Module: ObjectSpace
- Defined in:
- objspace.c,
lib/objspace.rb,
objspace.c,
objspace_dump.c,
object_tracing.c
Overview
The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.
You need to require 'objspace'
to use this extension module.
Generally, you *SHOULD NOT* use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.
Defined Under Namespace
Classes: InternalObjectWrapper
Class Method Summary collapse
- ._dump(obj, output) ⇒ Object
- ._dump_all(output, full, since) ⇒ Object
-
.allocation_class_path(object) ⇒ String
Returns the class for the given
object
. -
.allocation_generation(object) ⇒ Integer?
Returns garbage collector generation for the given
object
. -
.allocation_method_id(object) ⇒ String
Returns the method identifier for the given
object
. -
.allocation_sourcefile(object) ⇒ String
Returns the source file origin from the given
object
. -
.allocation_sourceline(object) ⇒ Integer
Returns the original line from source for from the given
object
. -
.count_imemo_objects([result_hash]) ⇒ Hash
Counts objects for each
T_IMEMO
type. -
.count_nodes([result_hash]) ⇒ Hash
Counts nodes for each node type.
-
.count_objects_size([result_hash]) ⇒ Hash
Counts objects size (in bytes) for each type.
-
.count_symbols([result_hash]) ⇒ Hash
Counts symbols for each Symbol type.
-
.count_tdata_objects([result_hash]) ⇒ Hash
Counts objects for each
T_DATA
type. -
.dump(obj, output: :string) ⇒ Object
call-seq: ObjectSpace.dump(obj[, output: :string]) # => “{ … }” ObjectSpace.dump(obj, output: :file) # => #<File:/tmp/rubyobj20131125-88733-1xkfmpv.json> ObjectSpace.dump(obj, output: :stdout) # => nil.
-
.dump_all(output: :file, full: false, since: nil) ⇒ Object
call-seq: ObjectSpace.dump_all([output: :file]) # => #<File:/tmp/rubyheap20131125-88469-laoj3v.json> ObjectSpace.dump_all(output: :stdout) # => nil ObjectSpace.dump_all(output: :string) # => “…n…n…” ObjectSpace.dump_all(output: File.open(‘heap.json’,‘w’)) # => #<File:heap.json> ObjectSpace.dump_all(output: :string, since: 42) # => “…n…n…”.
-
.internal_class_of(obj) ⇒ Class, Module
- MRI specific feature
-
Return internal class of obj.
-
.internal_super_of(cls) ⇒ Class, Module
- MRI specific feature
-
Return internal super class of cls (Class or Module).
-
.memsize_of(obj) ⇒ Integer
Return consuming memory size of obj in bytes.
-
.memsize_of_all([klass]) ⇒ Integer
Return consuming memory size of all living objects in bytes.
-
.reachable_objects_from(obj) ⇒ Array?
- MRI specific feature
-
Return all reachable objects from ‘obj’.
-
.reachable_objects_from_root ⇒ Hash
- MRI specific feature
-
Return all reachable objects from root.
-
.trace_object_allocations { ... } ⇒ Object
Starts tracing object allocations from the ObjectSpace extension module.
-
.trace_object_allocations_clear ⇒ Object
Clear recorded tracing information.
- .trace_object_allocations_debug_start ⇒ Object
-
.trace_object_allocations_start ⇒ Object
Starts tracing object allocations.
-
.trace_object_allocations_stop ⇒ Object
Stop tracing object allocations.
Class Method Details
._dump(obj, output) ⇒ Object
592 593 594 595 596 597 598 599 600 601 |
# File 'objspace_dump.c', line 592
static VALUE
objspace_dump(VALUE os, VALUE obj, VALUE output)
{
struct dump_config dc = {0,};
dump_output(&dc, output, Qnil, Qnil);
dump_object(obj, &dc);
return dump_result(&dc);
}
|
._dump_all(output, full, since) ⇒ Object
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
# File 'objspace_dump.c', line 603
static VALUE
objspace_dump_all(VALUE os, VALUE output, VALUE full, VALUE since)
{
struct dump_config dc = {0,};
dump_output(&dc, output, full, since);
if (!dc.partial_dump || dc.since == 0) {
/* dump roots */
rb_objspace_reachable_objects_from_root(root_obj_i, &dc);
if (dc.roots) dump_append(&dc, "]}\n");
}
/* dump all objects */
rb_objspace_each_objects(heap_i, &dc);
return dump_result(&dc);
}
|
.allocation_class_path(object) ⇒ String
Returns the class for the given object
.
class A
def foo
ObjectSpace::trace_object_allocations do
obj = Object.new
p "#{ObjectSpace::allocation_class_path(obj)}"
end
end
end
A.new.foo #=> “Class”
See ::trace_object_allocations for more information and examples.
