Module: ObjectSpace
- Defined in:
- objspace.c,
objspace.c,
objspace_dump.c,
object_tracing.c
Overview
The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.
You need to require 'objspace'
to use this extension module.
Generally, you *SHOULD NOT* use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.
Defined Under Namespace
Classes: InternalObjectWrapper
Class Method Summary collapse
-
.allocation_class_path(object) ⇒ String
Returns the class for the given
object
. -
.allocation_generation(object) ⇒ Fixnum
Returns garbage collector generation for the given
object
. -
.allocation_method_id(object) ⇒ String
Returns the method identifier for the given
object
. -
.allocation_sourcefile(object) ⇒ String
Returns the source file origin from the given
object
. -
.allocation_sourceline(object) ⇒ String
Returns the original line from source for from the given
object
. -
.count_imemo_objects([result_hash]) ⇒ Hash
Counts objects for each
T_IMEMO
type. -
.count_nodes([result_hash]) ⇒ Hash
Counts nodes for each node type.
-
.count_objects_size([result_hash]) ⇒ Hash
Counts objects size (in bytes) for each type.
-
.count_symbols([result_hash]) ⇒ Hash
Counts symbols for each Symbol type.
-
.count_tdata_objects([result_hash]) ⇒ Hash
Counts objects for each
T_DATA
type. -
.dump(*args) ⇒ Object
Dump the contents of a ruby object as JSON.
-
.dump_all(*args) ⇒ Object
Dump the contents of the ruby heap as JSON.
-
.internal_class_of(obj) ⇒ Class, Module
- MRI specific feature
-
Return internal class of obj.
-
.internal_super_of(cls) ⇒ Class, Module
- MRI specific feature
-
Return internal super class of cls (Class or Module).
-
.memsize_of(obj) ⇒ Integer
Return consuming memory size of obj.
-
.memsize_of_all([klass]) ⇒ Integer
Return consuming memory size of all living objects.
-
.reachable_objects_from(obj) ⇒ Array?
- MRI specific feature
-
Return all reachable objects from ‘obj’.
-
.reachable_objects_from_root ⇒ Hash
- MRI specific feature
-
Return all reachable objects from root.
-
.trace_object_allocations { ... } ⇒ Object
Starts tracing object allocations from the ObjectSpace extension module.
-
.trace_object_allocations_clear ⇒ Object
Clear recorded tracing information.
- .trace_object_allocations_debug_start ⇒ Object
-
.trace_object_allocations_start ⇒ Object
Starts tracing object allocations.
-
.trace_object_allocations_stop ⇒ Object
Stop tracing object allocations.
Class Method Details
.allocation_class_path(object) ⇒ String
Returns the class for the given object
.
class A
def foo
ObjectSpace::trace_object_allocations do
obj = Object.new
p "#{ObjectSpace::allocation_class_path(obj)}"
end
end
end
A.new.foo #=> “Class”
See ::trace_object_allocations for more information and examples.
396 397 398 399 400 401 402 403 404 405 406 407 |
# File 'object_tracing.c', line 396
static VALUE
allocation_class_path(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->class_path) {
return rb_str_new2(info->class_path);
}
else {
return Qnil;
}
}
|
.allocation_generation(object) ⇒ Fixnum
Returns garbage collector generation for the given object
.
class B
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "Generation is #{allocation_generation(obj)}"
end
end
end
B.new.foo #=> “Generation is 3”
See ::trace_object_allocations for more information and examples.
461 462 463 464 465 466 467 468 469 470 471 |
# File 'object_tracing.c', line 461
static VALUE
allocation_generation(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return SIZET2NUM(info->generation);
}
else {
return Qnil;
}
}
|
.allocation_method_id(object) ⇒ String
Returns the method identifier for the given object
.
class A
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "#{allocation_class_path(obj)}##{allocation_method_id(obj)}"
end
end
end
A.new.foo #=> “Class#new”
See ::trace_object_allocations for more information and examples.
