Module: ObjectSpace

Defined in:
objspace.c,
objspace.c,
objspace_dump.c,
object_tracing.c

Overview

The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.

You need to require 'objspace' to use this extension module.

Generally, you *SHOULD NOT* use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.

Defined Under Namespace

Classes: InternalObjectWrapper

Class Method Summary collapse

Class Method Details

.allocation_class_path(object) ⇒ String

Returns the class for the given object.

class A

def foo
  ObjectSpace::trace_object_allocations do
    obj = Object.new
    p "#{ObjectSpace::allocation_class_path(obj)}"
  end
end

end

A.new.foo #=> “Class”

See ::trace_object_allocations for more information and examples.

Returns:

  • (String)

404
405
406
407
408
409
410
411
412
413
414
415
# File 'object_tracing.c', line 404

static VALUE
allocation_class_path(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);

    if (info && info->class_path) {
	return rb_str_new2(info->class_path);
    }
    else {
	return Qnil;
    }
}

.allocation_generation(object) ⇒ Integer?

Returns garbage collector generation for the given object.

class B

include ObjectSpace

def foo
  trace_object_allocations do
    obj = Object.new
    p "Generation is #{allocation_generation(obj)}"
  end
end

end

B.new.foo #=> “Generation is 3”

See ::trace_object_allocations for more information and examples.

Returns:

  • (Integer, nil)

469
470
471
472
473
474
475
476
477
478
479
# File 'object_tracing.c', line 469

static VALUE
allocation_generation(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);
    if (info) {
	return SIZET2NUM(info->generation);
    }
    else {
	return Qnil;
    }
}

.allocation_method_id(object) ⇒ String

Returns the method identifier for the given object.

class A

include ObjectSpace

def foo
  trace_object_allocations do
    obj = Object.new
    p "#{allocation_class_path(obj)}##{allocation_method_id(obj)}"
  end
end

end

A.new.foo #=> “Class#new”

See ::trace_object_allocations for more information and examples.

Returns:

  • (String)

437
438
439
440
441
442
443
444
445
446
447
# File 'object_tracing.c', line 437

static VALUE
allocation_method_id(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);
    if (info) {
	return info->mid;
    }
    else {
	return Qnil;
    }
}

.allocation_sourcefile(object) ⇒ String

Returns the source file origin from the given object.

See ::trace_object_allocations for more information and examples.

Returns:

  • (String)

353
354
355
356
357
358
359
360
361
362
363
364
# File 'object_tracing.c', line 353

static VALUE
allocation_sourcefile(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);

    if (info && info->path) {
	return rb_str_new2(info->path);
    }
    else {
	return Qnil;
    }
}

.allocation_sourceline(object) ⇒ Integer

Returns the original line from source for from the given object.

See ::trace_object_allocations for more information and examples.

Returns:

  • (Integer)

373
374
375
376
377
378
379
380
381
382
383
384
# File 'object_tracing.c', line 373

static VALUE
allocation_sourceline(VALUE self, VALUE obj)
{
    struct allocation_info *info = lookup_allocation_info(obj);

    if (info) {
	return INT2FIX(info->line);
    }
    else {
	return Qnil;
    }
}

.count_imemo_objects([result_hash]) ⇒ Hash

Counts objects for each T_IMEMO type.

This method is only for MRI developers interested in performance and memory usage of Ruby programs.

It returns a hash as:

{:imemo_ifunc=>8,
 :imemo_svar=>7,
 :imemo_cref=>509,
 :imemo_memo=>1,
 :imemo_throw_data=>1}

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

The contents of the returned hash is implementation specific and may change in the future.

In this version, keys are symbol objects.

This method is only expected to work with C Ruby.

