Module: ObjectSpace

Defined in:
objspace.c,
lib/objspace.rb,
objspace.c,
objspace_dump.c,
object_tracing.c

Overview

The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.

You need to require 'objspace' to use this extension module.

Generally, you *SHOULD NOT* use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.

Defined Under Namespace

Classes: InternalObjectWrapper

Class Method Summary collapse

Class Method Details

._dump(obj, output) ⇒ Object



587
588
589
590
591
592
593
594
595
596
# File 'objspace_dump.c', line 587

static VALUE
objspace_dump(VALUE os, VALUE obj, VALUE output)
{
    struct dump_config dc = {0,};
    dump_output(&dc, output, Qnil, Qnil);

    dump_object(obj, &dc);

    return dump_result(&dc);
}

._dump_all(output, full, since) ⇒ Object



598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# File 'objspace_dump.c', line 598

static VALUE
objspace_dump_all(VALUE os, VALUE output, VALUE full, VALUE since)
{
    struct dump_config dc = {0,};
    dump_output(&dc, output, full, since);

    if (!dc.partial_dump || dc.since == 0) {
        /* dump roots */
        rb_objspace_reachable_objects_from_root(root_obj_i, &dc);
        if (dc.roots) dump_append(&dc, "]}\n");
    }

    /* dump all objects */
    rb_objspace_each_objects(heap_i, &dc);

    return dump_result(&dc);
}

.allocation_class_path(object) ⇒ String

Returns the class for the given object.

class A

def foo
  ObjectSpace::trace_object_allocations do
    obj = Object.new
    p "#{ObjectSpace::allocation_class_path(obj)}"
  end
end

end

A.new.foo #=> “Class”

See ::trace_object_allocations for more information and examples.

Returns:

  • (String)


482
483
484
485
486
487
488
489
490
491
492
493
# File 'object_tracing.c', line 482

static VALUE
allocation_class_path(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);

    if (info && info->class_path) {
	return rb_str_new2(info->class_path);
    }
    else {
	return Qnil;
    }
}

.allocation_generation(object) ⇒ Integer?

Returns garbage collector generation for the given object.

class B

include ObjectSpace

def foo
  trace_object_allocations do
    obj = Object.new
    p "Generation is #{allocation_generation(obj)}"
  end
end

end

B.new.foo #=> “Generation is 3”

See ::trace_object_allocations for more information and examples.

Returns:

  • (Integer, nil)


547
548
549
550
551
552
553
554
555
556
557
# File 'object_tracing.c', line 547

static VALUE
allocation_generation(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);
    if (info) {
	return SIZET2NUM(info->generation);
    }
    else {
	return Qnil;
    }
}

.allocation_method_id(object) ⇒ String

Returns the method identifier for the given object.

class A

include ObjectSpace

def foo
  trace_object_allocations do
    obj = Object.new
    p "#{allocation_class_path(obj)}##{allocation_method_id(obj)}"
  end
end

end

A.new.foo #=> “Class#new”

See ::trace_object_allocations for more information and examples.

Returns:

  • (String)


515
516
517
518
519
520
521
522
523
524
525
# File 'object_tracing.c', line 515

static VALUE
allocation_method_id(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);
    if (info) {
	return info->mid;
    }
    else {
	return Qnil;
    }
}

.allocation_sourcefile(object) ⇒ String

Returns the source file origin from the given object.

See ::trace_object_allocations for more information and examples.

Returns:

  • (String)


431
432
433
434
435
436
437
438
439
440
441
442
# File 'object_tracing.c', line 431

static VALUE
allocation_sourcefile(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);

    if (info && info->path) {
	return rb_str_new2(info->path);
    }
    else {
	return Qnil;
    }
}

.allocation_sourceline(object) ⇒ Integer

Returns the original line from source for from the given object.

See ::trace_object_allocations for more information and examples.

Returns:

  • (Integer)


451
452
453
454
455
456
457
458
459
460
461
462
# File 'object_tracing.c', line 451

static VALUE
allocation_sourceline(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);

    if (info) {
	return INT2FIX(info->line);
    }
    else {
	return Qnil;
    }
}

.count_imemo_objects([result_hash]) ⇒ Hash

Counts objects for each T_IMEMO type.

This method is only for MRI developers interested in performance and memory usage of Ruby programs.

It returns a hash as:

{:imemo_ifunc=>8,
 :imemo_svar=>7,
 :imemo_cref=>509,
 :imemo_memo=>1,
 :imemo_throw_data=>1}

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

The contents of the returned hash is implementation specific and may change in the future.