482 483 484 485 486 487 488 489 490 491 492 493 |
# File 'object_tracing.c', line 482
static VALUE
allocation_class_path(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->class_path) {
return rb_str_new2(info->class_path);
}
else {
return Qnil;
}
}
|
.allocation_generation(object) ⇒ Integer?
Returns garbage collector generation for the given object
.
class B
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "Generation is #{allocation_generation(obj)}"
end
end
end
B.new.foo #=> “Generation is 3”
See ::trace_object_allocations for more information and examples.
547 548 549 550 551 552 553 554 555 556 557 |
# File 'object_tracing.c', line 547
static VALUE
allocation_generation(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return SIZET2NUM(info->generation);
}
else {
return Qnil;
}
}
|
.allocation_method_id(object) ⇒ String
Returns the method identifier for the given object
.
class A
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "#{allocation_class_path(obj)}##{allocation_method_id(obj)}"
end
end
end
A.new.foo #=> “Class#new”
See ::trace_object_allocations for more information and examples.
515 516 517 518 519 520 521 522 523 524 525 |
# File 'object_tracing.c', line 515
static VALUE
allocation_method_id(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return info->mid;
}
else {
return Qnil;
}
}
|
.allocation_sourcefile(object) ⇒ String
Returns the source file origin from the given object
.
See ::trace_object_allocations for more information and examples.
431 432 433 434 435 436 437 438 439 440 441 442 |
# File 'object_tracing.c', line 431
static VALUE
allocation_sourcefile(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->path) {
return rb_str_new2(info->path);
}
else {
return Qnil;
}
}
|
.allocation_sourceline(object) ⇒ Integer
Returns the original line from source for from the given object
.
See ::trace_object_allocations for more information and examples.
451 452 453 454 455 456 457 458 459 460 461 462 |
# File 'object_tracing.c', line 451
static VALUE
allocation_sourceline(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return INT2FIX(info->line);
}
else {
return Qnil;
}
}
|
.count_imemo_objects([result_hash]) ⇒ Hash
Counts objects for each T_IMEMO
type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
{:imemo_ifunc=>8,
:imemo_svar=>7,
:imemo_cref=>509,
:imemo_memo=>1,
:imemo_throw_data=>1}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation specific and may change in the future.
In this version, keys are symbol objects.
This method is only expected to work with C Ruby.
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
# File 'objspace.c', line 634
static VALUE
count_imemo_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
if (imemo_type_ids[0] == 0) {
imemo_type_ids[0] = rb_intern("imemo_env");
imemo_type_ids[1] = rb_intern("imemo_cref");
imemo_type_ids[2] = rb_intern("imemo_svar");
imemo_type_ids[3] = rb_intern("imemo_throw_data");
imemo_type_ids[4] = rb_intern("imemo_ifunc");
imemo_type_ids[5] = rb_intern("imemo_memo");
imemo_type_ids[6] = rb_intern("imemo_ment");
imemo_type_ids[7] = rb_intern("imemo_iseq");
imemo_type_ids[8] = rb_intern("imemo_tmpbuf");
imemo_type_ids[9] = rb_intern("imemo_ast");
imemo_type_ids[10] = rb_intern("imemo_parser_strterm");
imemo_type_ids[11] = rb_intern("imemo_callinfo");
imemo_type_ids[12] = rb_intern("imemo_callcache");