Returns:

  • (Hash)

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# File 'objspace.c', line 623

static VALUE
count_imemo_objects(int argc, VALUE *argv, VALUE self)
{
    VALUE hash = setup_hash(argc, argv);

    if (imemo_type_ids[0] == 0) {
        imemo_type_ids[0] = rb_intern("imemo_env");
	imemo_type_ids[1] = rb_intern("imemo_cref");
	imemo_type_ids[2] = rb_intern("imemo_svar");
	imemo_type_ids[3] = rb_intern("imemo_throw_data");
	imemo_type_ids[4] = rb_intern("imemo_ifunc");
	imemo_type_ids[5] = rb_intern("imemo_memo");
	imemo_type_ids[6] = rb_intern("imemo_ment");
	imemo_type_ids[7] = rb_intern("imemo_iseq");
	imemo_type_ids[8] = rb_intern("imemo_tmpbuf");
        imemo_type_ids[9] = rb_intern("imemo_ast");
        imemo_type_ids[10] = rb_intern("imemo_parser_strterm");
    }

    rb_objspace_each_objects(count_imemo_objects_i, (void *)hash);

    return hash;
}

.count_nodes([result_hash]) ⇒ Hash

Counts nodes for each node type.

This method is only for MRI developers interested in performance and memory usage of Ruby programs.

It returns a hash as:

:NODE_FBODY=>1927, :NODE_CFUNC=>1798, …

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

Note: The contents of the returned hash is implementation defined. It may be changed in future.

This method is only expected to work with C Ruby.

Returns:

  • (Hash)

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# File 'objspace.c', line 361

static VALUE
count_nodes(int argc, VALUE *argv, VALUE os)
{
    size_t nodes[NODE_LAST+1];
    enum node_type i;
    VALUE hash = setup_hash(argc, argv);

    for (i = 0; i <= NODE_LAST; i++) {
	nodes[i] = 0;
    }

    rb_objspace_each_objects(cn_i, &nodes[0]);

