Module: ObjectSpace
- Defined in:
- objspace.c,
objspace.c,
objspace_dump.c,
object_tracing.c
Overview
The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.
You need to require 'objspace'
to use this extension module.
Generally, you *SHOULD NOT* use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.
Defined Under Namespace
Classes: InternalObjectWrapper
Class Method Summary collapse
-
.allocation_class_path(object) ⇒ String
Returns the class for the given
object
. -
.allocation_generation(object) ⇒ Integer?
Returns garbage collector generation for the given
object
. -
.allocation_method_id(object) ⇒ String
Returns the method identifier for the given
object
. -
.allocation_sourcefile(object) ⇒ String
Returns the source file origin from the given
object
. -
.allocation_sourceline(object) ⇒ Integer
Returns the original line from source for from the given
object
. -
.count_imemo_objects([result_hash]) ⇒ Hash
Counts objects for each
T_IMEMO
type. -
.count_nodes([result_hash]) ⇒ Hash
Counts nodes for each node type.
-
.count_objects_size([result_hash]) ⇒ Hash
Counts objects size (in bytes) for each type.
-
.count_symbols([result_hash]) ⇒ Hash
Counts symbols for each Symbol type.
-
.count_tdata_objects([result_hash]) ⇒ Hash
Counts objects for each
T_DATA
type. -
.dump(*args) ⇒ Object
Dump the contents of a ruby object as JSON.
-
.dump_all(*args) ⇒ Object
Dump the contents of the ruby heap as JSON.
-
.internal_class_of(obj) ⇒ Class, Module
- MRI specific feature
-
Return internal class of obj.
-
.internal_super_of(cls) ⇒ Class, Module
- MRI specific feature
-
Return internal super class of cls (Class or Module).
-
.memsize_of(obj) ⇒ Integer
Return consuming memory size of obj.
-
.memsize_of_all([klass]) ⇒ Integer
Return consuming memory size of all living objects.
-
.reachable_objects_from(obj) ⇒ Array?
- MRI specific feature
-
Return all reachable objects from ‘obj’.
-
.reachable_objects_from_root ⇒ Hash
- MRI specific feature
-
Return all reachable objects from root.
-
.trace_object_allocations { ... } ⇒ Object
Starts tracing object allocations from the ObjectSpace extension module.
-
.trace_object_allocations_clear ⇒ Object
Clear recorded tracing information.
- .trace_object_allocations_debug_start ⇒ Object
-
.trace_object_allocations_start ⇒ Object
Starts tracing object allocations.
-
.trace_object_allocations_stop ⇒ Object
Stop tracing object allocations.
Class Method Details
.allocation_class_path(object) ⇒ String
Returns the class for the given object
.
class A
def foo
ObjectSpace::trace_object_allocations do
obj = Object.new
p "#{ObjectSpace::allocation_class_path(obj)}"
end
end
end
A.new.foo #=> “Class”
See ::trace_object_allocations for more information and examples.
404 405 406 407 408 409 410 411 412 413 414 415 |
# File 'object_tracing.c', line 404
static VALUE
allocation_class_path(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->class_path) {
return rb_str_new2(info->class_path);
}
else {
return Qnil;
}
}
|
.allocation_generation(object) ⇒ Integer?
Returns garbage collector generation for the given object
.
class B
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "Generation is #{allocation_generation(obj)}"
end
end
end
B.new.foo #=> “Generation is 3”
See ::trace_object_allocations for more information and examples.
469 470 471 472 473 474 475 476 477 478 479 |
# File 'object_tracing.c', line 469
static VALUE
allocation_generation(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return SIZET2NUM(info->generation);
}
else {
return Qnil;
}
}
|
.allocation_method_id(object) ⇒ String
Returns the method identifier for the given object
.
class A
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "#{allocation_class_path(obj)}##{allocation_method_id(obj)}"
end
end
end
A.new.foo #=> “Class#new”
See ::trace_object_allocations for more information and examples.