In this version, keys are symbol objects.

This method is only expected to work with C Ruby.

Returns:

  • (Hash)


634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# File 'objspace.c', line 634

static VALUE
count_imemo_objects(int argc, VALUE *argv, VALUE self)
{
    VALUE hash = setup_hash(argc, argv);

    if (imemo_type_ids[0] == 0) {
        imemo_type_ids[0] = rb_intern("imemo_env");
	imemo_type_ids[1] = rb_intern("imemo_cref");
	imemo_type_ids[2] = rb_intern("imemo_svar");
	imemo_type_ids[3] = rb_intern("imemo_throw_data");
	imemo_type_ids[4] = rb_intern("imemo_ifunc");
	imemo_type_ids[5] = rb_intern("imemo_memo");
	imemo_type_ids[6] = rb_intern("imemo_ment");
	imemo_type_ids[7] = rb_intern("imemo_iseq");
	imemo_type_ids[8] = rb_intern("imemo_tmpbuf");
        imemo_type_ids[9] = rb_intern("imemo_ast");
        imemo_type_ids[10] = rb_intern("imemo_parser_strterm");
        imemo_type_ids[11] = rb_intern("imemo_callinfo");
        imemo_type_ids[12] = rb_intern("imemo_callcache");
    }

    each_object_with_flags(count_imemo_objects_i, (void *)hash);

    return hash;
}

.count_nodes([result_hash]) ⇒ Hash

Counts nodes for each node type.

This method is only for MRI developers interested in performance and memory usage of Ruby programs.

It returns a hash as:

:NODE_FBODY=>1927, :NODE_CFUNC=>1798, …

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

Note: The contents of the returned hash is implementation defined. It may be changed in future.

This method is only expected to work with C Ruby.

Returns:

  • (Hash)


381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# File 'objspace.c', line 381

static VALUE
count_nodes(int argc, VALUE *argv, VALUE os)
{
    size_t nodes[NODE_LAST+1];
    enum node_type i;
    VALUE hash = setup_hash(argc, argv);

    for (i = 0; i <= NODE_LAST; i++) {
	nodes[i] = 0;
    }

    each_object_with_flags(cn_i, &nodes[0]);