    for (i=0; i<NODE_LAST; i++) {
	if (nodes[i] != 0) {
	    VALUE node;
	    switch (i) {
#define COUNT_NODE(n) case n: node = ID2SYM(rb_intern(#n)); goto set
		COUNT_NODE(NODE_SCOPE);
		COUNT_NODE(NODE_BLOCK);
		COUNT_NODE(NODE_IF);
		COUNT_NODE(NODE_UNLESS);
		COUNT_NODE(NODE_CASE);
		COUNT_NODE(NODE_CASE2);
                COUNT_NODE(NODE_CASE3);
		COUNT_NODE(NODE_WHEN);
                COUNT_NODE(NODE_IN);
		COUNT_NODE(NODE_WHILE);
		COUNT_NODE(NODE_UNTIL);
		COUNT_NODE(NODE_ITER);
		COUNT_NODE(NODE_FOR);
		COUNT_NODE(NODE_FOR_MASGN);
		COUNT_NODE(NODE_BREAK);
		COUNT_NODE(NODE_NEXT);
		COUNT_NODE(NODE_REDO);
		COUNT_NODE(NODE_RETRY);
		COUNT_NODE(NODE_BEGIN);
		COUNT_NODE(NODE_RESCUE);
		COUNT_NODE(NODE_RESBODY);
		COUNT_NODE(NODE_ENSURE);
		COUNT_NODE(NODE_AND);
		COUNT_NODE(NODE_OR);
		COUNT_NODE(NODE_MASGN);
		COUNT_NODE(NODE_LASGN);
		COUNT_NODE(NODE_DASGN);
		COUNT_NODE(NODE_DASGN_CURR);
		COUNT_NODE(NODE_GASGN);
		COUNT_NODE(NODE_IASGN);
		COUNT_NODE(NODE_CDECL);
		COUNT_NODE(NODE_CVASGN);
		COUNT_NODE(NODE_OP_ASGN1);
		COUNT_NODE(NODE_OP_ASGN2);
		COUNT_NODE(NODE_OP_ASGN_AND);
		COUNT_NODE(NODE_OP_ASGN_OR);
		COUNT_NODE(NODE_OP_CDECL);
		COUNT_NODE(NODE_CALL);
		COUNT_NODE(NODE_OPCALL);
		COUNT_NODE(NODE_FCALL);
		COUNT_NODE(NODE_VCALL);
		COUNT_NODE(NODE_QCALL);
		COUNT_NODE(NODE_SUPER);
		COUNT_NODE(NODE_ZSUPER);
		COUNT_NODE(NODE_LIST);
		COUNT_NODE(NODE_ZLIST);
		COUNT_NODE(NODE_VALUES);
		COUNT_NODE(NODE_HASH);
		COUNT_NODE(NODE_RETURN);
		COUNT_NODE(NODE_YIELD);
		COUNT_NODE(NODE_LVAR);
		COUNT_NODE(NODE_DVAR);
		COUNT_NODE(NODE_GVAR);
		COUNT_NODE(NODE_IVAR);
		COUNT_NODE(NODE_CONST);
		COUNT_NODE(NODE_CVAR);
		COUNT_NODE(NODE_NTH_REF);
		COUNT_NODE(NODE_BACK_REF);
		COUNT_NODE(NODE_MATCH);
		COUNT_NODE(NODE_MATCH2);
		COUNT_NODE(NODE_MATCH3);
		COUNT_NODE(NODE_LIT);
		COUNT_NODE(NODE_STR);
		COUNT_NODE(NODE_DSTR);
		COUNT_NODE(NODE_XSTR);
		COUNT_NODE(NODE_DXSTR);
		COUNT_NODE(NODE_EVSTR);
		COUNT_NODE(NODE_DREGX);
		COUNT_NODE(NODE_ONCE);
		COUNT_NODE(NODE_ARGS);
		COUNT_NODE(NODE_ARGS_AUX);
		COUNT_NODE(NODE_OPT_ARG);
		COUNT_NODE(NODE_KW_ARG);
		COUNT_NODE(NODE_POSTARG);
		COUNT_NODE(NODE_ARGSCAT);
		COUNT_NODE(NODE_ARGSPUSH);
		COUNT_NODE(NODE_SPLAT);
		COUNT_NODE(NODE_BLOCK_PASS);
		COUNT_NODE(NODE_DEFN);
		COUNT_NODE(NODE_DEFS);
		COUNT_NODE(NODE_ALIAS);
		COUNT_NODE(NODE_VALIAS);
		COUNT_NODE(NODE_UNDEF);
		COUNT_NODE(NODE_CLASS);
		COUNT_NODE(NODE_MODULE);
		COUNT_NODE(NODE_SCLASS);
		COUNT_NODE(NODE_COLON2);
		COUNT_NODE(NODE_COLON3);
		COUNT_NODE(NODE_DOT2);
		COUNT_NODE(NODE_DOT3);
		COUNT_NODE(NODE_FLIP2);
		COUNT_NODE(NODE_FLIP3);
		COUNT_NODE(NODE_SELF);
		COUNT_NODE(NODE_NIL);
		COUNT_NODE(NODE_TRUE);
		COUNT_NODE(NODE_FALSE);
		COUNT_NODE(NODE_ERRINFO);
		COUNT_NODE(NODE_DEFINED);
		COUNT_NODE(NODE_POSTEXE);
		COUNT_NODE(NODE_DSYM);
		COUNT_NODE(NODE_ATTRASGN);
		COUNT_NODE(NODE_LAMBDA);
                COUNT_NODE(NODE_ARYPTN);
                COUNT_NODE(NODE_HSHPTN);
#undef COUNT_NODE
	      case NODE_LAST: break;
	    }
	    UNREACHABLE;
	  set:
	    rb_hash_aset(hash, node, SIZET2NUM(nodes[i]));
	}
    }
    return hash;
}

.count_objects_size([result_hash]) ⇒ Hash

Counts objects size (in bytes) for each type.

Note that this information is incomplete. You need to deal with this information as only a HINT. Especially, total size of T_DATA may be wrong.

It returns a hash as:

{:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

The contents of the returned hash is implementation defined. It may be changed in future.

This method is only expected to work with C Ruby.

