Class: Range

Inherits:
Object show all
Includes:
Enumerable
Defined in:
range.c

Overview

A Range represents an interval—a set of values with a beginning and an end. Ranges may be constructed using the s..e and s...e literals, or with Range::new. Ranges constructed using .. run from the beginning to the end inclusively. Those created using ... exclude the end value. When used as an iterator, ranges return each value in the sequence.

(-1..-5).to_a      #=> []
(-5..-1).to_a      #=> [-5, -4, -3, -2, -1]
('a'..'e').to_a    #=> ["a", "b", "c", "d", "e"]
('a'...'e').to_a   #=> ["a", "b", "c", "d"]

Beginless/Endless Ranges

A “beginless range” and “endless range” represents a semi-infinite range. Literal notation for a beginless range is:

(..1)
# or
(...1)

Literal notation for an endless range is:

(1..)
# or similarly
(1...)

Which is equivalent to

(1..nil)  # or similarly (1...nil)
Range.new(1, nil) # or Range.new(1, nil, true)

Beginless/endless ranges are useful, for example, for idiomatic slicing of arrays:

[1, 2, 3, 4, 5][...2]   # => [1, 2]
[1, 2, 3, 4, 5][2...]   # => [3, 4, 5]

Some implementation details:

  • begin of beginless range and end of endless range are nil;

  • each of beginless range raises an exception;

  • each of endless range enumerates infinite sequence (may be useful in combination with Enumerable#take_while or similar methods);

  • (1..) and (1...) are not equal, although technically representing the same sequence.

Custom Objects in Ranges

Ranges can be constructed using any objects that can be compared using the <=> operator. Methods that treat the range as a sequence (#each and methods inherited from Enumerable) expect the begin object to implement a succ method to return the next object in sequence. The #step and #include? methods require the begin object to implement succ or to be numeric.

In the Xs class below both <=> and succ are implemented so Xs can be used to construct ranges. Note that the Comparable module is included so the == method is defined in terms of <=>.

class Xs                # represent a string of 'x's
  include Comparable
  attr :length
  def initialize(n)
    @length = n
  end
  def succ
    Xs.new(@length + 1)
  end
  def <=>(other)
    @length <=> other.length
  end
  def to_s
    sprintf "%2d #{inspect}", @length
  end
  def inspect
    'x' * @length
  end
end

An example of using Xs to construct a range:

r = Xs.new(3)..Xs.new(6)   #=> xxx..xxxxxx
r.to_a                     #=> [xxx, xxxx, xxxxx, xxxxxx]
r.member?(Xs.new(5))       #=> true

Instance Method Summary collapse

Methods included from Enumerable

#all?, #any?, #chain, #chunk, #chunk_while, #collect, #collect_concat, #cycle, #detect, #drop, #drop_while, #each_cons, #each_entry, #each_slice, #each_with_index, #each_with_object, #filter, #filter_map, #find, #find_all, #find_index, #flat_map, #grep, #grep_v, #group_by, #inject, #lazy, #map, #max_by, #min_by, #minmax_by, #none?, #one?, #partition, #reduce, #reject, #reverse_each, #select, #slice_after, #slice_before, #slice_when, #sort, #sort_by, #sum, #take, #take_while, #tally, #to_h, #uniq, #zip

Constructor Details

#newObject

Constructs a range using the given begin and end. If the exclude_end parameter is omitted or is false, the range will include the end object; otherwise, it will be excluded.


95
96
97
98
99
100
101
102
103
104
# File 'range.c', line 95

static VALUE
range_initialize(int argc, VALUE *argv, VALUE range)
{
    VALUE beg, end, flags;

    rb_scan_args(argc, argv, "21", &beg, &end, &flags);
    range_modify(range);
    range_init(range, beg, end, RBOOL(RTEST(flags)));
    return Qnil;
}

Instance Method Details

#step(n = 1) {|obj| ... } ⇒ Object #step(n = 1) ⇒ Object #step(n = 1) ⇒ Object #%(n) ⇒ Object #%(n) ⇒ Object

Iterates over the range, passing each nth element to the block. If begin and end are numeric, n is added for each iteration. Otherwise #step invokes #succ to iterate through range elements.