    for (i=0; i<NODE_LAST; i++) {
	if (nodes[i] != 0) {
	    VALUE node;
	    switch (i) {
#define COUNT_NODE(n) case n: node = ID2SYM(rb_intern(#n)); goto set
		COUNT_NODE(NODE_SCOPE);
		COUNT_NODE(NODE_BLOCK);
		COUNT_NODE(NODE_IF);
		COUNT_NODE(NODE_UNLESS);
		COUNT_NODE(NODE_CASE);
		COUNT_NODE(NODE_CASE2);
		COUNT_NODE(NODE_CASE3);
		COUNT_NODE(NODE_WHEN);
		COUNT_NODE(NODE_IN);
		COUNT_NODE(NODE_WHILE);
		COUNT_NODE(NODE_UNTIL);
		COUNT_NODE(NODE_ITER);
		COUNT_NODE(NODE_FOR);
		COUNT_NODE(NODE_FOR_MASGN);
		COUNT_NODE(NODE_BREAK);
		COUNT_NODE(NODE_NEXT);
		COUNT_NODE(NODE_REDO);
		COUNT_NODE(NODE_RETRY);
		COUNT_NODE(NODE_BEGIN);
		COUNT_NODE(NODE_RESCUE);
		COUNT_NODE(NODE_RESBODY);
		COUNT_NODE(NODE_ENSURE);
		COUNT_NODE(NODE_AND);
		COUNT_NODE(NODE_OR);
		COUNT_NODE(NODE_MASGN);
		COUNT_NODE(NODE_LASGN);
		COUNT_NODE(NODE_DASGN);
		COUNT_NODE(NODE_DASGN_CURR);
		COUNT_NODE(NODE_GASGN);
		COUNT_NODE(NODE_IASGN);
		COUNT_NODE(NODE_CDECL);
		COUNT_NODE(NODE_CVASGN);
		COUNT_NODE(NODE_OP_ASGN1);
		COUNT_NODE(NODE_OP_ASGN2);
		COUNT_NODE(NODE_OP_ASGN_AND);
		COUNT_NODE(NODE_OP_ASGN_OR);
		COUNT_NODE(NODE_OP_CDECL);
		COUNT_NODE(NODE_CALL);
		COUNT_NODE(NODE_OPCALL);
		COUNT_NODE(NODE_FCALL);
		COUNT_NODE(NODE_VCALL);
		COUNT_NODE(NODE_QCALL);
		COUNT_NODE(NODE_SUPER);
		COUNT_NODE(NODE_ZSUPER);
		COUNT_NODE(NODE_LIST);
		COUNT_NODE(NODE_ZLIST);
		COUNT_NODE(NODE_VALUES);
		COUNT_NODE(NODE_HASH);
		COUNT_NODE(NODE_RETURN);
		COUNT_NODE(NODE_YIELD);
		COUNT_NODE(NODE_LVAR);
		COUNT_NODE(NODE_DVAR);
		COUNT_NODE(NODE_GVAR);
		COUNT_NODE(NODE_IVAR);
		COUNT_NODE(NODE_CONST);
		COUNT_NODE(NODE_CVAR);
		COUNT_NODE(NODE_NTH_REF);
		COUNT_NODE(NODE_BACK_REF);
		COUNT_NODE(NODE_MATCH);
		COUNT_NODE(NODE_MATCH2);
		COUNT_NODE(NODE_MATCH3);
		COUNT_NODE(NODE_LIT);
		COUNT_NODE(NODE_STR);
		COUNT_NODE(NODE_DSTR);
		COUNT_NODE(NODE_XSTR);
		COUNT_NODE(NODE_DXSTR);
		COUNT_NODE(NODE_EVSTR);
		COUNT_NODE(NODE_DREGX);
		COUNT_NODE(NODE_ONCE);
		COUNT_NODE(NODE_ARGS);
		COUNT_NODE(NODE_ARGS_AUX);
		COUNT_NODE(NODE_OPT_ARG);
		COUNT_NODE(NODE_KW_ARG);
		COUNT_NODE(NODE_POSTARG);
		COUNT_NODE(NODE_ARGSCAT);
		COUNT_NODE(NODE_ARGSPUSH);
		COUNT_NODE(NODE_SPLAT);
		COUNT_NODE(NODE_BLOCK_PASS);
		COUNT_NODE(NODE_DEFN);
		COUNT_NODE(NODE_DEFS);
		COUNT_NODE(NODE_ALIAS);
		COUNT_NODE(NODE_VALIAS);
		COUNT_NODE(NODE_UNDEF);
		COUNT_NODE(NODE_CLASS);
		COUNT_NODE(NODE_MODULE);
		COUNT_NODE(NODE_SCLASS);
		COUNT_NODE(NODE_COLON2);
		COUNT_NODE(NODE_COLON3);
		COUNT_NODE(NODE_DOT2);
		COUNT_NODE(NODE_DOT3);
		COUNT_NODE(NODE_FLIP2);
		COUNT_NODE(NODE_FLIP3);
		COUNT_NODE(NODE_SELF);
		COUNT_NODE(NODE_NIL);
		COUNT_NODE(NODE_TRUE);
		COUNT_NODE(NODE_FALSE);
		COUNT_NODE(NODE_ERRINFO);
		COUNT_NODE(NODE_DEFINED);
		COUNT_NODE(NODE_POSTEXE);
		COUNT_NODE(NODE_DSYM);
		COUNT_NODE(NODE_ATTRASGN);
		COUNT_NODE(NODE_LAMBDA);
		COUNT_NODE(NODE_ARYPTN);
		COUNT_NODE(NODE_FNDPTN);
		COUNT_NODE(NODE_HSHPTN);
#undef COUNT_NODE
	      case NODE_LAST: break;
	    }
	    UNREACHABLE;
	  set:
	    rb_hash_aset(hash, node, SIZET2NUM(nodes[i]));
	}
    }
    return hash;
}

.count_objects_size([result_hash]) ⇒ Hash

Counts objects size (in bytes) for each type.

Note that this information is incomplete. You need to deal with this information as only a HINT. Especially, total size of T_DATA may be wrong.

It returns a hash as:

{:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

The contents of the returned hash is implementation defined. It may be changed in future.

This method is only expected to work with C Ruby.

