse order.
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 |
# File 'eval.c', line 1314
static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_append_features, id_included;
CONST_ID(id_append_features, "append_features");
CONST_ID(id_included, "included");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_append_features, 1, module);
rb_funcall(argv[argc], id_included, 1, module);
}
return module;
}
|
#include? ⇒ Boolean
Returns true
if module is included or prepended in mod or one of mod’s ancestors.
module A
end
class B
include A
end
class C < B
end
B.include?(A) #=> true
C.include?(A) #=> true
A.include?(A) #=> false
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 |
# File 'class.c', line 1257
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
VALUE p;
Check_Type(mod2, T_MODULE);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS && !FL_TEST(p, RICLASS_IS_ORIGIN)) {
if (RBASIC(p)->klass == mod2) return Qtrue;
}
}
return Qfalse;
}
|
#included(_y) ⇒ Object (private)
call-seq:
included(othermod)
Callback invoked whenever the receiver is included in another module or class. This should be used in preference to Module.append_features
if your code wants to perform some action when a module is included in another.
module A
def A.included(mod)
puts "#{self} included in #{mod}"
end
end
module Enumerable
include A
end
# => prints "A included in Enumerable"
1146 1147 1148 1149 1150 |
# File 'object.c', line 1146
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
return rb_obj_dummy();
}
|
#included_modules ⇒ Array
Returns the list of modules included or prepended in mod or one of mod’s ancestors.
module Sub
end
module Mixin
prepend Sub
end
module Outer
include Mixin
end
Mixin.included_modules #=> [Sub]
Outer.included_modules #=> [Sub, Mixin]
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 |
# File 'class.c', line 1221
VALUE
rb_mod_included_modules(VALUE mod)
{
VALUE ary = rb_ary_new();
VALUE p;
VALUE origin = RCLASS_ORIGIN(mod);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (p != origin && RCLASS_ORIGIN(p) == p && BUILTIN_TYPE(p) == T_ICLASS) {
VALUE m = RBASIC(p)->klass;
if (RB_TYPE_P(m, T_MODULE))
rb_ary_push(ary, m);
}
}
return ary;
}
|
#initialize_clone(*args) ⇒ Object
:nodoc:
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 |
# File 'object.c', line 1921
static VALUE
rb_mod_initialize_clone(int argc, VALUE* argv, VALUE clone)
{
VALUE ret, orig, opts;
rb_scan_args(argc, argv, "1:", &orig, &opts);
ret = rb_obj_init_clone(argc, argv, clone);
if (OBJ_FROZEN(orig))
rb_class_name(clone);
return ret;
}
|
#initialize_copy(orig) ⇒ Object
:nodoc:
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# File 'class.c', line 357
VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
if (RB_TYPE_P(clone, T_CLASS)) {
class_init_copy_check(clone, orig);
}
if (!OBJ_INIT_COPY(clone, orig)) return clone;
/* cloned flag is refer at constant inline cache
* see vm_get_const_key_cref() in vm_insnhelper.c
*/
FL_SET(clone, RCLASS_CLONED);
FL_SET(orig , RCLASS_CLONED);
if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
}
RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator;
copy_tables(clone, orig);
if (RCLASS_M_TBL(orig)) {
struct clone_method_arg arg;
arg.old_klass = orig;
arg.new_klass = clone;
RCLASS_M_TBL_INIT(clone);
rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg);
}
if (RCLASS_ORIGIN(orig) == orig) {
RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
}
else {
VALUE p = RCLASS_SUPER(orig);
VALUE orig_origin = RCLASS_ORIGIN(orig);
VALUE prev_clone_p = clone;
VALUE origin_stack = rb_ary_tmp_new(2);