imemo_type_ids[13] = rb_intern("imemo_constcache");
}
each_object_with_flags(count_imemo_objects_i, (void *)hash);
return hash;
}
|
.count_nodes([result_hash]) ⇒ Hash
Counts nodes for each node type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
:NODE_FBODY=>1927, :NODE_CFUNC=>1798, …
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
Note: The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# File 'objspace.c', line 381
static VALUE
count_nodes(int argc, VALUE *argv, VALUE os)
{
size_t nodes[NODE_LAST+1];
enum node_type i;
VALUE hash = setup_hash(argc, argv);
for (i = 0; i <= NODE_LAST; i++) {
nodes[i] = 0;
}
each_object_with_flags(cn_i, &nodes[0]);
for (i=0; i<NODE_LAST; i++) {
if (nodes[i] != 0) {
VALUE node;
switch (i) {
#define COUNT_NODE(n) case n: node = ID2SYM(rb_intern(#n)); goto set
COUNT_NODE(NODE_SCOPE);
COUNT_NODE(NODE_BLOCK);
COUNT_NODE(NODE_IF);
COUNT_NODE(NODE_UNLESS);
COUNT_NODE(NODE_CASE);
COUNT_NODE(NODE_CASE2);
COUNT_NODE(NODE_CASE3);
COUNT_NODE(NODE_WHEN);
COUNT_NODE(NODE_IN);
COUNT_NODE(NODE_WHILE);
COUNT_NODE(NODE_UNTIL);
COUNT_NODE(NODE_ITER);
COUNT_NODE(NODE_FOR);
COUNT_NODE(NODE_FOR_MASGN);
COUNT_NODE(NODE_BREAK);
COUNT_NODE(NODE_NEXT);
COUNT_NODE(NODE_REDO);
COUNT_NODE(NODE_RETRY);
COUNT_NODE(NODE_BEGIN);
COUNT_NODE(NODE_RESCUE);
COUNT_NODE(NODE_RESBODY);
COUNT_NODE(NODE_ENSURE);
COUNT_NODE(NODE_AND);
COUNT_NODE(NODE_OR);
COUNT_NODE(NODE_MASGN);
COUNT_NODE(NODE_LASGN);
COUNT_NODE(NODE_DASGN);
COUNT_NODE(NODE_DASGN_CURR);
COUNT_NODE(NODE_GASGN);
COUNT_NODE(NODE_IASGN);
COUNT_NODE(NODE_CDECL);
COUNT_NODE(NODE_CVASGN);
COUNT_NODE(NODE_OP_ASGN1);
COUNT_NODE(NODE_OP_ASGN2);
COUNT_NODE(NODE_OP_ASGN_AND);
COUNT_NODE(NODE_OP_ASGN_OR);
COUNT_NODE(NODE_OP_CDECL);
COUNT_NODE(NODE_CALL);
COUNT_NODE(NODE_OPCALL);
COUNT_NODE(NODE_FCALL);
COUNT_NODE(NODE_VCALL);
COUNT_NODE(NODE_QCALL);
COUNT_NODE(NODE_SUPER);
COUNT_NODE(NODE_ZSUPER);
COUNT_NODE(NODE_LIST);
COUNT_NODE(NODE_ZLIST);
COUNT_NODE(NODE_VALUES);
COUNT_NODE(NODE_HASH);
COUNT_NODE(NODE_RETURN);
COUNT_NODE(NODE_YIELD);
COUNT_NODE(NODE_LVAR);
COUNT_NODE(NODE_DVAR);
COUNT_NODE(NODE_GVAR);
COUNT_NODE(NODE_IVAR);
COUNT_NODE(NODE_CONST);
COUNT_NODE(NODE_CVAR);
COUNT_NODE(NODE_NTH_REF);
COUNT_NODE(NODE_BACK_REF);
COUNT_NODE(NODE_MATCH);
COUNT_NODE(NODE_MATCH2);
COUNT_NODE(NODE_MATCH3);
COUNT_NODE(NODE_LIT);
COUNT_NODE(NODE_STR);
COUNT_NODE(NODE_DSTR);
COUNT_NODE(NODE_XSTR);
COUNT_NODE(NODE_DXSTR);
COUNT_NODE(NODE_EVSTR);
COUNT_NODE(NODE_DREGX);
COUNT_NODE(NODE_ONCE);
COUNT_NODE(NODE_ARGS);
COUNT_NODE(NODE_ARGS_AUX);
COUNT_NODE(NODE_OPT_ARG);
COUNT_NODE(NODE_KW_ARG);
COUNT_NODE(NODE_POSTARG);
COUNT_NODE(NODE_ARGSCAT);
COUNT_NODE(NODE_ARGSPUSH);
COUNT_NODE(NODE_SPLAT);
COUNT_NODE(NODE_BLOCK_PASS);
COUNT_NODE(NODE_DEFN);
COUNT_NODE(NODE_DEFS);
COUNT_NODE(NODE_ALIAS);
COUNT_NODE(NODE_VALIAS);
COUNT_NODE(NODE_UNDEF);
COUNT_NODE(NODE_CLASS);
COUNT_NODE(NODE_MODULE);
COUNT_NODE(NODE_SCLASS);
COUNT_NODE(NODE_COLON2);
COUNT_NODE(NODE_COLON3);
COUNT_NODE(NODE_DOT2);
COUNT_NODE(NODE_DOT3);
COUNT_NODE(NODE_FLIP2);
COUNT_NODE(NODE_FLIP3);
COUNT_NODE(NODE_SELF);
COUNT_NODE(NODE_NIL);
COUNT_NODE(NODE_TRUE);
COUNT_NODE(NODE_FALSE);
COUNT_NODE(NODE_ERRINFO);
COUNT_NODE(NODE_DEFINED);
COUNT_NODE(NODE_POSTEXE);
COUNT_NODE(NODE_DSYM);
COUNT_NODE(NODE_ATTRASGN);
COUNT_NODE(NODE_LAMBDA);
COUNT_NODE(NODE_ARYPTN);