429 430 431 432 433 434 435 436 437 438 439 |
# File 'object_tracing.c', line 429
static VALUE
allocation_method_id(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return info->mid;
}
else {
return Qnil;
}
}
|
.allocation_sourcefile(object) ⇒ String
Returns the source file origin from the given object
.
See ::trace_object_allocations for more information and examples.
345 346 347 348 349 350 351 352 353 354 355 356 |
# File 'object_tracing.c', line 345
static VALUE
allocation_sourcefile(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->path) {
return rb_str_new2(info->path);
}
else {
return Qnil;
}
}
|
.allocation_sourceline(object) ⇒ String
Returns the original line from source for from the given object
.
See ::trace_object_allocations for more information and examples.
365 366 367 368 369 370 371 372 373 374 375 376 |
# File 'object_tracing.c', line 365
static VALUE
allocation_sourceline(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return INT2FIX(info->line);
}
else {
return Qnil;
}
}
|
.count_imemo_objects([result_hash]) ⇒ Hash
Counts objects for each T_IMEMO
type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
{:imemo_ifunc=>8,
:imemo_svar=>7,
:imemo_cref=>509,
:imemo_memo=>1,
:imemo_throw_data=>1}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation specific and may change in the future.
In this version, keys are symbol objects.
This method is only expected to work with C Ruby.
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
# File 'objspace.c', line 636
static VALUE
count_imemo_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
if (imemo_type_ids[0] == 0) {
imemo_type_ids[0] = rb_intern("imemo_none");
imemo_type_ids[1] = rb_intern("imemo_cref");
imemo_type_ids[2] = rb_intern("imemo_svar");
imemo_type_ids[3] = rb_intern("imemo_throw_data");
imemo_type_ids[4] = rb_intern("imemo_ifunc");
imemo_type_ids[5] = rb_intern("imemo_memo");
imemo_type_ids[6] = rb_intern("imemo_ment");
imemo_type_ids[7] = rb_intern("imemo_iseq");
}
rb_objspace_each_objects(count_imemo_objects_i, (void *)hash);
return hash;
}
|
.count_nodes([result_hash]) ⇒ Hash
Counts nodes for each node type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
:NODE_FBODY=>1927, :NODE_CFUNC=>1798, …
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
Note: The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
# File 'objspace.c', line 370
static VALUE
count_nodes(int argc, VALUE *argv, VALUE os)
{
size_t nodes[NODE_LAST+1];
size_t i;
VALUE hash = setup_hash(argc, argv);
for (i = 0; i <= NODE_LAST; i++) {
nodes[i] = 0;
}
rb_objspace_each_objects(cn_i, &nodes[0]);
if (hash == Qnil) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
st_foreach(RHASH_TBL(hash), set_zero_i, hash);
}
for (i=0; i<NODE_LAST; i++) {
if (nodes[i] != 0) {
VALUE node;
switch (i) {