VALUE origin[2];
VALUE clone_p = 0;
long origin_len;
int add_subclass;
VALUE clone_origin;
ensure_origin(clone);
clone_origin = RCLASS_ORIGIN(clone);
while (p && p != orig_origin) {
if (BUILTIN_TYPE(p) != T_ICLASS) {
rb_bug("non iclass between module/class and origin");
}
clone_p = class_alloc(RBASIC(p)->flags, RBASIC(p)->klass);
RCLASS_SET_SUPER(prev_clone_p, clone_p);
prev_clone_p = clone_p;
RCLASS_M_TBL(clone_p) = RCLASS_M_TBL(p);
RCLASS_CONST_TBL(clone_p) = RCLASS_CONST_TBL(p);
RCLASS_IV_TBL(clone_p) = RCLASS_IV_TBL(p);
RCLASS_EXT(clone_p)->allocator = RCLASS_EXT(p)->allocator;
if (RB_TYPE_P(clone, T_CLASS)) {
RCLASS_SET_INCLUDER(clone_p, clone);
}
add_subclass = TRUE;
if (p != RCLASS_ORIGIN(p)) {
origin[0] = clone_p;
origin[1] = RCLASS_ORIGIN(p);
rb_ary_cat(origin_stack, origin, 2);
}
else if ((origin_len = RARRAY_LEN(origin_stack)) > 1 &&
RARRAY_AREF(origin_stack, origin_len - 1) == p) {
RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), clone_p);
RICLASS_SET_ORIGIN_SHARED_MTBL(clone_p);
rb_ary_resize(origin_stack, origin_len);
add_subclass = FALSE;
}
if (add_subclass) {
rb_module_add_to_subclasses_list(RBASIC(p)->klass, clone_p);
}
p = RCLASS_SUPER(p);
}
if (p == orig_origin) {
if (clone_p) {
RCLASS_SET_SUPER(clone_p, clone_origin);
RCLASS_SET_SUPER(clone_origin, RCLASS_SUPER(orig_origin));
}
copy_tables(clone_origin, orig_origin);
if (RCLASS_M_TBL(orig_origin)) {
struct clone_method_arg arg;
arg.old_klass = orig;
arg.new_klass = clone;
RCLASS_M_TBL_INIT(clone_origin);
rb_id_table_foreach(RCLASS_M_TBL(orig_origin), clone_method_i, &arg);
}
}
else {
rb_bug("no origin for class that has origin");
}
}
return clone;
}
|
#instance_method(symbol) ⇒ Object
Returns an UnboundMethod
representing the given instance method in mod.
class Interpreter
def do_a() print "there, "; end
def do_d() print "Hello "; end
def do_e() print "!\n"; end
def do_v() print "Dave"; end
Dispatcher = {
"a" => instance_method(:do_a),
"d" => instance_method(:do_d),
"e" => instance_method(:do_e),
"v" => instance_method(:do_v)
}
def interpret(string)
string.each_char {|b| Dispatcher[b].bind(self).call }
end
end
interpreter = Interpreter.new
interpreter.interpret('dave')
produces:
Hello there, Dave!
2103 2104 2105 2106 2107 2108 2109 2110 2111 |
# File 'proc.c', line 2103
static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}
|
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false
, the methods of any ancestors are not included.
module A
def method1() end
end
class B
include A
def method2() end
end
class C < B
def method3() end
end
A.instance_methods(false) #=> [:method1]
B.instance_methods(false) #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false) #=> [:method3]
C.instance_methods.include?(:method2) #=> true
1462 1463 1464 1465 1466 |
# File 'class.c', line 1462
VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}
|
#method_added(_y) ⇒ Object (private)
call-seq:
method_added(method_name)
Invoked as a callback whenever an instance method is added to the receiver.
module Chatty
def self.method_added(method_name)
puts "Adding #{method_name.inspect}"
end
def self.some_class_method() end
def some_instance_method() end
end
produces:
Adding :some_instance_method
1146 1147 1148 1149 1150 |
# File 'object.c', line 1146
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
return rb_obj_dummy();
}
|
#method_defined?(symbol, inherit = true) ⇒ Boolean #method_defined?(string, inherit = true) ⇒ Boolean
Returns true
if the named method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. Public and protected methods are matched. String arguments are converted to symbols.