437 438 439 440 441 442 443 444 445 446 447 |
# File 'object_tracing.c', line 437
static VALUE
allocation_method_id(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return info->mid;
}
else {
return Qnil;
}
}
|
.allocation_sourcefile(object) ⇒ String
Returns the source file origin from the given object
.
See ::trace_object_allocations for more information and examples.
353 354 355 356 357 358 359 360 361 362 363 364 |
# File 'object_tracing.c', line 353
static VALUE
allocation_sourcefile(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->path) {
return rb_str_new2(info->path);
}
else {
return Qnil;
}
}
|
.allocation_sourceline(object) ⇒ Integer
Returns the original line from source for from the given object
.
See ::trace_object_allocations for more information and examples.
373 374 375 376 377 378 379 380 381 382 383 384 |
# File 'object_tracing.c', line 373
static VALUE
allocation_sourceline(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return INT2FIX(info->line);
}
else {
return Qnil;
}
}
|
.count_imemo_objects([result_hash]) ⇒ Hash
Counts objects for each T_IMEMO
type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
{:imemo_ifunc=>8,
:imemo_svar=>7,
:imemo_cref=>509,
:imemo_memo=>1,
:imemo_throw_data=>1}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation specific and may change in the future.
In this version, keys are symbol objects.
This method is only expected to work with C Ruby.
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
# File 'objspace.c', line 623
static VALUE
count_imemo_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
if (imemo_type_ids[0] == 0) {
imemo_type_ids[0] = rb_intern("imemo_env");
imemo_type_ids[1] = rb_intern("imemo_cref");
imemo_type_ids[2] = rb_intern("imemo_svar");
imemo_type_ids[3] = rb_intern("imemo_throw_data");
imemo_type_ids[4] = rb_intern("imemo_ifunc");
imemo_type_ids[5] = rb_intern("imemo_memo");
imemo_type_ids[6] = rb_intern("imemo_ment");
imemo_type_ids[7] = rb_intern("imemo_iseq");
imemo_type_ids[8] = rb_intern("imemo_tmpbuf");
imemo_type_ids[9] = rb_intern("imemo_ast");
imemo_type_ids[10] = rb_intern("imemo_parser_strterm");
}
rb_objspace_each_objects(count_imemo_objects_i, (void *)hash);
return hash;
}
|
.count_nodes([result_hash]) ⇒ Hash
Counts nodes for each node type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
:NODE_FBODY=>1927, :NODE_CFUNC=>1798, …
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
Note: The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
# File 'objspace.c', line 361
static VALUE
count_nodes(int argc, VALUE *argv, VALUE os)
{
size_t nodes[NODE_LAST+1];
enum node_type i;
VALUE hash = setup_hash(argc, argv);
for (i = 0; i <= NODE_LAST; i++) {
nodes[i] = 0;
}
rb_objspace_each_objects(cn_i, &nodes[0]);
for (i=0; i<NODE_LAST; i++) {
if (nodes[i] != 0) {
VALUE node;