#define COUNT_NODE(n) case n: node = ID2SYM(rb_intern(#n)); break;
COUNT_NODE(NODE_SCOPE);
COUNT_NODE(NODE_BLOCK);
COUNT_NODE(NODE_IF);
COUNT_NODE(NODE_CASE);
COUNT_NODE(NODE_WHEN);
COUNT_NODE(NODE_OPT_N);
COUNT_NODE(NODE_WHILE);
COUNT_NODE(NODE_UNTIL);
COUNT_NODE(NODE_ITER);
COUNT_NODE(NODE_FOR);
COUNT_NODE(NODE_BREAK);
COUNT_NODE(NODE_NEXT);
COUNT_NODE(NODE_REDO);
COUNT_NODE(NODE_RETRY);
COUNT_NODE(NODE_BEGIN);
COUNT_NODE(NODE_RESCUE);
COUNT_NODE(NODE_RESBODY);
COUNT_NODE(NODE_ENSURE);
COUNT_NODE(NODE_AND);
COUNT_NODE(NODE_OR);
COUNT_NODE(NODE_MASGN);
COUNT_NODE(NODE_LASGN);
COUNT_NODE(NODE_DASGN);
COUNT_NODE(NODE_DASGN_CURR);
COUNT_NODE(NODE_GASGN);
COUNT_NODE(NODE_IASGN);
COUNT_NODE(NODE_IASGN2);
COUNT_NODE(NODE_CDECL);
COUNT_NODE(NODE_CVASGN);
COUNT_NODE(NODE_CVDECL);
COUNT_NODE(NODE_OP_ASGN1);
COUNT_NODE(NODE_OP_ASGN2);
COUNT_NODE(NODE_OP_ASGN_AND);
COUNT_NODE(NODE_OP_ASGN_OR);
COUNT_NODE(NODE_OP_CDECL);
COUNT_NODE(NODE_CALL);
COUNT_NODE(NODE_FCALL);
COUNT_NODE(NODE_VCALL);
COUNT_NODE(NODE_SUPER);
COUNT_NODE(NODE_ZSUPER);
COUNT_NODE(NODE_ARRAY);
COUNT_NODE(NODE_ZARRAY);
COUNT_NODE(NODE_VALUES);
COUNT_NODE(NODE_HASH);
COUNT_NODE(NODE_RETURN);
COUNT_NODE(NODE_YIELD);
COUNT_NODE(NODE_LVAR);
COUNT_NODE(NODE_DVAR);
COUNT_NODE(NODE_GVAR);
COUNT_NODE(NODE_IVAR);
COUNT_NODE(NODE_CONST);
COUNT_NODE(NODE_CVAR);
COUNT_NODE(NODE_NTH_REF);
COUNT_NODE(NODE_BACK_REF);
COUNT_NODE(NODE_MATCH);
COUNT_NODE(NODE_MATCH2);
COUNT_NODE(NODE_MATCH3);
COUNT_NODE(NODE_LIT);
COUNT_NODE(NODE_STR);
COUNT_NODE(NODE_DSTR);
COUNT_NODE(NODE_XSTR);
COUNT_NODE(NODE_DXSTR);
COUNT_NODE(NODE_EVSTR);
COUNT_NODE(NODE_DREGX);
COUNT_NODE(NODE_DREGX_ONCE);
COUNT_NODE(NODE_ARGS);
COUNT_NODE(NODE_ARGS_AUX);
COUNT_NODE(NODE_OPT_ARG);
COUNT_NODE(NODE_KW_ARG);
COUNT_NODE(NODE_POSTARG);
COUNT_NODE(NODE_ARGSCAT);
COUNT_NODE(NODE_ARGSPUSH);
COUNT_NODE(NODE_SPLAT);
COUNT_NODE(NODE_TO_ARY);
COUNT_NODE(NODE_BLOCK_ARG);
COUNT_NODE(NODE_BLOCK_PASS);
COUNT_NODE(NODE_DEFN);
COUNT_NODE(NODE_DEFS);
COUNT_NODE(NODE_ALIAS);
COUNT_NODE(NODE_VALIAS);
COUNT_NODE(NODE_UNDEF);
COUNT_NODE(NODE_CLASS);
COUNT_NODE(NODE_MODULE);
COUNT_NODE(NODE_SCLASS);
COUNT_NODE(NODE_COLON2);
COUNT_NODE(NODE_COLON3);
COUNT_NODE(NODE_DOT2);
COUNT_NODE(NODE_DOT3);
COUNT_NODE(NODE_FLIP2);
COUNT_NODE(NODE_FLIP3);
COUNT_NODE(NODE_SELF);
COUNT_NODE(NODE_NIL);
COUNT_NODE(NODE_TRUE);
COUNT_NODE(NODE_FALSE);
COUNT_NODE(NODE_ERRINFO);
COUNT_NODE(NODE_DEFINED);
COUNT_NODE(NODE_POSTEXE);
COUNT_NODE(NODE_ALLOCA);
COUNT_NODE(NODE_BMETHOD);
COUNT_NODE(NODE_DSYM);
COUNT_NODE(NODE_ATTRASGN);
COUNT_NODE(NODE_PRELUDE);
COUNT_NODE(NODE_LAMBDA);
#undef COUNT_NODE
default: node = INT2FIX(i);
}
rb_hash_aset(hash, node, SIZET2NUM(nodes[i]));
}
}
return hash;
}
|
.count_objects_size([result_hash]) ⇒ Hash
Counts objects size (in bytes) for each type.