Returns:

  • (Hash)


256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# File 'objspace.c', line 256

static VALUE
count_objects_size(int argc, VALUE *argv, VALUE os)
{
    size_t counts[T_MASK+1];
    size_t total = 0;
    enum ruby_value_type i;
    VALUE hash = setup_hash(argc, argv);

    for (i = 0; i <= T_MASK; i++) {
	counts[i] = 0;
    }

    each_object_with_flags(cos_i, &counts[0]);

    for (i = 0; i <= T_MASK; i++) {
	if (counts[i]) {
	    VALUE type = type2sym(i);
	    total += counts[i];
	    rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
	}
    }
    rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
    return hash;
}

.count_symbols([result_hash]) ⇒ Hash

Counts symbols for each Symbol type.

This method is only for MRI developers interested in performance and memory usage of Ruby programs.

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

Note: The contents of the returned hash is implementation defined. It may be changed in future.

This method is only expected to work with C Ruby.

On this version of MRI, they have 3 types of Symbols (and 1 total counts).

* mortal_dynamic_symbol: GC target symbols (collected by GC)
* immortal_dynamic_symbol: Immortal symbols promoted from dynamic symbols (do not collected by GC)
* immortal_static_symbol: Immortal symbols (do not collected by GC)
* immortal_symbol: total immortal symbols (immortal_dynamic_symbol+immortal_static_symbol)

Returns:

  • (Hash)


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# File 'objspace.c', line 330

static VALUE
count_symbols(int argc, VALUE *argv, VALUE os)
{
    struct dynamic_symbol_counts dynamic_counts = {0, 0};
    VALUE hash = setup_hash(argc, argv);

    size_t immortal_symbols = rb_sym_immortal_count();
    each_object_with_flags(cs_i, &dynamic_counts);

    rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")),   SIZET2NUM(dynamic_counts.mortal));
    rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
    rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")),  SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
    rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")),         SIZET2NUM(immortal_symbols));

    return hash;
}

.count_tdata_objects([result_hash]) ⇒ Hash

Counts objects for each T_DATA type.

This method is only for MRI developers interested in performance and memory usage of Ruby programs.

It returns a hash as:

:parser=>5, :barrier=>6, :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99, ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1, Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2 # T_DATA objects existing at startup on r32276.

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

The contents of the returned hash is implementation specific and may change in the future.

In this version, keys are Class object or Symbol object.

If object is kind of normal (accessible) object, the key is Class object. If object is not a kind of normal (internal) object, the key is symbol name, registered by rb_data_type_struct.

This method is only expected to work with C Ruby.

Returns:

  • (Hash)


574
575
576
577
578
579
580
# File 'objspace.c', line 574

static VALUE
count_tdata_objects(int argc, VALUE *argv, VALUE self)
{
    VALUE hash = setup_hash(argc, argv);
    each_object_with_flags(cto_i, (void *)hash);
    return hash;
}

.dump(obj, output: :string) ⇒ Object

call-seq:

ObjectSpace.dump(obj[, output: :string]) # => "{ ... }"
ObjectSpace.dump(obj, output: :file)     # => #<File:/tmp/rubyobj20131125-88733-1xkfmpv.json>
ObjectSpace.dump(obj, output: :stdout)   # => nil

Dump the contents of a ruby object as JSON.

This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.



24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# File 'lib/objspace.rb', line 24

def dump(obj, output: :string)
  out = case output
  when :file, nil
    require 'tempfile'
    Tempfile.create(%w(rubyobj .json))
  when :stdout
    STDOUT
  when :string
    +''
  when IO
    output
  else
    raise ArgumentError, "wrong output option: #{output.inspect}"
  end

  ret = _dump(obj, out)
  return nil if output == :stdout
  ret
end

.dump_all(output: :file, full: false, since: nil) ⇒ Object

call-seq:

  ObjectSpace.dump_all([output: :file]) # => #<File:/tmp/rubyheap20131125-88469-laoj3v.json>
  ObjectSpace.dump_all(output: :stdout) # => nil
  ObjectSpace.dump_all(output: :string) # => "{...}\n{...}\n..."
  ObjectSpace.dump_all(output:
    File.open('heap.json','w'))         # => #<File:heap.json>
  ObjectSpace.dump_all(output: :string,
    since: 42)                          # => "{...}\n{...}\n..."

Dump the contents of the ruby heap as JSON.

_since_ must be a non-negative integer or +nil+.

If _since_ is a positive integer, only objects of that generation and
newer generations are dumped. The current generation can be accessed using
GC::count.

Objects that were allocated without object allocation tracing enabled
are ignored. See ::trace_object_allocations for more information and
examples.

If _since_ is omitted or is +nil+, all objects are dumped.