module A
def method1() end
def protected_method1() end
protected :protected_method1
end
class B
def method2() end
def private_method2() end
private :private_method2
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.method_defined? "method1" #=> true
C.method_defined? "method2" #=> true
C.method_defined? "method2", true #=> true
C.method_defined? "method2", false #=> false
C.method_defined? "method3" #=> true
C.method_defined? "protected_method1" #=> true
C.method_defined? "method4" #=> false
C.method_defined? "private_method2" #=> false
1692 1693 1694 1695 1696 1697 |
# File 'vm_method.c', line 1692
static VALUE
rb_mod_method_defined(int argc, VALUE *argv, VALUE mod)
{
rb_method_visibility_t visi = check_definition_visibility(mod, argc, argv);
return (visi == METHOD_VISI_PUBLIC || visi == METHOD_VISI_PROTECTED) ? Qtrue : Qfalse;
}
|
#method_removed(_y) ⇒ Object (private)
call-seq:
method_removed(method_name)
Invoked as a callback whenever an instance method is removed from the receiver.
module Chatty
def self.method_removed(method_name)
puts "Removing #{method_name.inspect}"
end
def self.some_class_method() end
def some_instance_method() end
class << self
remove_method :some_class_method
end
remove_method :some_instance_method
end
produces:
Removing :some_instance_method
1146 1147 1148 1149 1150 |
# File 'object.c', line 1146
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
return rb_obj_dummy();
}
|
#method_undefined(_y) ⇒ Object (private)
1146 1147 1148 1149 1150 |
# File 'object.c', line 1146
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
return rb_obj_dummy();
}
|
#class_eval(string[, filename [, lineno]]) ⇒ Object #class_eval {|mod| ... } ⇒ Object #module_eval(string[, filename [, lineno]]) ⇒ Object #module_eval {|mod| ... } ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval
returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.
class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there!
dummy:123:in `module_eval': undefined local variable
or method `code' for Thing:Class
2157 2158 2159 2160 2161 |
# File 'vm_eval.c', line 2157
static VALUE
rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod, RB_PASS_CALLED_KEYWORDS);
}
|
#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.
class Thing
end
Thing.class_exec{
def hello() "Hello there!" end
}
puts Thing.new.hello()
produces:
Hello there!
2191 2192 2193 2194 2195 |
# File 'vm_eval.c', line 2191
static VALUE
rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, argc, argv, RB_PASS_CALLED_KEYWORDS);
}
|
#module_function(symbol, ...) ⇒ self (private) #module_function(string, ...) ⇒ self (private)
Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. String arguments are converted to symbols.
module Mod
def one
"This is one"
end
module_function :one
end
class Cls
include Mod
def call_one
one
end
end
Mod.one #=> "This is one"
c = Cls.new
c.call_one #=> "This is one"
module Mod
def one
"This is the new one"
end
end
Mod.one #=> "This is one"
c.call_one #=> "This is the new one"
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 |
# File 'vm_method.c', line 2385
static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
int i;
ID id;
const rb_method_entry_t *me;
if (!RB_TYPE_P(module, T_MODULE)) {
rb_raise(rb_eTypeError, "module_function must be called for modules");
}
if (argc == 0) {
rb_scope_module_func_set();
return module;
}
set_method_visibility(module, argc, argv, METHOD_VISI_PRIVATE);
for (i = 0; i < argc; i++) {
VALUE m = module;
id = rb_to_id(argv[i]);
for (;;) {
me = search_method(m, id, 0);
if (me == 0) {
me = search_method(rb_cObject, id, 0);
}
if (UNDEFINED_METHOD_ENTRY_P(me)) {
rb_print_undef(module, id, METHOD_VISI_UNDEF);
}
if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
break; /* normal case: need not to follow 'super' link */
}
m = RCLASS_SUPER(m);
if (!m)
break;
}
rb_method_entry_set(rb_singleton_class(module), id, me, METHOD_VISI_PUBLIC);
}
return module;
}
|
#name ⇒ String
Returns the name of the module mod. Returns nil for anonymous modules.
117 118 119 120 121 122 |
# File 'variable.c', line 117
VALUE
rb_mod_name(VALUE mod)
{
int permanent;
return classname(mod, &permanent);
}
|
#prepend ⇒ self
Invokes Module.prepend_features on each parameter in reverse order.