Note that this information is incomplete. You need to deal with this information as only a HINT. Especially, total size of T_DATA may not right size.
It returns a hash as:
{:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# File 'objspace.c', line 221
static VALUE
count_objects_size(int argc, VALUE *argv, VALUE os)
{
size_t counts[T_MASK+1];
size_t total = 0;
enum ruby_value_type i;
VALUE hash = setup_hash(argc, argv);
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
rb_objspace_each_objects(cos_i, &counts[0]);
if (hash == Qnil) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
st_foreach(RHASH_TBL(hash), set_zero_i, hash);
}
for (i = 0; i <= T_MASK; i++) {
if (counts[i]) {
VALUE type = type2sym(i);
total += counts[i];
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
return hash;
}
|
.count_symbols([result_hash]) ⇒ Hash
Counts symbols for each Symbol type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
Note: The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
On this version of MRI, they have 3 types of Symbols (and 1 total counts).
* mortal_dynamic_symbol: GC target symbols (collected by GC)
* immortal_dynamic_symbol: Immortal symbols promoted from dynamic symbols (do not collected by GC)
* immortal_static_symbol: Immortal symbols (do not collected by GC)
* immortal_symbol: total immortal symbols (immortal_dynamic_symbol+immortal_static_symbol)
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# File 'objspace.c', line 307
static VALUE
count_symbols(int argc, VALUE *argv, VALUE os)
{
struct dynamic_symbol_counts dynamic_counts = {0, 0};
VALUE hash = setup_hash(argc, argv);
size_t immortal_symbols = rb_sym_immortal_count();
rb_objspace_each_objects(cs_i, &dynamic_counts);
if (hash == Qnil) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
st_foreach(RHASH_TBL(hash), set_zero_i, hash);
}
rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.mortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")), SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")), SIZET2NUM(immortal_symbols));
return hash;
}
|
.count_tdata_objects([result_hash]) ⇒ Hash
Counts objects for each T_DATA
type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
:parser=>5, :barrier=>6, :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99, ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1, Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2 # T_DATA objects existing at startup on r32276.
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation specific and may change in the future.
In this version, keys are Class object or Symbol object.
If object is kind of normal (accessible) object, the key is Class object. If object is not a kind of normal (internal) object, the key is symbol name, registered by rb_data_type_struct.
This method is only expected to work with C Ruby.
571 572 573 574 575 576 577 |
# File 'objspace.c', line 571
static VALUE
count_tdata_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
rb_objspace_each_objects(cto_i, (void *)hash);
return hash;
}
|
.dump(obj[, output: :string]) ⇒ Object .dump(obj, output: :file) ⇒ #<File:/tmp/rubyobj20131125-88733-1xkfmpv.json .dump(obj, output: :stdout) ⇒ nil
Dump the contents of a ruby object as JSON.
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# File 'objspace_dump.c', line 409
static VALUE
objspace_dump(int argc, VALUE *argv, VALUE os)
{
static const char filename[] = "rubyobj";
VALUE obj = Qnil, opts = Qnil, output;
struct dump_config dc = {0,};
rb_scan_args(argc, argv, "1:", &obj, &opts);
output = dump_output(&dc, opts, sym_string, filename);
dump_object(obj, &dc);
return dump_result(&dc, output);
}
|
.dump_all([output: :file]) ⇒ #<File:/tmp/rubyheap20131125-88469-laoj3v.json .dump_all(output: :stdout) ⇒ nil .dump_all(output: :string) ⇒ Object .dump_all(output: ) ⇒ Object .open('heap.json', 'w') ⇒ #<File:heap.json
Dump the contents of the ruby heap as JSON.