This method is only expected to work with C Ruby.
This is an experimental method and is subject to change.
In particular, the function signature and output format are
not guaranteed to be compatible in future versions of ruby.


72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# File 'lib/objspace.rb', line 72

def dump_all(output: :file, full: false, since: nil)
  out = case output
  when :file, nil
    require 'tempfile'
    Tempfile.create(%w(rubyheap .json))
  when :stdout
    STDOUT
  when :string
    +''
  when IO
    output
  else
    raise ArgumentError, "wrong output option: #{output.inspect}"
  end

  ret = _dump_all(out, full, since)
  return nil if output == :stdout
  ret
end

.internal_class_of(obj) ⇒ Class, Module

MRI specific feature

Return internal class of obj.

obj can be an instance of InternalObjectWrapper.

Note that you should not use this method in your application.

Returns:

  • (Class, Module)


896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
# File 'objspace.c', line 896

static VALUE
objspace_internal_class_of(VALUE self, VALUE obj)
{
    VALUE klass;

    if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
	obj = (VALUE)DATA_PTR(obj);
    }

    if (RB_TYPE_P(obj, T_IMEMO)) {
        return Qnil;
    }
    else {
        klass = CLASS_OF(obj);
        return wrap_klass_iow(klass);
    }
}

.internal_super_of(cls) ⇒ Class, Module

MRI specific feature

Return internal super class of cls (Class or Module).

obj can be an instance of InternalObjectWrapper.

Note that you should not use this method in your application.

Returns:

  • (Class, Module)


923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
# File 'objspace.c', line 923

static VALUE
objspace_internal_super_of(VALUE self, VALUE obj)
{
    VALUE super;

    if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
	obj = (VALUE)DATA_PTR(obj);
    }

    switch (OBJ_BUILTIN_TYPE(obj)) {
      case T_MODULE:
      case T_CLASS:
      case T_ICLASS:
	super = RCLASS_SUPER(obj);
	break;
      default:
	rb_raise(rb_eArgError, "class or module is expected");
    }

    return wrap_klass_iow(super);
}

.memsize_of(obj) ⇒ Integer

Return consuming memory size of obj in bytes.

Note that the return size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA may not be correct.

This method is only expected to work with C Ruby.

From Ruby 2.2, memsize_of(obj) returns a memory size includes sizeof(RVALUE).

Returns:

  • (Integer)


48
49
50
51
52
# File 'objspace.c', line 48

static VALUE
memsize_of_m(VALUE self, VALUE obj)
{
    return SIZET2NUM(rb_obj_memsize_of(obj));
}

.memsize_of_all([klass]) ⇒ Integer

Return consuming memory size of all living objects in bytes.

If klass (should be Class object) is given, return the total memory size of instances of the given class.

Note that the returned size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA may not be correct.

Note that this method does NOT return total malloc’ed memory size.

This method can be defined by the following Ruby code:

def memsize_of_all klass = false total = 0 ObjectSpace.each_object{|e| total += ObjectSpace.memsize_of(e) if klass == false || e.kind_of?(klass) } total end

This method is only expected to work with C Ruby.

Returns:

  • (Integer)


144
145
146
147
148
149
150
151
152
153
154
155
# File 'objspace.c', line 144

static VALUE
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
{
    struct total_data data = {0, 0};

    if (argc > 0) {
	rb_scan_args(argc, argv, "01", &data.klass);
    }

    each_object_with_flags(total_i, &data);
    return SIZET2NUM(data.total);
}

.reachable_objects_from(obj) ⇒ Array?

MRI specific feature

Return all reachable objects from ‘obj’.

This method returns all reachable objects from ‘obj’.

If ‘obj’ has two or more references to the same object ‘x’, then returned array only includes one ‘x’ object.

If ‘obj’ is a non-markable (non-heap management) object such as true, false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.

If ‘obj’ has references to an internal object, then it returns instances of ObjectSpace::InternalObjectWrapper class. This object contains a reference to an internal object and you can check the type of internal object with ‘type’ method.

If ‘obj’ is instance of ObjectSpace::InternalObjectWrapper class, then this method returns all reachable object from an internal object, which is pointed by ‘obj’.

With this method, you can find memory leaks.

This method is only expected to work except with C Ruby.