If no block is given, an enumerator is returned instead. Especially, the enumerator is an Enumerator::ArithmeticSequence if begin and end of the range are numeric.

range = Xs.new(1)..Xs.new(10)
range.step(2) {|x| puts x}
puts
range.step(3) {|x| puts x}

produces:

 1 x
 3 xxx
 5 xxxxx
 7 xxxxxxx
 9 xxxxxxxxx

 1 x
 4 xxxx
 7 xxxxxxx
10 xxxxxxxxxx

See Range for the definition of class Xs.

Overloads:

  • #step(n = 1) {|obj| ... } ⇒ Object

    Yields:

    • (obj)

523
524
525
526
527
# File 'range.c', line 523

static VALUE
range_percent_step(VALUE range, VALUE step)
{
    return range_step(1, &step, range);
}

#==(obj) ⇒ Boolean

Returns true only if obj is a Range, has equivalent begin and end items (by comparing them with ==), and has the same #exclude_end? setting as the range.

(0..2) == (0..2)            #=> true
(0..2) == Range.new(0,2)    #=> true
(0..2) == (0...2)           #=> false

Returns:

  • (Boolean)

160
161
162
163
164
165
166
167
168
169
# File 'range.c', line 160

static VALUE
range_eq(VALUE range, VALUE obj)
{
    if (range == obj)
	return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
	return Qfalse;

    return rb_exec_recursive_paired(recursive_equal, range, obj, obj);
}

#===(obj) ⇒ Boolean

Returns true if obj is between begin and end of range, false otherwise (same as #cover?). Conveniently, === is the comparison operator used by case statements.

case 79
when 1..50   then   puts "low"
when 51..75  then   puts "medium"
when 76..100 then   puts "high"
end
# Prints "high"

case "2.6.5"
when ..."2.4" then puts "EOL"
when "2.4"..."2.5" then puts "maintenance"
when "2.5"..."2.7" then puts "stable"
when "2.7".. then puts "upcoming"
end
# Prints "stable"

Returns:

  • (Boolean)

1502
1503
1504
1505
1506
1507
1508
# File 'range.c', line 1502

static VALUE
range_eqq(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val, 1);
    if (ret != Qundef) return ret;
    return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val);
}

#beginObject

Returns the object that defines the beginning of the range.

(1..10).begin   #=> 1

Returns:


1001
1002
1003
1004
1005
# File 'range.c', line 1001

static VALUE
range_begin(VALUE range)
{
    return RANGE_BEG(range);
}

#bsearch {|obj| ... } ⇒ Object

By using binary search, finds a value in range which meets the given condition in O(log n) where n is the size of the range.

You can use this method in two use cases: a find-minimum mode and a find-any mode. In either case, the elements of the range must be monotone (or sorted) with respect to the block.

In find-minimum mode (this is a good choice for typical use case), the block must return true or false, and there must be a value x so that:

  • the block returns false for any value which is less than x, and

  • the block returns true for any value which is greater than or equal to x.

If x is within the range, this method returns the value x. Otherwise, it returns nil.

ary = [0, 4, 7, 10, 12]
(0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1
(0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2
(0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3
(0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil

(0.0...Float::INFINITY).bsearch {|x| Math.log(x) >= 0 } #=> 1.0

In find-any mode (this behaves like libc's bsearch(3)), the block must return a number, and there must be two values x and y (x <= y) so that:

  • the block returns a positive number for v if v < x,

  • the block returns zero for v if x <= v < y, and

  • the block returns a negative number for v if y <= v.

This method returns any value which is within the intersection of the given range and x…y (if any). If there is no value that satisfies the condition, it returns nil.

ary = [0, 100, 100, 100, 200]
(0..4).bsearch {|i| 100 - ary[i] } #=> 1, 2 or 3
(0..4).bsearch {|i| 300 - ary[i] } #=> nil
(0..4).bsearch {|i|  50 - ary[i] } #=> nil

You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.