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
# File 'eval.c', line 1363
static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_prepend_features, id_prepended;
CONST_ID(id_prepend_features, "prepend_features");
CONST_ID(id_prepended, "prepended");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_prepend_features, 1, module);
rb_funcall(argv[argc], id_prepended, 1, module);
}
return module;
}
|
#prepend_features(mod) ⇒ Object (private)
When this module is prepended in another, Ruby calls #prepend_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#prepend.
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 |
# File 'eval.c', line 1345
static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
if (!CLASS_OR_MODULE_P(prepend)) {
Check_Type(prepend, T_CLASS);
}
rb_prepend_module(prepend, module);
return module;
}
|
#prepended(_y) ⇒ Object (private)
call-seq:
prepended(othermod)
The equivalent of included
, but for prepended modules.
module A
def self.prepended(mod)
puts "#{self} prepended to #{mod}"
end
end
module Enumerable
prepend A
end
# => prints "A prepended to Enumerable"
1146 1147 1148 1149 1150 |
# File 'object.c', line 1146
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
return rb_obj_dummy();
}
|
#private ⇒ self (private) #private(symbol, ...) ⇒ self (private) #private(string, ...) ⇒ self (private) #private(array) ⇒ self (private)
With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.
module Mod
def a() end
def b() end
private
def c() end
private :a
end
Mod.private_instance_methods #=> [:a, :c]
Note that to show a private method on RDoc, use :doc:
.
2131 2132 2133 2134 2135 |
# File 'vm_method.c', line 2131
static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
return set_visibility(argc, argv, module, METHOD_VISI_PRIVATE);
}
|
#private_class_method(symbol, ...) ⇒ Object #private_class_method(string, ...) ⇒ Object #private_class_method(array) ⇒ Object
Makes existing class methods private. Often used to hide the default constructor new
.
String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.
class SimpleSingleton # Not thread safe
private_class_method :new
def SimpleSingleton.create(*args, &block)
@me = new(*args, &block) if ! @me
@me
end
end
2286 2287 2288 2289 2290 2291 |
# File 'vm_method.c', line 2286
static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PRIVATE);
return obj;
}
|
#private_constant(symbol, ...) ⇒ Object
Makes a list of existing constants private.
3240 3241 3242 3243 3244 3245 |
# File 'variable.c', line 3240
VALUE
rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK);
return obj;
}
|
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod. If the optional parameter is false
, the methods of any ancestors are not included.
module Mod
def method1() end
private :method1
def method2() end
end
Mod.instance_methods #=> [:method2]
Mod.private_instance_methods #=> [:method1]
1500 1501 1502 1503 1504 |
# File 'class.c', line 1500
VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}
|
#private_method_defined?(symbol, inherit = true) ⇒ Boolean #private_method_defined?(string, inherit = true) ⇒ Boolean
Returns true
if the named private method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. String arguments are converted to symbols.
module A
def method1() end
end
class B
private
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.private_method_defined? "method1" #=> false
C.private_method_defined? "method2" #=> true
C.private_method_defined? "method2", true #=> true
C.private_method_defined? "method2", false #=> false
C.method_defined? "method2" #=> false
1771 1772 1773 1774 1775 |
# File 'vm_method.c', line 1771
static VALUE
rb_mod_private_method_defined(int argc, VALUE *argv, VALUE mod)
{
return check_definition(mod, argc, argv, METHOD_VISI_PRIVATE);
}
|
#protected ⇒ self (private) #protected(symbol, ...) ⇒ self (private) #protected(string, ...) ⇒ self (private) #protected(array) ⇒ self (private)
With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.
If a method has protected visibility, it is callable only where self
of the context is the same as the method. (method definition or instance_eval). This behavior is different from Java’s protected method. Usually private
should be used.
Note that a protected method is slow because it can’t use inline cache.
To show a private method on RDoc, use :doc:
instead of this.
2100 2101 2102 2103 2104 |
# File 'vm_method.c', line 2100
static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
return set_visibility(argc, argv, module, METHOD_VISI_PROTECTED);
}
|
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod. If the optional parameter is false
, the methods of any ancestors are not included.