Example:

ObjectSpace.reachable_objects_from(['a', 'b', 'c'])
#=> [Array, 'a', 'b', 'c']

ObjectSpace.reachable_objects_from(['a', 'a', 'a'])
#=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id

ObjectSpace.reachable_objects_from([v = 'a', v, v])
#=> [Array, 'a']

ObjectSpace.reachable_objects_from(1)
#=> nil # 1 is not markable (heap managed) object

Returns:

  • (Array, nil)


784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
# File 'objspace.c', line 784

static VALUE
reachable_objects_from(VALUE self, VALUE obj)
{
    if (rb_objspace_markable_object_p(obj)) {
	struct rof_data data;

	if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
	    obj = (VALUE)DATA_PTR(obj);
	}

	data.refs = rb_ident_hash_new();
	data.internals = rb_ary_new();

	rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);

        return rb_funcall(data.refs, rb_intern("values"), 0);
    }
    else {
	return Qnil;
    }
}

.reachable_objects_from_rootHash

MRI specific feature

Return all reachable objects from root.

Returns:

  • (Hash)


859
860
861
862
863
864
865
866
867
868
869
870
# File 'objspace.c', line 859

static VALUE
reachable_objects_from_root(VALUE self)
{
    struct rofr_data data;
    VALUE hash = data.categories = rb_ident_hash_new();
    data.last_category = 0;

    rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
    rb_hash_foreach(hash, collect_values_of_values, hash);

    return hash;
}

.trace_object_allocations { ... } ⇒ Object

Starts tracing object allocations from the ObjectSpace extension module.

For example:

require ‘objspace’

class C

include ObjectSpace

def foo
  trace_object_allocations do
    obj = Object.new
    p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}"
  end
end

end

C.new.foo #=> “objtrace.rb:8”

This example has included the ObjectSpace module to make it easier to read, but you can also use the ::trace_object_allocations notation (recommended).

Note that this feature introduces a huge performance decrease and huge memory consumption.

Yields:



354
355
356
357
358
359
# File 'object_tracing.c', line 354

static VALUE
trace_object_allocations(VALUE self)
{
    trace_object_allocations_start(self);
    return rb_ensure(rb_yield, Qnil, trace_object_allocations_stop, self);
}

.trace_object_allocations_clearObject

Clear recorded tracing information.



310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# File 'object_tracing.c', line 310

static VALUE
trace_object_allocations_clear(VALUE self)
{
    struct traceobj_arg *arg = get_traceobj_arg();

    /* clear tables */
    st_foreach(arg->object_table, free_values_i, 0);
    st_clear(arg->object_table);
    st_foreach(arg->str_table, free_keys_i, 0);
    st_clear(arg->str_table);

    /* do not touch TracePoints */

    return Qnil;
}

.trace_object_allocations_debug_startObject



394
395
396
397
398
399
400
401
402
403
404
# File 'object_tracing.c', line 394

static VALUE
trace_object_allocations_debug_start(VALUE self)
{
    tmp_keep_remains = 1;
    if (object_allocations_reporter_registered == 0) {
	object_allocations_reporter_registered = 1;
	rb_bug_reporter_add(object_allocations_reporter, 0);
    }

    return trace_object_allocations_start(self);
}

.trace_object_allocations_startObject

Starts tracing object allocations.



254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# File 'object_tracing.c', line 254

static VALUE
trace_object_allocations_start(VALUE self)
{
    struct traceobj_arg *arg = get_traceobj_arg();

    if (arg->running++ > 0) {
	/* do nothing */
    }
    else {
	if (arg->newobj_trace == 0) {
	    arg->newobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_NEWOBJ, newobj_i, arg);
	    arg->freeobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_FREEOBJ, freeobj_i, arg);
	}
	rb_tracepoint_enable(arg->newobj_trace);
	rb_tracepoint_enable(arg->freeobj_trace);
    }

    return Qnil;
}

.trace_object_allocations_stopObject

Stop tracing object allocations.

Note that if ::trace_object_allocations_start is called n-times, then tracing will stop after calling ::trace_object_allocations_stop n-times.



283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# File 'object_tracing.c', line 283

static VALUE
trace_object_allocations_stop(VALUE self)
{
    struct traceobj_arg *arg = get_traceobj_arg();

    if (arg->running > 0) {
	arg->running--;
    }

    if (arg->running == 0) {
        if (arg->newobj_trace != 0) {
            rb_tracepoint_disable(arg->newobj_trace);
        }
        if (arg->freeobj_trace != 0) {
            rb_tracepoint_disable(arg->freeobj_trace);
        }
    }

    return Qnil;
}