Yields:

  • (obj)

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
# File 'range.c', line 679

static VALUE
range_bsearch(VALUE range)
{
    VALUE beg, end, satisfied = Qnil;
    int smaller;

    /* Implementation notes:
     * Floats are handled by mapping them to 64 bits integers.
     * Apart from sign issues, floats and their 64 bits integer have the
     * same order, assuming they are represented as exponent followed
     * by the mantissa. This is true with or without implicit bit.
     *
     * Finding the average of two ints needs to be careful about
     * potential overflow (since float to long can use 64 bits)
     * as well as the fact that -1/2 can be 0 or -1 in C89.
     *
     * Note that -0.0 is mapped to the same int as 0.0 as we don't want
     * (-1...0.0).bsearch to yield -0.0.
     */

#define BSEARCH(conv) \
    do { \
	RETURN_ENUMERATOR(range, 0, 0); \
	if (EXCL(range)) high--; \
	org_high = high; \
	while (low < high) { \
	    mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
		: (low < -high) ? -((-1 - low - high)/2 + 1) : (low + high) / 2; \
	    BSEARCH_CHECK(conv(mid)); \
	    if (smaller) { \
		high = mid; \
	    } \
	    else { \
		low = mid + 1; \
	    } \
	} \
	if (low == org_high) { \
	    BSEARCH_CHECK(conv(low)); \
	    if (!smaller) return Qnil; \
	} \
	return satisfied; \
    } while (0)


    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && FIXNUM_P(end)) {
	long low = FIX2LONG(beg);
	long high = FIX2LONG(end);
	long mid, org_high;
	BSEARCH(INT2FIX);
    }
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
    else if (RB_TYPE_P(beg, T_FLOAT) || RB_TYPE_P(end, T_FLOAT)) {
	int64_t low  = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg)));
	int64_t high = double_as_int64(NIL_P(end) ?  HUGE_VAL : RFLOAT_VALUE(rb_Float(end)));
	int64_t mid, org_high;
	BSEARCH(int64_as_double_to_num);
    }
#endif
    else if (is_integer_p(beg) && is_integer_p(end)) {
	RETURN_ENUMERATOR(range, 0, 0);
	return bsearch_integer_range(beg, end, EXCL(range));
    }
    else if (is_integer_p(beg) && NIL_P(end)) {
	VALUE diff = LONG2FIX(1);
	RETURN_ENUMERATOR(range, 0, 0);
	while (1) {
	    VALUE mid = rb_funcall(beg, '+', 1, diff);
	    BSEARCH_CHECK(mid);
	    if (smaller) {
		return bsearch_integer_range(beg, mid, 0);
	    }
	    diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
	}
    }
    else if (NIL_P(beg) && is_integer_p(end)) {
	VALUE diff = LONG2FIX(-1);
	RETURN_ENUMERATOR(range, 0, 0);
	while (1) {
	    VALUE mid = rb_funcall(end, '+', 1, diff);
	    BSEARCH_CHECK(mid);
	    if (!smaller) {
		return bsearch_integer_range(mid, end, 0);
	    }
	    diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
	}
    }
    else {
	rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg));
    }
    return range;
}

#countInteger #count(item) ⇒ Integer #count {|obj| ... } ⇒ Integer

Identical to Enumerable#count, except it returns Infinity for endless ranges.

Overloads:


1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
# File 'range.c', line 1724

static VALUE
range_count(int argc, VALUE *argv, VALUE range)
{
    if (argc != 0) {
        /* It is odd for instance (1...).count(0) to return Infinity. Just let
         * it loop. */
        return rb_call_super(argc, argv);
    }
    else if (rb_block_given_p()) {
        /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return
         * Infinity. Just let it loop. */
        return rb_call_super(argc, argv);
    }
    else if (NIL_P(RANGE_END(range))) {
        /* We are confident that the answer is Infinity. */
        return DBL2NUM(HUGE_VAL);
    }
    else if (NIL_P(RANGE_BEG(range))) {
        /* We are confident that the answer is Infinity. */
        return DBL2NUM(HUGE_VAL);
    }
    else {
        return rb_call_super(argc, argv);
    }
}

#cover?(obj) ⇒ Boolean #cover?(range) ⇒ Boolean

Returns true if obj is between the begin and end of the range.

