Method: Matrix#determinant

Defined in:
lib/matrix.rb

#determinantObject Also known as: det

Returns the determinant of the matrix.

Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.

Matrix[[7,6], [3,9]].determinant
  => 45


1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
# File 'lib/matrix.rb', line 1164

def determinant
  Matrix.Raise ErrDimensionMismatch unless square?
  m = @rows
  case row_count
    # Up to 4x4, give result using Laplacian expansion by minors.
    # This will typically be faster, as well as giving good results
    # in case of Floats
  when 0
    +1
  when 1
    + m[0][0]
  when 2
    + m[0][0] * m[1][1] - m[0][1] * m[1][0]
  when 3
    m0, m1, m2 = m
    + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
    - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
    + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
  when 4
    m0, m1, m2, m3 = m
    + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
    - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
    + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
    - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
    + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
    - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
    + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
    - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
    + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
    - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
    + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
    - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
  else
    # For bigger matrices, use an efficient and general algorithm.
    # Currently, we use the Gauss-Bareiss algorithm
    determinant_bareiss
  end
end