1477 1478 1479 1480 1481 |
# File 'class.c', line 1477
VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}
|
#protected_method_defined?(symbol, inherit = true) ⇒ Boolean #protected_method_defined?(string, inherit = true) ⇒ Boolean
Returns true
if the named protected method is defined mod. If inherit is set, the lookup will also search mod’s ancestors. String arguments are converted to symbols.
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.protected_method_defined? "method1" #=> false
C.protected_method_defined? "method2" #=> true
C.protected_method_defined? "method2", true #=> true
C.protected_method_defined? "method2", false #=> false
C.method_defined? "method2" #=> true
1807 1808 1809 1810 1811 |
# File 'vm_method.c', line 1807
static VALUE
rb_mod_protected_method_defined(int argc, VALUE *argv, VALUE mod)
{
return check_definition(mod, argc, argv, METHOD_VISI_PROTECTED);
}
|
#public ⇒ self (private) #public(symbol, ...) ⇒ self (private) #public(string, ...) ⇒ self (private) #public(array) ⇒ self (private)
With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.
2071 2072 2073 2074 2075 |
# File 'vm_method.c', line 2071
static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
return set_visibility(argc, argv, module, METHOD_VISI_PUBLIC);
}
|
#public_class_method(symbol, ...) ⇒ Object #public_class_method(string, ...) ⇒ Object #public_class_method(array) ⇒ Object
Makes a list of existing class methods public.
String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.
2258 2259 2260 2261 2262 2263 |
# File 'vm_method.c', line 2258
static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PUBLIC);
return obj;
}
|
#public_constant(symbol, ...) ⇒ Object
Makes a list of existing constants public.
3254 3255 3256 3257 3258 3259 |
# File 'variable.c', line 3254
VALUE
rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK);
return obj;
}
|
#public_instance_method(symbol) ⇒ Object
Similar to instance_method, searches public method only.
2120 2121 2122 2123 2124 2125 2126 2127 2128 |
# File 'proc.c', line 2120
static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}
|
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod. If the optional parameter is false
, the methods of any ancestors are not included.
1515 1516 1517 1518 1519 |
# File 'class.c', line 1515
VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}
|
#public_method_defined?(symbol, inherit = true) ⇒ Boolean #public_method_defined?(string, inherit = true) ⇒ Boolean
Returns true
if the named public method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. String arguments are converted to symbols.
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.public_method_defined? "method1" #=> true
C.public_method_defined? "method1", true #=> true
C.public_method_defined? "method1", false #=> true
C.public_method_defined? "method2" #=> false
C.method_defined? "method2" #=> true
1735 1736 1737 1738 1739 |
# File 'vm_method.c', line 1735
static VALUE
rb_mod_public_method_defined(int argc, VALUE *argv, VALUE mod)
{
return check_definition(mod, argc, argv, METHOD_VISI_PUBLIC);
}
|
#refine(mod) { ... } ⇒ Object (private)
Refine mod in the receiver.
Returns a module, where refined methods are defined.
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 |
# File 'eval.c', line 1560
static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
VALUE refinement;
ID id_refinements, id_activated_refinements,
id_refined_class, id_defined_at;
VALUE refinements, activated_refinements;
rb_thread_t *th = GET_THREAD();
VALUE block_handler = rb_vm_frame_block_handler(th->ec->cfp);
if (block_handler == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, "no block given");
}
if (vm_block_handler_type(block_handler) != block_handler_type_iseq) {
rb_raise(rb_eArgError, "can't pass a Proc as a block to Module#refine");
}
ensure_class_or_module(klass);
CONST_ID(id_refinements, "__refinements__");
refinements = rb_attr_get(module, id_refinements);
if (NIL_P(refinements)) {
refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_refinements, refinements);
}
CONST_ID(id_activated_refinements, "__activated_refinements__");
activated_refinements = rb_attr_get(module, id_activated_refinements);
if (NIL_P(activated_refinements)) {
activated_refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_activated_refinements,
activated_refinements);
}
refinement = rb_hash_lookup(refinements, klass);
if (NIL_P(refinement)) {
VALUE superclass = refinement_superclass(klass);
refinement = rb_module_new();
RCLASS_SET_SUPER(refinement, superclass);
FL_SET(refinement, RMODULE_IS_REFINEMENT);
CONST_ID(id_refined_class, "__refined_class__");
rb_ivar_set(refinement, id_refined_class, klass);
CONST_ID(id_defined_at, "__defined_at__");
rb_ivar_set(refinement, id_defined_at, module);
rb_hash_aset(refinements, klass, refinement);
add_activated_refinement(activated_refinements, klass, refinement);
}
rb_yield_refine_block(refinement, activated_refinements);
return refinement;
}
|
#remove_class_variable(sym) ⇒ Object
Removes the named class variable from the receiver, returning that variable’s value.