COUNT_NODE(NODE_FNDPTN);
COUNT_NODE(NODE_HSHPTN);
#undef COUNT_NODE
case NODE_LAST: break;
}
UNREACHABLE;
set:
rb_hash_aset(hash, node, SIZET2NUM(nodes[i]));
}
}
return hash;
}
|
.count_objects_size([result_hash]) ⇒ Hash
Counts objects size (in bytes) for each type.
Note that this information is incomplete. You need to deal with this information as only a HINT. Especially, total size of T_DATA may be wrong.
It returns a hash as:
{:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# File 'objspace.c', line 256
static VALUE
count_objects_size(int argc, VALUE *argv, VALUE os)
{
size_t counts[T_MASK+1];
size_t total = 0;
enum ruby_value_type i;
VALUE hash = setup_hash(argc, argv);
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
each_object_with_flags(cos_i, &counts[0]);
for (i = 0; i <= T_MASK; i++) {
if (counts[i]) {
VALUE type = type2sym(i);
total += counts[i];
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
return hash;
}
|
.count_symbols([result_hash]) ⇒ Hash
Counts symbols for each Symbol type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
Note: The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
On this version of MRI, they have 3 types of Symbols (and 1 total counts).
* mortal_dynamic_symbol: GC target symbols (collected by GC)
* immortal_dynamic_symbol: Immortal symbols promoted from dynamic symbols (do not collected by GC)
* immortal_static_symbol: Immortal symbols (do not collected by GC)
* immortal_symbol: total immortal symbols (immortal_dynamic_symbol+immortal_static_symbol)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# File 'objspace.c', line 330
static VALUE
count_symbols(int argc, VALUE *argv, VALUE os)
{
struct dynamic_symbol_counts dynamic_counts = {0, 0};
VALUE hash = setup_hash(argc, argv);
size_t immortal_symbols = rb_sym_immortal_count();
each_object_with_flags(cs_i, &dynamic_counts);
rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.mortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")), SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")), SIZET2NUM(immortal_symbols));
return hash;
}
|
.count_tdata_objects([result_hash]) ⇒ Hash
Counts objects for each T_DATA
type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
:parser=>5, :barrier=>6, :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99, ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1, Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2 # T_DATA objects existing at startup on r32276.
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation specific and may change in the future.
In this version, keys are Class object or Symbol object.
If object is kind of normal (accessible) object, the key is Class object. If object is not a kind of normal (internal) object, the key is symbol name, registered by rb_data_type_struct.
This method is only expected to work with C Ruby.
574 575 576 577 578 579 580 |
# File 'objspace.c', line 574
static VALUE
count_tdata_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
each_object_with_flags(cto_i, (void *)hash);
return hash;
}
|
.dump(obj, output: :string) ⇒ Object
call-seq:
ObjectSpace.dump(obj[, output: :string]) # => "{ ... }"
ObjectSpace.dump(obj, output: :file) # => #<File:/tmp/rubyobj20131125-88733-1xkfmpv.json>
ObjectSpace.dump(obj, output: :stdout) # => nil
Dump the contents of a ruby object as JSON.