Returns:

  • (Hash)

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# File 'objspace.c', line 226

static VALUE
count_objects_size(int argc, VALUE *argv, VALUE os)
{
    size_t counts[T_MASK+1];
    size_t total = 0;
    enum ruby_value_type i;
    VALUE hash = setup_hash(argc, argv);

    for (i = 0; i <= T_MASK; i++) {
	counts[i] = 0;
    }

    rb_objspace_each_objects(cos_i, &counts[0]);

    for (i = 0; i <= T_MASK; i++) {
	if (counts[i]) {
	    VALUE type = type2sym(i);
	    total += counts[i];
	    rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
	}
    }
    rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
    return hash;
}

.count_symbols([result_hash]) ⇒ Hash

Counts symbols for each Symbol type.

This method is only for MRI developers interested in performance and memory usage of Ruby programs.

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

Note: The contents of the returned hash is implementation defined. It may be changed in future.

This method is only expected to work with C Ruby.

On this version of MRI, they have 3 types of Symbols (and 1 total counts).

* mortal_dynamic_symbol: GC target symbols (collected by GC)
* immortal_dynamic_symbol: Immortal symbols promoted from dynamic symbols (do not collected by GC)
* immortal_static_symbol: Immortal symbols (do not collected by GC)
* immortal_symbol: total immortal symbols (immortal_dynamic_symbol+immortal_static_symbol)

Returns:

  • (Hash)

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# File 'objspace.c', line 305

static VALUE
count_symbols(int argc, VALUE *argv, VALUE os)
{
    struct dynamic_symbol_counts dynamic_counts = {0, 0};
    VALUE hash = setup_hash(argc, argv);

    size_t immortal_symbols = rb_sym_immortal_count();
    rb_objspace_each_objects(cs_i, &dynamic_counts);

    rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")),   SIZET2NUM(dynamic_counts.mortal));
    rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
    rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")),  SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
    rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")),         SIZET2NUM(immortal_symbols));

    return hash;
}

.count_tdata_objects([result_hash]) ⇒ Hash

Counts objects for each T_DATA type.

This method is only for MRI developers interested in performance and memory usage of Ruby programs.

It returns a hash as:

:parser=>5, :barrier=>6, :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99, ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1, Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2 # T_DATA objects existing at startup on r32276.

If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.

The contents of the returned hash is implementation specific and may change in the future.

In this version, keys are Class object or Symbol object.

If object is kind of normal (accessible) object, the key is Class object. If object is not a kind of normal (internal) object, the key is symbol name, registered by rb_data_type_struct.

This method is only expected to work with C Ruby.

Returns:

  • (Hash)

558
559
560
561
562
563
564
# File 'objspace.c', line 558

static VALUE
count_tdata_objects(int argc, VALUE *argv, VALUE self)
{
    VALUE hash = setup_hash(argc, argv);
    rb_objspace_each_objects(cto_i, (void *)hash);
    return hash;
}

.dump(obj[, output: :string]) ⇒ Object .dump(obj, output: :file) ⇒ #<File:/tmp/rubyobj20131125-88733-1xkfmpv.json .dump(obj, output: :stdout) ⇒ nil

Dump the contents of a ruby object as JSON.

This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.

Overloads:

  • .dump(obj, output: :file) ⇒ #<File:/tmp/rubyobj20131125-88733-1xkfmpv.json

    Returns ].

    Returns:

    • (#<File:/tmp/rubyobj20131125-88733-1xkfmpv.json)

      ]

  • .dump(obj, output: :stdout) ⇒ nil

    Returns:

    • (nil)

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# File 'objspace_dump.c', line 447

static VALUE
objspace_dump(int argc, VALUE *argv, VALUE os)
{
    static const char filename[] = "rubyobj";
    VALUE obj = Qnil, opts = Qnil, output;
    struct dump_config dc = {0,};

    rb_scan_args(argc, argv, "1:", &obj, &opts);

    output = dump_output(&dc, opts, sym_string, filename);

    dump_object(obj, &dc);

    return dump_result(&dc, output);
}

.dump_all([output: :file]) ⇒ #<File:/tmp/rubyheap20131125-88469-laoj3v.json .dump_all(output: :stdout) ⇒ nil .dump_all(output: :string) ⇒ Object .dump_all(output: ) ⇒ Object .open('heap.json', 'w') ⇒ #<File:heap.json

Dump the contents of the ruby heap as JSON.