This tests begin <= obj <= end when #exclude_end? is false and begin <= obj < end when #exclude_end? is true.

If called with a Range argument, returns true when the given range is covered by the receiver, by comparing the begin and end values. If the argument can be treated as a sequence, this method treats it that way. In the specific case of (a..b).cover?(c...d) with a <= c && b < d, the end of the sequence must be calculated, which may exhibit poor performance if c is non-numeric. Returns false if the begin value of the range is larger than the end value. Also returns false if one of the internal calls to <=> returns nil (indicating the objects are not comparable).

("a".."z").cover?("c")  #=> true
("a".."z").cover?("5")  #=> false
("a".."z").cover?("cc") #=> true
("a".."z").cover?(1)    #=> false
(1..5).cover?(2..3)     #=> true
(1..5).cover?(0..6)     #=> false
(1..5).cover?(1...6)    #=> true

Overloads:

  • #cover?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #cover?(range) ⇒ Boolean

    Returns:

    • (Boolean)

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
# File 'range.c', line 1613

static VALUE
range_cover(VALUE range, VALUE val)
{
    VALUE beg, end;

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (rb_obj_is_kind_of(val, rb_cRange)) {
        return RBOOL(r_cover_range_p(range, beg, end, val));
    }
    return r_cover_p(range, beg, end, val);
}

#each {|i| ... } ⇒ Object #eachObject

Iterates over the elements of range, passing each in turn to the block.

The each method can only be used if the begin object of the range supports the succ method. A TypeError is raised if the object does not have succ method defined (like Float).

If no block is given, an enumerator is returned instead.

(10..15).each {|n| print n, ' ' }
# prints: 10 11 12 13 14 15

(2.5..5).each {|n| print n, ' ' }
# raises: TypeError: can't iterate from Float

Overloads:

  • #each {|i| ... } ⇒ Object

    Yields:

    • (i)

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
# File 'range.c', line 898

static VALUE
range_each(VALUE range)
{
    VALUE beg, end;
    long i;

    RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && NIL_P(end)) {
        range_each_fixnum_endless(beg);
    }
    else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
        return range_each_fixnum_loop(beg, end, range);
    }
    else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) {
	if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */
	    if (!FIXNUM_P(beg)) {
		if (RBIGNUM_NEGATIVE_P(beg)) {
		    do {
			rb_yield(beg);
		    } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1))));
                    if (NIL_P(end)) range_each_fixnum_endless(beg);
                    if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range);
		}
		else {
                    if (NIL_P(end)) range_each_bignum_endless(beg);
		    if (FIXNUM_P(end)) return range;
		}
	    }
	    if (FIXNUM_P(beg)) {
		i = FIX2LONG(beg);
		do {
		    rb_yield(LONG2FIX(i));
		} while (POSFIXABLE(++i));
		beg = LONG2NUM(i);
	    }
	    ASSUME(!FIXNUM_P(beg));
	    ASSUME(!SPECIAL_CONST_P(end));
	}
	if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) {
	    if (EXCL(range)) {
		while (rb_big_cmp(beg, end) == INT2FIX(-1)) {
		    rb_yield(beg);
		    beg = rb_big_plus(beg, INT2FIX(1));
		}
	    }
	    else {
		VALUE c;
		while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
		    rb_yield(beg);
		    if (c == INT2FIX(0)) break;
		    beg = rb_big_plus(beg, INT2FIX(1));
		}
	    }
	}
    }
    else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */
	beg = rb_sym2str(beg);
	if (NIL_P(end)) {
	    rb_str_upto_endless_each(beg, sym_each_i, 0);
	}
	else {
	    rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0);
	}
    }
    else {
	VALUE tmp = rb_check_string_type(beg);

	if (!NIL_P(tmp)) {
	    if (!NIL_P(end)) {
		rb_str_upto_each(tmp, end, EXCL(range), each_i, 0);
	    }
	    else {
		rb_str_upto_endless_each(tmp, each_i, 0);
	    }
	}
	else {
	    if (!discrete_object_p(beg)) {
		rb_raise(rb_eTypeError, "can't iterate from %s",
			 rb_obj_classname(beg));
	    }
	    if (!NIL_P(end))
		range_each_func(range, each_i, 0);
	    else
		for (;; beg = rb_funcallv(beg, id_succ, 0, 0))
		    rb_yield(beg);
	}
    }
    return range;
}

#endObject

Returns the object that defines the end of the range.