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
# File 'lib/objspace.rb', line 24 def dump(obj, output: :string) out = case output when :file, nil require 'tempfile' Tempfile.create(%w(rubyobj .json)) when :stdout STDOUT when :string +'' when IO output else raise ArgumentError, "wrong output option: #{output.inspect}" end ret = _dump(obj, out) return nil if output == :stdout ret end |
.dump_all(output: :file, full: false, since: nil) ⇒ Object
call-seq:
ObjectSpace.dump_all([output: :file]) # => #<File:/tmp/rubyheap20131125-88469-laoj3v.json>
ObjectSpace.dump_all(output: :stdout) # => nil
ObjectSpace.dump_all(output: :string) # => "{...}\n{...}\n..."
ObjectSpace.dump_all(output:
File.open('heap.json','w')) # => #<File:heap.json>
ObjectSpace.dump_all(output: :string,
since: 42) # => "{...}\n{...}\n..."
Dump the contents of the ruby heap as JSON.
_since_ must be a non-negative integer or +nil+.
If _since_ is a positive integer, only objects of that generation and
newer generations are dumped. The current generation can be accessed using
GC::count.
Objects that were allocated without object allocation tracing enabled
are ignored. See ::trace_object_allocations for more information and
examples.
If _since_ is omitted or is +nil+, all objects are dumped.
This method is only expected to work with C Ruby.
This is an experimental method and is subject to change.
In particular, the function signature and output format are
not guaranteed to be compatible in future versions of ruby.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# File 'lib/objspace.rb', line 72 def dump_all(output: :file, full: false, since: nil) out = case output when :file, nil require 'tempfile' Tempfile.create(%w(rubyheap .json)) when :stdout STDOUT when :string +'' when IO output else raise ArgumentError, "wrong output option: #{output.inspect}" end ret = _dump_all(out, full, since) return nil if output == :stdout ret end |
.internal_class_of(obj) ⇒ Class, Module
- MRI specific feature
-
Return internal class of obj.
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
# File 'objspace.c', line 897
static VALUE
objspace_internal_class_of(VALUE self, VALUE obj)
{
VALUE klass;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
if (RB_TYPE_P(obj, T_IMEMO)) {
return Qnil;
}
else {
klass = CLASS_OF(obj);
return wrap_klass_iow(klass);
}
}
|
.internal_super_of(cls) ⇒ Class, Module
- MRI specific feature
-
Return internal super class of cls (Class or Module).
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
# File 'objspace.c', line 924
static VALUE
objspace_internal_super_of(VALUE self, VALUE obj)
{
VALUE super;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
switch (OBJ_BUILTIN_TYPE(obj)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
super = RCLASS_SUPER(obj);
break;
default:
rb_raise(rb_eArgError, "class or module is expected");
}
return wrap_klass_iow(super);
}
|
.memsize_of(obj) ⇒ Integer
Return consuming memory size of obj in bytes.
Note that the return size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA
may not be correct.
This method is only expected to work with C Ruby.
From Ruby 2.2, memsize_of(obj) returns a memory size includes sizeof(RVALUE).
48 49 50 51 52 |
# File 'objspace.c', line 48
static VALUE
memsize_of_m(VALUE self, VALUE obj)
{
return SIZET2NUM(rb_obj_memsize_of(obj));
}
|
.memsize_of_all([klass]) ⇒ Integer
Return consuming memory size of all living objects in bytes.
If klass
(should be Class object) is given, return the total memory size of instances of the given class.
Note that the returned size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA
may not be correct.
Note that this method does NOT return total malloc’ed memory size.
This method can be defined by the following Ruby code:
def memsize_of_all klass = false total = 0 ObjectSpace.each_object{|e| total += ObjectSpace.memsize_of(e) if klass == false || e.kind_of?(klass) } total end
This method is only expected to work with C Ruby.
144 145 146 147 148 149 150 151 152 153 154 155 |
# File 'objspace.c', line 144
static VALUE
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
{
struct total_data data = {0, 0};
if (argc > 0) {
rb_scan_args(argc, argv, "01", &data.klass);
}
each_object_with_flags(total_i, &data);
return SIZET2NUM(data.total);
}
|
.reachable_objects_from(obj) ⇒ Array?
- MRI specific feature
-
Return all reachable objects from ‘obj’.
This method returns all reachable objects from ‘obj’.
If ‘obj’ has two or more references to the same object ‘x’, then returned array only includes one ‘x’ object.
If ‘obj’ is a non-markable (non-heap management) object such as true, false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.
If ‘obj’ has references to an internal object, then it returns instances of ObjectSpace::InternalObjectWrapper class. This object contains a reference to an internal object and you can check the type of internal object with ‘type’ method.