This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.

Overloads:

  • .dump_all([output: :file]) ⇒ #<File:/tmp/rubyheap20131125-88469-laoj3v.json

    Returns ].

    Returns:

    • (#<File:/tmp/rubyheap20131125-88469-laoj3v.json)

      ]

  • .dump_all(output: :stdout) ⇒ nil

    Returns:

    • (nil)
  • .open('heap.json', 'w') ⇒ #<File:heap.json

    Returns ].

    Returns:

    • (#<File:heap.json)

      ]


479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# File 'objspace_dump.c', line 479

static VALUE
objspace_dump_all(int argc, VALUE *argv, VALUE os)
{
    static const char filename[] = "rubyheap";
    VALUE opts = Qnil, output;
    struct dump_config dc = {0,};

    rb_scan_args(argc, argv, "0:", &opts);

    output = dump_output(&dc, opts, sym_file, filename);

    /* dump roots */
    rb_objspace_reachable_objects_from_root(root_obj_i, &dc);
    if (dc.roots) dump_append(&dc, "]}\n");

    /* dump all objects */
    rb_objspace_each_objects(heap_i, &dc);

    return dump_result(&dc, output);
}

.internal_class_of(obj) ⇒ Class, Module

MRI specific feature

Return internal class of obj.

obj can be an instance of InternalObjectWrapper.

Note that you should not use this method in your application.

Returns:

  • (Class, Module)

884
885
886
887
888
889
890
891
892
893
894
895
# File 'objspace.c', line 884

static VALUE
objspace_internal_class_of(VALUE self, VALUE obj)
{
    VALUE klass;

    if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
	obj = (VALUE)DATA_PTR(obj);
    }

    klass = CLASS_OF(obj);
    return wrap_klass_iow(klass);
}

.internal_super_of(cls) ⇒ Class, Module

MRI specific feature

Return internal super class of cls (Class or Module).

obj can be an instance of InternalObjectWrapper.

Note that you should not use this method in your application.

Returns:

  • (Class, Module)

906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
# File 'objspace.c', line 906

static VALUE
objspace_internal_super_of(VALUE self, VALUE obj)
{
    VALUE super;

    if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
	obj = (VALUE)DATA_PTR(obj);
    }

    switch (OBJ_BUILTIN_TYPE(obj)) {
      case T_MODULE:
      case T_CLASS:
      case T_ICLASS:
	super = RCLASS_SUPER(obj);
	break;
      default:
	rb_raise(rb_eArgError, "class or module is expected");
    }

    return wrap_klass_iow(super);
}

.memsize_of(obj) ⇒ Integer

Return consuming memory size of obj.

Note that the return size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA may not be correct.

This method is only expected to work with C Ruby.

From Ruby 2.2, memsize_of(obj) returns a memory size includes sizeof(RVALUE).

Returns:

  • (Integer)

43
44
45
46
47
# File 'objspace.c', line 43

static VALUE
memsize_of_m(VALUE self, VALUE obj)
{
    return SIZET2NUM(rb_obj_memsize_of(obj));
}

.memsize_of_all([klass]) ⇒ Integer

Return consuming memory size of all living objects.

If klass (should be Class object) is given, return the total memory size of instances of the given class.

Note that the returned size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA may not be correct.

Note that this method does NOT return total malloc'ed memory size.

This method can be defined by the following Ruby code:

def memsize_of_all klass = false total = 0 ObjectSpace.each_object{|e| total += ObjectSpace.memsize_of(e) if klass == false || e.kind_of?(klass) } total end

This method is only expected to work with C Ruby.