class Example
@@var = 99
puts remove_class_variable(:@@var)
p(defined? @@var)
end
produces:
99
nil
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 |
# File 'variable.c', line 3546
VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s");
st_data_t val, n = id;
if (!id) {
goto not_defined;
}
rb_check_frozen(mod);
if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) {
return (VALUE)val;
}
if (rb_cvar_defined(mod, id)) {
rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id));
}
not_defined:
rb_name_err_raise("class variable %1$s not defined for %2$s",
mod, name);
UNREACHABLE_RETURN(Qundef);
}
|
#remove_const(sym) ⇒ Object (private)
Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 |
# File 'variable.c', line 2715
VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
const ID id = id_for_var(mod, name, a, constant);
if (!id) {
undefined_constant(mod, name);
}
return rb_const_remove(mod, id);
}
|
#remove_method(symbol) ⇒ self #remove_method(string) ⇒ self
Removes the method identified by symbol from the current class. For an example, see Module#undef_method. String arguments are converted to symbols.
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
# File 'vm_method.c', line 1365
static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID id = rb_check_id(&v);
if (!id) {
rb_name_err_raise("method `%1$s' not defined in %2$s",
mod, v);
}
remove_method(mod, id);
}
return mod;
}
|
#ruby2_keywords(method_name, ...) ⇒ nil (private)
For the given method names, marks the method as passing keywords through a normal argument splat. This should only be called on methods that accept an argument splat (*args
) but not explicit keywords or a keyword splat. It marks the method such that if the method is called with keyword arguments, the final hash argument is marked with a special flag such that if it is the final element of a normal argument splat to another method call, and that method call does not include explicit keywords or a keyword splat, the final element is interpreted as keywords. In other words, keywords will be passed through the method to other methods.
This should only be used for methods that delegate keywords to another method, and only for backwards compatibility with Ruby versions before 2.7.
This method will probably be removed at some point, as it exists only for backwards compatibility. As it does not exist in Ruby versions before 2.7, check that the module responds to this method before calling it. Also, be aware that if this method is removed, the behavior of the method will change so that it does not pass through keywords.
module Mod
def foo(meth, *args, &block)
send(:"do_#{meth}", *args, &block)
end
ruby2_keywords(:foo) if respond_to?(:ruby2_keywords, true)
end
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 |
# File 'vm_method.c', line 2170
static VALUE
rb_mod_ruby2_keywords(int argc, VALUE *argv, VALUE module)
{
int i;
VALUE origin_class = RCLASS_ORIGIN(module);
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
rb_check_frozen(module);
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID name = rb_check_id(&v);
rb_method_entry_t *me;
VALUE defined_class;
if (!name) {
rb_print_undef_str(module, v);
}
me = search_method(origin_class, name, &defined_class);
if (!me && RB_TYPE_P(module, T_MODULE)) {
me = search_method(rb_cObject, name, &defined_class);
}
if (UNDEFINED_METHOD_ENTRY_P(me) ||
UNDEFINED_REFINED_METHOD_P(me->def)) {
rb_print_undef(module, name, METHOD_VISI_UNDEF);
}
if (module == defined_class || origin_class == defined_class) {
switch (me->def->type) {
case VM_METHOD_TYPE_ISEQ:
if (me->def->body.iseq.iseqptr->body->param.flags.has_rest &&
!me->def->body.iseq.iseqptr->body->param.flags.has_kw &&
!me->def->body.iseq.iseqptr->body->param.flags.has_kwrest) {
me->def->body.iseq.iseqptr->body->param.flags.ruby2_keywords = 1;