(1..10).end    #=> 10
(1...10).end   #=> 10

Returns:


1019
1020
1021
1022
1023
# File 'range.c', line 1019

static VALUE
range_end(VALUE range)
{
    return RANGE_END(range);
}

#to_aArray #entriesArray

Returns an array containing the items in the range.

(1..7).to_a  #=> [1, 2, 3, 4, 5, 6, 7]
(1..).to_a   #=> RangeError: cannot convert endless range to an array

Overloads:


830
831
832
833
834
835
836
837
# File 'range.c', line 830

static VALUE
range_to_a(VALUE range)
{
    if (NIL_P(RANGE_END(range))) {
	rb_raise(rb_eRangeError, "cannot convert endless range to an array");
    }
    return rb_call_super(0, 0);
}

#eql?(obj) ⇒ Boolean

Returns true only if obj is a Range, has equivalent begin and end items (by comparing them with eql?), and has the same #exclude_end? setting as the range.

(0..2).eql?(0..2)            #=> true
(0..2).eql?(Range.new(0,2))  #=> true
(0..2).eql?(0...2)           #=> false

Returns:

  • (Boolean)

214
215
216
217
218
219
220
221
222
# File 'range.c', line 214

static VALUE
range_eql(VALUE range, VALUE obj)
{
    if (range == obj)
	return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
	return Qfalse;
    return rb_exec_recursive_paired(recursive_eql, range, obj, obj);
}

#exclude_end?Boolean

Returns true if the range excludes its end value.

(1..5).exclude_end?     #=> false
(1...5).exclude_end?    #=> true

Returns:

  • (Boolean)

125
126
127
128
129
# File 'range.c', line 125

static VALUE
range_exclude_end_p(VALUE range)
{
    return EXCL(range) ? Qtrue : Qfalse;
}

#firstObject #first(n) ⇒ Array

Returns the first object in the range, or an array of the first n elements.

(10..20).first     #=> 10
(10..20).first(3)  #=> [10, 11, 12]

Overloads:


1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
# File 'range.c', line 1053

static VALUE
range_first(int argc, VALUE *argv, VALUE range)
{
    VALUE n, ary[2];

    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the first element of beginless range");
    }
    if (argc == 0) return RANGE_BEG(range);

    rb_scan_args(argc, argv, "1", &n);
    ary[0] = n;
    ary[1] = rb_ary_new2(NUM2LONG(n));
    rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary);

    return ary[1];
}

#hashInteger

Compute a hash-code for this range. Two ranges with equal begin and end points (using eql?), and the same #exclude_end? value will generate the same hash-code.

See also Object#hash.

Returns:


235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# File 'range.c', line 235

static VALUE
range_hash(VALUE range)
{
    st_index_t hash = EXCL(range);
    VALUE v;

    hash = rb_hash_start(hash);
    v = rb_hash(RANGE_BEG(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    v = rb_hash(RANGE_END(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    hash = rb_hash_uint(hash, EXCL(range) << 24);
    hash = rb_hash_end(hash);

    return ST2FIX(hash);
}

#member?(obj) ⇒ Boolean #include?(obj) ⇒ Boolean

Returns true if obj is an element of the range, false otherwise.

("a".."z").include?("g")   #=> true
("a".."z").include?("A")   #=> false
("a".."z").include?("cc")  #=> false

If you need to ensure obj is between begin and end, use #cover?

("a".."z").cover?("cc")  #=> true

If begin and end are numeric, #include? behaves like #cover?