switch (i) {
#define COUNT_NODE(n) case n: node = ID2SYM(rb_intern(#n)); goto set
COUNT_NODE(NODE_SCOPE);
COUNT_NODE(NODE_BLOCK);
COUNT_NODE(NODE_IF);
COUNT_NODE(NODE_UNLESS);
COUNT_NODE(NODE_CASE);
COUNT_NODE(NODE_CASE2);
COUNT_NODE(NODE_CASE3);
COUNT_NODE(NODE_WHEN);
COUNT_NODE(NODE_IN);
COUNT_NODE(NODE_WHILE);
COUNT_NODE(NODE_UNTIL);
COUNT_NODE(NODE_ITER);
COUNT_NODE(NODE_FOR);
COUNT_NODE(NODE_FOR_MASGN);
COUNT_NODE(NODE_BREAK);
COUNT_NODE(NODE_NEXT);
COUNT_NODE(NODE_REDO);
COUNT_NODE(NODE_RETRY);
COUNT_NODE(NODE_BEGIN);
COUNT_NODE(NODE_RESCUE);
COUNT_NODE(NODE_RESBODY);
COUNT_NODE(NODE_ENSURE);
COUNT_NODE(NODE_AND);
COUNT_NODE(NODE_OR);
COUNT_NODE(NODE_MASGN);
COUNT_NODE(NODE_LASGN);
COUNT_NODE(NODE_DASGN);
COUNT_NODE(NODE_DASGN_CURR);
COUNT_NODE(NODE_GASGN);
COUNT_NODE(NODE_IASGN);
COUNT_NODE(NODE_CDECL);
COUNT_NODE(NODE_CVASGN);
COUNT_NODE(NODE_OP_ASGN1);
COUNT_NODE(NODE_OP_ASGN2);
COUNT_NODE(NODE_OP_ASGN_AND);
COUNT_NODE(NODE_OP_ASGN_OR);
COUNT_NODE(NODE_OP_CDECL);
COUNT_NODE(NODE_CALL);
COUNT_NODE(NODE_OPCALL);
COUNT_NODE(NODE_FCALL);
COUNT_NODE(NODE_VCALL);
COUNT_NODE(NODE_QCALL);
COUNT_NODE(NODE_SUPER);
COUNT_NODE(NODE_ZSUPER);
COUNT_NODE(NODE_LIST);
COUNT_NODE(NODE_ZLIST);
COUNT_NODE(NODE_VALUES);
COUNT_NODE(NODE_HASH);
COUNT_NODE(NODE_RETURN);
COUNT_NODE(NODE_YIELD);
COUNT_NODE(NODE_LVAR);
COUNT_NODE(NODE_DVAR);
COUNT_NODE(NODE_GVAR);
COUNT_NODE(NODE_IVAR);
COUNT_NODE(NODE_CONST);
COUNT_NODE(NODE_CVAR);
COUNT_NODE(NODE_NTH_REF);
COUNT_NODE(NODE_BACK_REF);
COUNT_NODE(NODE_MATCH);
COUNT_NODE(NODE_MATCH2);
COUNT_NODE(NODE_MATCH3);
COUNT_NODE(NODE_LIT);
COUNT_NODE(NODE_STR);
COUNT_NODE(NODE_DSTR);
COUNT_NODE(NODE_XSTR);
COUNT_NODE(NODE_DXSTR);
COUNT_NODE(NODE_EVSTR);
COUNT_NODE(NODE_DREGX);
COUNT_NODE(NODE_ONCE);
COUNT_NODE(NODE_ARGS);
COUNT_NODE(NODE_ARGS_AUX);
COUNT_NODE(NODE_OPT_ARG);
COUNT_NODE(NODE_KW_ARG);
COUNT_NODE(NODE_POSTARG);
COUNT_NODE(NODE_ARGSCAT);
COUNT_NODE(NODE_ARGSPUSH);
COUNT_NODE(NODE_SPLAT);
COUNT_NODE(NODE_BLOCK_PASS);
COUNT_NODE(NODE_DEFN);
COUNT_NODE(NODE_DEFS);
COUNT_NODE(NODE_ALIAS);
COUNT_NODE(NODE_VALIAS);
COUNT_NODE(NODE_UNDEF);
COUNT_NODE(NODE_CLASS);
COUNT_NODE(NODE_MODULE);
COUNT_NODE(NODE_SCLASS);
COUNT_NODE(NODE_COLON2);
COUNT_NODE(NODE_COLON3);
COUNT_NODE(NODE_DOT2);
COUNT_NODE(NODE_DOT3);
COUNT_NODE(NODE_FLIP2);
COUNT_NODE(NODE_FLIP3);
COUNT_NODE(NODE_SELF);
COUNT_NODE(NODE_NIL);
COUNT_NODE(NODE_TRUE);
COUNT_NODE(NODE_FALSE);
COUNT_NODE(NODE_ERRINFO);
COUNT_NODE(NODE_DEFINED);
COUNT_NODE(NODE_POSTEXE);
COUNT_NODE(NODE_DSYM);
COUNT_NODE(NODE_ATTRASGN);
COUNT_NODE(NODE_LAMBDA);
COUNT_NODE(NODE_ARYPTN);
COUNT_NODE(NODE_HSHPTN);
#undef COUNT_NODE
case NODE_LAST: break;
}
UNREACHABLE;
set:
rb_hash_aset(hash, node, SIZET2NUM(nodes[i]));
}
}
return hash;
}
|
.count_objects_size([result_hash]) ⇒ Hash
Counts objects size (in bytes) for each type.