If ‘obj’ is instance of ObjectSpace::InternalObjectWrapper class, then this method returns all reachable object from an internal object, which is pointed by ‘obj’.
With this method, you can find memory leaks.
This method is only expected to work except with C Ruby.
Example:
ObjectSpace.reachable_objects_from(['a', 'b', 'c'])
#=> [Array, 'a', 'b', 'c']
ObjectSpace.reachable_objects_from(['a', 'a', 'a'])
#=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id
ObjectSpace.reachable_objects_from([v = 'a', v, v])
#=> [Array, 'a']
ObjectSpace.reachable_objects_from(1)
#=> nil # 1 is not markable (heap managed) object
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
# File 'objspace.c', line 785
static VALUE
reachable_objects_from(VALUE self, VALUE obj)
{
if (rb_objspace_markable_object_p(obj)) {
struct rof_data data;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
data.refs = rb_ident_hash_new();
data.internals = rb_ary_new();
rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);
return rb_funcall(data.refs, rb_intern("values"), 0);
}
else {
return Qnil;
}
}
|
.reachable_objects_from_root ⇒ Hash
- MRI specific feature
-
Return all reachable objects from root.
860 861 862 863 864 865 866 867 868 869 870 871 |
# File 'objspace.c', line 860
static VALUE
reachable_objects_from_root(VALUE self)
{
struct rofr_data data;
VALUE hash = data.categories = rb_ident_hash_new();
data.last_category = 0;
rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
rb_hash_foreach(hash, collect_values_of_values, hash);
return hash;
}
|
.trace_object_allocations { ... } ⇒ Object
Starts tracing object allocations from the ObjectSpace extension module.
For example:
require ‘objspace’
class C
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}"
end
end
end
C.new.foo #=> “objtrace.rb:8”
This example has included the ObjectSpace module to make it easier to read, but you can also use the ::trace_object_allocations notation (recommended).
Note that this feature introduces a huge performance decrease and huge memory consumption.
354 355 356 357 358 359 |
# File 'object_tracing.c', line 354
static VALUE
trace_object_allocations(VALUE self)
{
trace_object_allocations_start(self);
return rb_ensure(rb_yield, Qnil, trace_object_allocations_stop, self);
}
|
.trace_object_allocations_clear ⇒ Object
Clear recorded tracing information.
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# File 'object_tracing.c', line 310
static VALUE
trace_object_allocations_clear(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
/* clear tables */
st_foreach(arg->object_table, free_values_i, 0);
st_clear(arg->object_table);
st_foreach(arg->str_table, free_keys_i, 0);
st_clear(arg->str_table);
/* do not touch TracePoints */
return Qnil;
}
|
.trace_object_allocations_debug_start ⇒ Object
394 395 396 397 398 399 400 401 402 403 404 |
# File 'object_tracing.c', line 394
static VALUE
trace_object_allocations_debug_start(VALUE self)
{
tmp_keep_remains = 1;
if (object_allocations_reporter_registered == 0) {
object_allocations_reporter_registered = 1;
rb_bug_reporter_add(object_allocations_reporter, 0);
}
return trace_object_allocations_start(self);
}
|
.trace_object_allocations_start ⇒ Object
Starts tracing object allocations.
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# File 'object_tracing.c', line 254
static VALUE
trace_object_allocations_start(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running++ > 0) {
/* do nothing */
}
else {
if (arg->newobj_trace == 0) {
arg->newobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_NEWOBJ, newobj_i, arg);
arg->freeobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_FREEOBJ, freeobj_i, arg);
}
rb_tracepoint_enable(arg->newobj_trace);
rb_tracepoint_enable(arg->freeobj_trace);
}
return Qnil;
}
|
.trace_object_allocations_stop ⇒ Object
Stop tracing object allocations.
Note that if ::trace_object_allocations_start is called n-times, then tracing will stop after calling ::trace_object_allocations_stop n-times.
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# File 'object_tracing.c', line 283
static VALUE
trace_object_allocations_stop(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running > 0) {
arg->running--;
}
if (arg->running == 0) {
if (arg->newobj_trace != 0) {
rb_tracepoint_disable(arg->newobj_trace);
}
if (arg->freeobj_trace != 0) {
rb_tracepoint_disable(arg->freeobj_trace);
}
}
return Qnil;
}
|