(1..3).include?(1.5) # => true

Overloads:

  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)

1532
1533
1534
1535
1536
1537
1538
# File 'range.c', line 1532

static VALUE
range_include(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val, 0);
    if (ret != Qundef) return ret;
    return rb_call_super(1, &val);
}

#initialize_copy(orig) ⇒ Object

:nodoc:


107
108
109
110
111
112
113
# File 'range.c', line 107

static VALUE
range_initialize_copy(VALUE range, VALUE orig)
{
    range_modify(range);
    rb_struct_init_copy(range, orig);
    return range;
}

#inspectString

Convert this range object to a printable form (using #inspect to convert the begin and end objects).

Returns:


1468
1469
1470
1471
1472
# File 'range.c', line 1468

static VALUE
range_inspect(VALUE range)
{
    return rb_exec_recursive(inspect_range, range, 0);
}

#lastObject #last(n) ⇒ Array

Returns the last object in the range, or an array of the last n elements.

Note that with no arguments last will return the object that defines the end of the range even if #exclude_end? is true.

(10..20).last      #=> 20
(10...20).last     #=> 20
(10..20).last(3)   #=> [18, 19, 20]
(10...20).last(3)  #=> [17, 18, 19]

Overloads:


1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
# File 'range.c', line 1141

static VALUE
range_last(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e;

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the last element of endless range");
    }
    if (argc == 0) return RANGE_END(range);

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) &&
        RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) {
        return rb_int_range_last(argc, argv, range);
    }
    return rb_ary_last(argc, argv, rb_Array(range));
}

#maxObject #max {|a, b| ... } ⇒ Object #max(n) ⇒ Object #max(n) {|a, b| ... } ⇒ Object

Returns the maximum value in the range, or an array of maximum values in the range if given an Integer argument.

For inclusive ranges with an end, the maximum value of the range is the same as the end of the range.

If an argument or block is given, or self is an exclusive, non-numeric range, calls Enumerable#max (via super) with the argument and/or block to get the maximum values, unless self is a beginless range, in which case it raises a RangeError.

If self is an exclusive, integer range (both start and end of the range are integers), and no arguments or block are provided, returns last value in the range (1 before the end). Otherwise, if self is an exclusive, numeric range, raises a TypeError.

Returns nil if the begin value of the range larger than the end value. Returns nil if the begin value of an exclusive range is equal to the end value. Raises a RangeError if called on an endless range.

Examples:

(10..20).max                        #=> 20
(10..20).max(2)                     #=> [20, 19]
(10...20).max                       #=> 19
(10...20).max(2)                    #=> [19, 18]
(10...20).max{|x, y| -x <=> -y }    #=> 10
(10...20).max(2){|x, y| -x <=> -y } #=> [10, 11]

Overloads:


1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
# File 'range.c', line 1244

static VALUE
range_max(int argc, VALUE *argv, VALUE range)
{
    VALUE e = RANGE_END(range);
    int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);

    if (NIL_P(RANGE_END(range))) {
	rb_raise(rb_eRangeError, "cannot get the maximum of endless range");
    }

    VALUE b = RANGE_BEG(range);

    if (rb_block_given_p() || (EXCL(range) && !nm) || argc) {
        if (NIL_P(b)) {
            rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else {
        struct cmp_opt_data cmp_opt = { 0, 0 };
        int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt);

        if (c > 0)
            return Qnil;
        if (EXCL(range)) {
            if (!RB_INTEGER_TYPE_P(e)) {
                rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
            }
            if (c == 0) return Qnil;
            if (!RB_INTEGER_TYPE_P(b)) {
                rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
            }
            if (FIXNUM_P(e)) {
                return LONG2NUM(FIX2LONG(e) - 1);
            }
            return rb_funcall(e, '-', 1, INT2FIX(1));
        }
        return e;
    }
}

#member?(obj) ⇒ Boolean #include?(obj) ⇒ Boolean

Returns true if obj is an element of the range, false otherwise.

("a".."z").include?("g")   #=> true
("a".."z").include?("A")   #=> false
("a".."z").include?("cc")  #=> false

If you need to ensure obj is between begin and end, use #cover?

("a".."z").cover?("cc")  #=> true

If begin and end are numeric, #include? behaves like #cover?