Note that this information is incomplete. You need to deal with this information as only a HINT. Especially, total size of T_DATA may be wrong.
It returns a hash as:
{:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# File 'objspace.c', line 226
static VALUE
count_objects_size(int argc, VALUE *argv, VALUE os)
{
size_t counts[T_MASK+1];
size_t total = 0;
enum ruby_value_type i;
VALUE hash = setup_hash(argc, argv);
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
rb_objspace_each_objects(cos_i, &counts[0]);
for (i = 0; i <= T_MASK; i++) {
if (counts[i]) {
VALUE type = type2sym(i);
total += counts[i];
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
return hash;
}
|
.count_symbols([result_hash]) ⇒ Hash
Counts symbols for each Symbol type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
Note: The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
On this version of MRI, they have 3 types of Symbols (and 1 total counts).
* mortal_dynamic_symbol: GC target symbols (collected by GC)
* immortal_dynamic_symbol: Immortal symbols promoted from dynamic symbols (do not collected by GC)
* immortal_static_symbol: Immortal symbols (do not collected by GC)
* immortal_symbol: total immortal symbols (immortal_dynamic_symbol+immortal_static_symbol)
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# File 'objspace.c', line 305
static VALUE
count_symbols(int argc, VALUE *argv, VALUE os)
{
struct dynamic_symbol_counts dynamic_counts = {0, 0};
VALUE hash = setup_hash(argc, argv);
size_t immortal_symbols = rb_sym_immortal_count();
rb_objspace_each_objects(cs_i, &dynamic_counts);
rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.mortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")), SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")), SIZET2NUM(immortal_symbols));
return hash;
}
|
.count_tdata_objects([result_hash]) ⇒ Hash
Counts objects for each T_DATA
type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
:parser=>5, :barrier=>6, :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99, ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1, Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2 # T_DATA objects existing at startup on r32276.
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation specific and may change in the future.
In this version, keys are Class object or Symbol object.
If object is kind of normal (accessible) object, the key is Class object. If object is not a kind of normal (internal) object, the key is symbol name, registered by rb_data_type_struct.
This method is only expected to work with C Ruby.
558 559 560 561 562 563 564 |
# File 'objspace.c', line 558
static VALUE
count_tdata_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
rb_objspace_each_objects(cto_i, (void *)hash);
return hash;
}
|
.dump(obj[, output: :string]) ⇒ Object .dump(obj, output: :file) ⇒ #<File:/tmp/rubyobj20131125-88733-1xkfmpv.json .dump(obj, output: :stdout) ⇒ nil
Dump the contents of a ruby object as JSON.
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
# File 'objspace_dump.c', line 447
static VALUE
objspace_dump(int argc, VALUE *argv, VALUE os)
{
static const char filename[] = "rubyobj";
VALUE obj = Qnil, opts = Qnil, output;
struct dump_config dc = {0,};
rb_scan_args(argc, argv, "1:", &obj, &opts);
output = dump_output(&dc, opts, sym_string, filename);
dump_object(obj, &dc);
return dump_result(&dc, output);
}
|
.dump_all([output: :file]) ⇒ #<File:/tmp/rubyheap20131125-88469-laoj3v.json .dump_all(output: :stdout) ⇒ nil .dump_all(output: :string) ⇒ Object .dump_all(output: ) ⇒ Object .open('heap.json', 'w') ⇒ #<File:heap.json
Dump the contents of the ruby heap as JSON.