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
# File 'objspace_dump.c', line 441
static VALUE
objspace_dump_all(int argc, VALUE *argv, VALUE os)
{
static const char filename[] = "rubyheap";
VALUE opts = Qnil, output;
struct dump_config dc = {0,};
rb_scan_args(argc, argv, "0:", &opts);
output = dump_output(&dc, opts, sym_file, filename);
/* dump roots */
rb_objspace_reachable_objects_from_root(root_obj_i, &dc);
if (dc.roots) dump_append(&dc, "]}\n");
/* dump all objects */
rb_objspace_each_objects(heap_i, &dc);
return dump_result(&dc, output);
}
|
.internal_class_of(obj) ⇒ Class, Module
- MRI specific feature
-
Return internal class of obj.
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
894 895 896 897 898 899 900 901 902 903 904 905 |
# File 'objspace.c', line 894
static VALUE
objspace_internal_class_of(VALUE self, VALUE obj)
{
VALUE klass;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
klass = CLASS_OF(obj);
return wrap_klass_iow(klass);
}
|
.internal_super_of(cls) ⇒ Class, Module
- MRI specific feature
-
Return internal super class of cls (Class or Module).
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
# File 'objspace.c', line 916
static VALUE
objspace_internal_super_of(VALUE self, VALUE obj)
{
VALUE super;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
switch (TYPE(obj)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
super = RCLASS_SUPER(obj);
break;
default:
rb_raise(rb_eArgError, "class or module is expected");
}
return wrap_klass_iow(super);
}
|
.memsize_of(obj) ⇒ Integer
Return consuming memory size of obj.
Note that the return size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA
may not be correct.
This method is only expected to work with C Ruby.
From Ruby 2.2, memsize_of(obj) returns a memory size includes sizeof(RVALUE).
39 40 41 42 43 |
# File 'objspace.c', line 39
static VALUE
memsize_of_m(VALUE self, VALUE obj)
{
return SIZET2NUM(rb_obj_memsize_of(obj));
}
|
.memsize_of_all([klass]) ⇒ Integer
Return consuming memory size of all living objects.
If klass
(should be Class object) is given, return the total memory size of instances of the given class.
Note that the returned size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA
may not be correct.
Note that this method does NOT return total malloc’ed memory size.
This method can be defined by the following Ruby code:
def memsize_of_all klass = false total = 0 ObjectSpace.each_object{|e| total += ObjectSpace.memsize_of(e) if klass == false || e.kind_of?(klass) } total end
This method is only expected to work with C Ruby.
104 105 106 107 108 109 110 111 112 113 114 115 |
# File 'objspace.c', line 104
static VALUE
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
{
struct total_data data = {0, 0};
if (argc > 0) {
rb_scan_args(argc, argv, "01", &data.klass);
}
rb_objspace_each_objects(total_i, &data);
return SIZET2NUM(data.total);
}
|
.reachable_objects_from(obj) ⇒ Array?
- MRI specific feature
-
Return all reachable objects from ‘obj’.
This method returns all reachable objects from ‘obj’.
If ‘obj’ has two or more references to the same object ‘x’, then returned array only includes one ‘x’ object.
If ‘obj’ is a non-markable (non-heap management) object such as true, false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.
If ‘obj’ has references to an internal object, then it returns instances of ObjectSpace::InternalObjectWrapper class. This object contains a reference to an internal object and you can check the type of internal object with ‘type’ method.
If ‘obj’ is instance of ObjectSpace::InternalObjectWrapper class, then this method returns all reachable object from an internal object, which is pointed by ‘obj’.
With this method, you can find memory leaks.
This method is only expected to work except with C Ruby.