(1..3).include?(1.5) # => true

Overloads:

  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)

1532
1533
1534
1535
1536
1537
1538
# File 'range.c', line 1532

static VALUE
range_include(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val, 0);
    if (ret != Qundef) return ret;
    return rb_call_super(1, &val);
}

#minObject #min {|a, b| ... } ⇒ Object #min(n) ⇒ Array #min(n) {|a, b| ... } ⇒ Array

Returns the minimum value in the range. Returns nil if the begin value of the range is larger than the end value. Returns nil if the begin value of an exclusive range is equal to the end value.

Can be given an optional block to override the default comparison method a <=> b.

(10..20).min    #=> 10

Overloads:


1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
# File 'range.c', line 1179

static VALUE
range_min(int argc, VALUE *argv, VALUE range)
{
    if (NIL_P(RANGE_BEG(range))) {
	rb_raise(rb_eRangeError, "cannot get the minimum of beginless range");
    }

    if (rb_block_given_p()) {
        if (NIL_P(RANGE_END(range))) {
            rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method");
        }
	return rb_call_super(argc, argv);
    }
    else if (argc != 0) {
	return range_first(argc, argv, range);
    }
    else {
	struct cmp_opt_data cmp_opt = { 0, 0 };
	VALUE b = RANGE_BEG(range);
	VALUE e = RANGE_END(range);
	int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e, cmp_opt);

	if (c > 0 || (c == 0 && EXCL(range)))
	    return Qnil;
	return b;
    }
}

#minmaxArray #minmax {|a, b| ... } ⇒ Array

Returns a two element array which contains the minimum and the maximum value in the range.

Can be given an optional block to override the default comparison method a <=> b.

Overloads:

  • #minmaxArray

    Returns:

  • #minmax {|a, b| ... } ⇒ Array

    Yields:

    • (a, b)

    Returns:


1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
# File 'range.c', line 1297

static VALUE
range_minmax(VALUE range)
{
    if (rb_block_given_p()) {
        return rb_call_super(0, NULL);
    }
    return rb_assoc_new(
        rb_funcall(range, id_min, 0),
        rb_funcall(range, id_max, 0)
    );
}

#sizeNumeric

Returns the number of elements in the range. Both the begin and the end of the Range must be Numeric, otherwise nil is returned.

(10..20).size    #=> 11
('a'..'z').size  #=> nil
(-Float::INFINITY..Float::INFINITY).size #=> Infinity

Returns:


800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
# File 'range.c', line 800

static VALUE
range_size(VALUE range)
{
    VALUE b = RANGE_BEG(range), e = RANGE_END(range);
    if (rb_obj_is_kind_of(b, rb_cNumeric)) {
        if (rb_obj_is_kind_of(e, rb_cNumeric)) {
	    return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
        }
        if (NIL_P(e)) {
            return DBL2NUM(HUGE_VAL);
        }
    }
    else if (NIL_P(b)) {
        return DBL2NUM(HUGE_VAL);
    }

    return Qnil;
}

#step(n = 1) {|obj| ... } ⇒ Object #step(n = 1) ⇒ Object #step(n = 1) ⇒ Object #%(n) ⇒ Object #%(n) ⇒ Object

Iterates over the range, passing each nth element to the block. If begin and end are numeric, n is added for each iteration. Otherwise #step invokes #succ to iterate through range elements.

If no block is given, an enumerator is returned instead. Especially, the enumerator is an Enumerator::ArithmeticSequence if begin and end of the range are numeric.

range = Xs.new(1)..Xs.new(10)
range.step(2) {|x| puts x}
puts
range.step(3) {|x| puts x}

produces:

 1 x
 3 xxx
 5 xxxxx
 7 xxxxxxx
 9 xxxxxxxxx

 1 x
 4 xxxx
 7 xxxxxxx
10 xxxxxxxxxx

See Range for the definition of class Xs.