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# File 'objspace_dump.c', line 479
static VALUE
objspace_dump_all(int argc, VALUE *argv, VALUE os)
{
static const char filename[] = "rubyheap";
VALUE opts = Qnil, output;
struct dump_config dc = {0,};
rb_scan_args(argc, argv, "0:", &opts);
output = dump_output(&dc, opts, sym_file, filename);
/* dump roots */
rb_objspace_reachable_objects_from_root(root_obj_i, &dc);
if (dc.roots) dump_append(&dc, "]}\n");
/* dump all objects */
rb_objspace_each_objects(heap_i, &dc);
return dump_result(&dc, output);
}
|
.internal_class_of(obj) ⇒ Class, Module
- MRI specific feature
-
Return internal class of obj.
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
884 885 886 887 888 889 890 891 892 893 894 895 |
# File 'objspace.c', line 884
static VALUE
objspace_internal_class_of(VALUE self, VALUE obj)
{
VALUE klass;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
klass = CLASS_OF(obj);
return wrap_klass_iow(klass);
}
|
.internal_super_of(cls) ⇒ Class, Module
- MRI specific feature
-
Return internal super class of cls (Class or Module).
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 |
# File 'objspace.c', line 906
static VALUE
objspace_internal_super_of(VALUE self, VALUE obj)
{
VALUE super;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
switch (OBJ_BUILTIN_TYPE(obj)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
super = RCLASS_SUPER(obj);
break;
default:
rb_raise(rb_eArgError, "class or module is expected");
}
return wrap_klass_iow(super);
}
|
.memsize_of(obj) ⇒ Integer
Return consuming memory size of obj.
Note that the return size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA
may not be correct.
This method is only expected to work with C Ruby.
From Ruby 2.2, memsize_of(obj) returns a memory size includes sizeof(RVALUE).
43 44 45 46 47 |
# File 'objspace.c', line 43
static VALUE
memsize_of_m(VALUE self, VALUE obj)
{
return SIZET2NUM(rb_obj_memsize_of(obj));
}
|
.memsize_of_all([klass]) ⇒ Integer
Return consuming memory size of all living objects.
If klass
(should be Class object) is given, return the total memory size of instances of the given class.
Note that the returned size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA
may not be correct.
Note that this method does NOT return total malloc’ed memory size.
This method can be defined by the following Ruby code:
def memsize_of_all klass = false total = 0 ObjectSpace.each_object{|e| total += ObjectSpace.memsize_of(e) if klass == false || e.kind_of?(klass) } total end
This method is only expected to work with C Ruby.
108 109 110 111 112 113 114 115 116 117 118 119 |
# File 'objspace.c', line 108
static VALUE
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
{
struct total_data data = {0, 0};
if (argc > 0) {
rb_scan_args(argc, argv, "01", &data.klass);
}
rb_objspace_each_objects(total_i, &data);
return SIZET2NUM(data.total);
}
|
.reachable_objects_from(obj) ⇒ Array?
- MRI specific feature
-
Return all reachable objects from ‘obj’.
This method returns all reachable objects from ‘obj’.
If ‘obj’ has two or more references to the same object ‘x’, then returned array only includes one ‘x’ object.
If ‘obj’ is a non-markable (non-heap management) object such as true, false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.
If ‘obj’ has references to an internal object, then it returns instances of ObjectSpace::InternalObjectWrapper class. This object contains a reference to an internal object and you can check the type of internal object with ‘type’ method.
If ‘obj’ is instance of ObjectSpace::InternalObjectWrapper class, then this method returns all reachable object from an internal object, which is pointed by ‘obj’.
With this method, you can find memory leaks.
This method is only expected to work except with C Ruby.