Example:
ObjectSpace.reachable_objects_from(['a', 'b', 'c'])
#=> [Array, 'a', 'b', 'c']
ObjectSpace.reachable_objects_from(['a', 'a', 'a'])
#=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id
ObjectSpace.reachable_objects_from([v = 'a', v, v])
#=> [Array, 'a']
ObjectSpace.reachable_objects_from(1)
#=> nil # 1 is not markable (heap managed) object
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
# File 'objspace.c', line 781
static VALUE
reachable_objects_from(VALUE self, VALUE obj)
{
if (rb_objspace_markable_object_p(obj)) {
VALUE ret = rb_ary_new();
struct rof_data data;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
data.refs = st_init_numtable();
data.internals = rb_ary_new();
rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);
st_foreach(data.refs, collect_values, (st_data_t)ret);
return ret;
}
else {
return Qnil;
}
}
|
.reachable_objects_from_root ⇒ Hash
- MRI specific feature
-
Return all reachable objects from root.
858 859 860 861 862 863 864 865 866 867 868 869 |
# File 'objspace.c', line 858
static VALUE
reachable_objects_from_root(VALUE self)
{
struct rofr_data data;
VALUE hash = data.categories = rb_ident_hash_new();
data.last_category = 0;
rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
rb_hash_foreach(hash, collect_values_of_values, hash);
return hash;
}
|
.trace_object_allocations { ... } ⇒ Object
Starts tracing object allocations from the ObjectSpace extension module.
For example:
require ‘objspace’
class C
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}"
end
end
end
C.new.foo #=> “objtrace.rb:8”
This example has included the ObjectSpace module to make it easier to read, but you can also use the ::trace_object_allocations notation (recommended).
Note that this feature introduces a huge performance decrease and huge memory consumption.
268 269 270 271 272 273 |
# File 'object_tracing.c', line 268
static VALUE
trace_object_allocations(VALUE self)
{
trace_object_allocations_start(self);
return rb_ensure(rb_yield, Qnil, trace_object_allocations_stop, self);
}
|
.trace_object_allocations_clear ⇒ Object
Clear recorded tracing information.
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# File 'object_tracing.c', line 224
static VALUE
trace_object_allocations_clear(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
/* clear tables */
st_foreach(arg->object_table, free_values_i, 0);
st_clear(arg->object_table);
st_foreach(arg->str_table, free_keys_i, 0);
st_clear(arg->str_table);
/* do not touch TracePoints */
return Qnil;
}
|
.trace_object_allocations_debug_start ⇒ Object
308 309 310 311 312 313 314 315 316 317 318 |
# File 'object_tracing.c', line 308
static VALUE
trace_object_allocations_debug_start(VALUE self)
{
tmp_keep_remains = 1;
if (object_allocations_reporter_registered == 0) {
object_allocations_reporter_registered = 1;
rb_bug_reporter_add(object_allocations_reporter, 0);
}
return trace_object_allocations_start(self);
}
|
.trace_object_allocations_start ⇒ Object
Starts tracing object allocations.
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# File 'object_tracing.c', line 170
static VALUE
trace_object_allocations_start(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running++ > 0) {
/* do nothing */
}
else {
if (arg->newobj_trace == 0) {
arg->newobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_NEWOBJ, newobj_i, arg);
arg->freeobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_FREEOBJ, freeobj_i, arg);
}
rb_tracepoint_enable(arg->newobj_trace);
rb_tracepoint_enable(arg->freeobj_trace);
}
return Qnil;
}
|
.trace_object_allocations_stop ⇒ Object
Stop tracing object allocations.
Note that if ::trace_object_allocations_start is called n-times, then tracing will stop after calling ::trace_object_allocations_stop n-times.
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# File 'object_tracing.c', line 199
static VALUE
trace_object_allocations_stop(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running > 0) {
arg->running--;
}
if (arg->running == 0) {
rb_tracepoint_disable(arg->newobj_trace);
rb_tracepoint_disable(arg->freeobj_trace);
arg->newobj_trace = 0;
arg->freeobj_trace = 0;
}
return Qnil;
}
|