Overloads:

  • #step(n = 1) {|obj| ... } ⇒ Object

    Yields:

    • (obj)

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# File 'range.c', line 408

static VALUE
range_step(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e, step, tmp;

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    step = (!rb_check_arity(argc, 0, 1) ? INT2FIX(1) : argv[0]);

    if (!rb_block_given_p()) {
        if (!rb_obj_is_kind_of(step, rb_cNumeric)) {
            step = rb_to_int(step);
        }
        if (rb_equal(step, INT2FIX(0))) {
            rb_raise(rb_eArgError, "step can't be 0");
        }

        const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric);
        const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric);
        if ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p)) {
            return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv,
                    range_step_size, b, e, step, EXCL(range));
        }

        RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size);
    }

    step = check_step_domain(step);

    if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) {
	long i = FIX2LONG(b), unit = FIX2LONG(step);
	do {
	    rb_yield(LONG2FIX(i));
	    i += unit;          /* FIXABLE+FIXABLE never overflow */
	} while (FIXABLE(i));
	b = LONG2NUM(i);

	for (;; b = rb_big_plus(b, step))
	    rb_yield(b);
    }
    else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */
	long end = FIX2LONG(e);
	long i, unit = FIX2LONG(step);

	if (!EXCL(range))
	    end += 1;
	i = FIX2LONG(b);
	while (i < end) {
	    rb_yield(LONG2NUM(i));
	    if (i + unit < i) break;
	    i += unit;
	}

    }
    else if (SYMBOL_P(b) && (NIL_P(e) || SYMBOL_P(e))) { /* symbols are special */
	VALUE iter[2];
	iter[0] = INT2FIX(1);
	iter[1] = step;

	b = rb_sym2str(b);
	if (NIL_P(e)) {
	    rb_str_upto_endless_each(b, sym_step_i, (VALUE)iter);
	}
	else {
	    rb_str_upto_each(b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter);
	}
    }
    else if (ruby_float_step(b, e, step, EXCL(range), TRUE)) {
	/* done */
    }
    else if (rb_obj_is_kind_of(b, rb_cNumeric) ||
	     !NIL_P(rb_check_to_integer(b, "to_int")) ||
	     !NIL_P(rb_check_to_integer(e, "to_int"))) {
	ID op = EXCL(range) ? '<' : idLE;
	VALUE v = b;
	int i = 0;

	while (NIL_P(e) || RTEST(rb_funcall(v, op, 1, e))) {
	    rb_yield(v);
	    i++;
	    v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step));
	}
    }
    else {
	tmp = rb_check_string_type(b);

	if (!NIL_P(tmp)) {
	    VALUE iter[2];

	    b = tmp;
	    iter[0] = INT2FIX(1);
	    iter[1] = step;

	    if (NIL_P(e)) {
		rb_str_upto_endless_each(b, step_i, (VALUE)iter);
	    }
	    else {
		rb_str_upto_each(b, e, EXCL(range), step_i, (VALUE)iter);
	    }
	}
	else {
	    VALUE args[2];

	    if (!discrete_object_p(b)) {
		rb_raise(rb_eTypeError, "can't iterate from %s",
			 rb_obj_classname(b));
	    }
	    args[0] = INT2FIX(1);
	    args[1] = step;
	    range_each_func(range, step_i, (VALUE)args);
	}
    }
    return range;
}

#to_aArray #entriesArray

Returns an array containing the items in the range.

(1..7).to_a  #=> [1, 2, 3, 4, 5, 6, 7]
(1..).to_a   #=> RangeError: cannot convert endless range to an array

Overloads:


830
831
832
833
834
835
836
837
# File 'range.c', line 830

static VALUE
range_to_a(VALUE range)
{
    if (NIL_P(RANGE_END(range))) {
	rb_raise(rb_eRangeError, "cannot convert endless range to an array");
    }
    return rb_call_super(0, 0);
}

#to_sString

Convert this range object to a printable form (using #to_s to convert the begin and end objects).

Returns:


1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
# File 'range.c', line 1422

static VALUE
range_to_s(VALUE range)
{
    VALUE str, str2;

    str = rb_obj_as_string(RANGE_BEG(range));
    str2 = rb_obj_as_string(RANGE_END(range));
    str = rb_str_dup(str);
    rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
    rb_str_append(str, str2);

    return str;
}