Example:
ObjectSpace.reachable_objects_from(['a', 'b', 'c'])
#=> [Array, 'a', 'b', 'c']
ObjectSpace.reachable_objects_from(['a', 'a', 'a'])
#=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id
ObjectSpace.reachable_objects_from([v = 'a', v, v])
#=> [Array, 'a']
ObjectSpace.reachable_objects_from(1)
#=> nil # 1 is not markable (heap managed) object
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
# File 'objspace.c', line 771
static VALUE
reachable_objects_from(VALUE self, VALUE obj)
{
if (rb_objspace_markable_object_p(obj)) {
VALUE ret = rb_ary_new();
struct rof_data data;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
data.refs = st_init_numtable();
data.internals = rb_ary_new();
rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);
st_foreach(data.refs, collect_values, (st_data_t)ret);
return ret;
}
else {
return Qnil;
}
}
|
.reachable_objects_from_root ⇒ Hash
- MRI specific feature
-
Return all reachable objects from root.
848 849 850 851 852 853 854 855 856 857 858 859 |
# File 'objspace.c', line 848
static VALUE
reachable_objects_from_root(VALUE self)
{
struct rofr_data data;
VALUE hash = data.categories = rb_ident_hash_new();
data.last_category = 0;
rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
rb_hash_foreach(hash, collect_values_of_values, hash);
return hash;
}
|
.trace_object_allocations { ... } ⇒ Object
Starts tracing object allocations from the ObjectSpace extension module.
For example:
require ‘objspace’
class C
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}"
end
end
end
C.new.foo #=> “objtrace.rb:8”
This example has included the ObjectSpace module to make it easier to read, but you can also use the ::trace_object_allocations notation (recommended).
Note that this feature introduces a huge performance decrease and huge memory consumption.
276 277 278 279 280 281 |
# File 'object_tracing.c', line 276
static VALUE
trace_object_allocations(VALUE self)
{
trace_object_allocations_start(self);
return rb_ensure(rb_yield, Qnil, trace_object_allocations_stop, self);
}
|
.trace_object_allocations_clear ⇒ Object
Clear recorded tracing information.
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# File 'object_tracing.c', line 232
static VALUE
trace_object_allocations_clear(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
/* clear tables */
st_foreach(arg->object_table, free_values_i, 0);
st_clear(arg->object_table);
st_foreach(arg->str_table, free_keys_i, 0);
st_clear(arg->str_table);
/* do not touch TracePoints */
return Qnil;
}
|
.trace_object_allocations_debug_start ⇒ Object
316 317 318 319 320 321 322 323 324 325 326 |
# File 'object_tracing.c', line 316
static VALUE
trace_object_allocations_debug_start(VALUE self)
{
tmp_keep_remains = 1;
if (object_allocations_reporter_registered == 0) {
object_allocations_reporter_registered = 1;
rb_bug_reporter_add(object_allocations_reporter, 0);
}
return trace_object_allocations_start(self);
}
|
.trace_object_allocations_start ⇒ Object
Starts tracing object allocations.
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# File 'object_tracing.c', line 178
static VALUE
trace_object_allocations_start(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running++ > 0) {
/* do nothing */
}
else {
if (arg->newobj_trace == 0) {
arg->newobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_NEWOBJ, newobj_i, arg);
rb_gc_register_mark_object(arg->newobj_trace);
arg->freeobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_FREEOBJ, freeobj_i, arg);
rb_gc_register_mark_object(arg->freeobj_trace);
}
rb_tracepoint_enable(arg->newobj_trace);
rb_tracepoint_enable(arg->freeobj_trace);
}
return Qnil;
}
|
.trace_object_allocations_stop ⇒ Object
Stop tracing object allocations.
Note that if ::trace_object_allocations_start is called n-times, then tracing will stop after calling ::trace_object_allocations_stop n-times.
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# File 'object_tracing.c', line 209
static VALUE
trace_object_allocations_stop(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running > 0) {
arg->running--;
}
if (arg->running == 0) {
rb_tracepoint_disable(arg->newobj_trace);
rb_tracepoint_disable(arg->freeobj_trace);
}
return Qnil;
}
|