rb_clear_method_cache(module, name);
}
else {
rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
}
break;
case VM_METHOD_TYPE_BMETHOD: {
VALUE procval = me->def->body.bmethod.proc;
if (vm_block_handler_type(procval) == block_handler_type_proc) {
procval = vm_proc_to_block_handler(VM_BH_TO_PROC(procval));
}
if (vm_block_handler_type(procval) == block_handler_type_iseq) {
const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(procval);
const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq);
if (iseq->body->param.flags.has_rest &&
!iseq->body->param.flags.has_kw &&
!iseq->body->param.flags.has_kwrest) {
iseq->body->param.flags.ruby2_keywords = 1;
rb_clear_method_cache(module, name);
}
else {
rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
}
break;
}
}
/* fallthrough */
default:
rb_warn("Skipping set of ruby2_keywords flag for %s (method not defined in Ruby)", rb_id2name(name));
break;
}
}
else {
rb_warn("Skipping set of ruby2_keywords flag for %s (can only set in method defining module)", rb_id2name(name));
}
}
return Qnil;
}
|
#singleton_class? ⇒ Boolean
Returns true
if mod is a singleton class or false
if it is an ordinary class or module.
class C
end
C.singleton_class? #=> false
C.singleton_class.singleton_class? #=> true
3040 3041 3042 3043 3044 3045 3046 |
# File 'object.c', line 3040
static VALUE
rb_mod_singleton_p(VALUE klass)
{
if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON))
return Qtrue;
return Qfalse;
}
|
#to_s ⇒ String Also known as: inspect
Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we’re attached to as well.
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 |
# File 'object.c', line 1677
static VALUE
rb_mod_to_s(VALUE klass)
{
ID id_defined_at;
VALUE refined_class, defined_at;
if (FL_TEST(klass, FL_SINGLETON)) {
VALUE s = rb_usascii_str_new2("#<Class:");
VALUE v = rb_ivar_get(klass, id__attached__);
if (CLASS_OR_MODULE_P(v)) {
rb_str_append(s, rb_inspect(v));
}
else {
rb_str_append(s, rb_any_to_s(v));
}
rb_str_cat2(s, ">");
return s;
}
refined_class = rb_refinement_module_get_refined_class(klass);
if (!NIL_P(refined_class)) {
VALUE s = rb_usascii_str_new2("#<refinement:");
rb_str_concat(s, rb_inspect(refined_class));
rb_str_cat2(s, "@");
CONST_ID(id_defined_at, "__defined_at__");
defined_at = rb_attr_get(klass, id_defined_at);
rb_str_concat(s, rb_inspect(defined_at));
rb_str_cat2(s, ">");
return s;
}
return rb_class_name(klass);
}
|
#undef_method(symbol) ⇒ self #undef_method(string) ⇒ self
Prevents the current class from responding to calls to the named method. Contrast this with remove_method
, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver. String arguments are converted to symbols.
class Parent
def hello
puts "In parent"
end
end
class Child < Parent
def hello
puts "In child"
end
end
c = Child.new
c.hello
class Child
remove_method :hello # remove from child, still in parent
end
c.hello
class Child
undef_method :hello # prevent any calls to 'hello'
end
c.hello
produces:
In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 |
# File 'vm_method.c', line 1610
static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID id = rb_check_id(&v);
if (!id) {
rb_method_name_error(mod, v);
}
rb_undef(mod, id);
}
return mod;
}
|
#using ⇒ self (private)
Import class refinements from module into the current class or module definition.
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 |
# File 'eval.c', line 1627
static VALUE
mod_using(VALUE self, VALUE module)
{
rb_control_frame_t *prev_cfp = previous_frame(GET_EC());
if (prev_frame_func()) {
rb_raise(rb_eRuntimeError,
"Module#using is not permitted in methods");
}
if (prev_cfp && prev_cfp->self != self) {
rb_raise(rb_eRuntimeError, "Module#using is not called on self");
}
if (rb_block_given_p()) {
ignored_block(module, "Module#");
}
rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
return self;
}
|