Returns:

  • (Integer)

108
109
110
111
112
113
114
115
116
117
118
119
# File 'objspace.c', line 108

static VALUE
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
{
    struct total_data data = {0, 0};

    if (argc > 0) {
	rb_scan_args(argc, argv, "01", &data.klass);
    }

    rb_objspace_each_objects(total_i, &data);
    return SIZET2NUM(data.total);
}

.reachable_objects_from(obj) ⇒ Array?

MRI specific feature

Return all reachable objects from `obj'.

This method returns all reachable objects from `obj'.

If `obj' has two or more references to the same object `x', then returned array only includes one `x' object.

If `obj' is a non-markable (non-heap management) object such as true, false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.

If `obj' has references to an internal object, then it returns instances of ObjectSpace::InternalObjectWrapper class. This object contains a reference to an internal object and you can check the type of internal object with `type' method.

If `obj' is instance of ObjectSpace::InternalObjectWrapper class, then this method returns all reachable object from an internal object, which is pointed by `obj'.

With this method, you can find memory leaks.

This method is only expected to work except with C Ruby.

Example:

ObjectSpace.reachable_objects_from(['a', 'b', 'c'])#=> [Array, 'a', 'b', 'c']


ObjectSpace.reachable_objects_from(['a', 'a', 'a'])#=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id


ObjectSpace.reachable_objects_from([v = 'a', v, v])#=> [Array, 'a']


ObjectSpace.reachable_objects_from(1)#=> nil # 1 is not markable (heap managed) object

Returns:

  • (Array, nil)

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
# File 'objspace.c', line 771

static VALUE
reachable_objects_from(VALUE self, VALUE obj)
{
    if (rb_objspace_markable_object_p(obj)) {
	VALUE ret = rb_ary_new();
	struct rof_data data;

	if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
	    obj = (VALUE)DATA_PTR(obj);
	}

	data.refs = st_init_numtable();
	data.internals = rb_ary_new();

	rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);

	st_foreach(data.refs, collect_values, (st_data_t)ret);
	return ret;
    }
    else {
	return Qnil;
    }
}

.reachable_objects_from_rootHash

MRI specific feature

Return all reachable objects from root.

Returns:

  • (Hash)

848
849
850
851
852
853
854
855
856
857
858
859
# File 'objspace.c', line 848

static VALUE
reachable_objects_from_root(VALUE self)
{
    struct rofr_data data;
    VALUE hash = data.categories = rb_ident_hash_new();
    data.last_category = 0;

    rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
    rb_hash_foreach(hash, collect_values_of_values, hash);

    return hash;
}

.trace_object_allocations { ... } ⇒ Object

Starts tracing object allocations from the ObjectSpace extension module.

For example:

require 'objspace'

class C

include ObjectSpace

def foo
  trace_object_allocations do
    obj = Object.new
    p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}"
  end
end

end

C.new.foo #=> “objtrace.rb:8”

This example has included the ObjectSpace module to make it easier to read, but you can also use the ::trace_object_allocations notation (recommended).

Note that this feature introduces a huge performance decrease and huge memory consumption.

Yields:


276
277
278
279
280
281
# File 'object_tracing.c', line 276

static VALUE
trace_object_allocations(VALUE self)
{
    trace_object_allocations_start(self);
    return rb_ensure(rb_yield, Qnil, trace_object_allocations_stop, self);
}

.trace_object_allocations_clearObject

Clear recorded tracing information.


232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# File 'object_tracing.c', line 232

static VALUE
trace_object_allocations_clear(VALUE self)
{
    struct traceobj_arg *arg = get_traceobj_arg();

    /* clear tables */
    st_foreach(arg->object_table, free_values_i, 0);
    st_clear(arg->object_table);
    st_foreach(arg->str_table, free_keys_i, 0);
    st_clear(arg->str_table);

    /* do not touch TracePoints */

    return Qnil;
}

.trace_object_allocations_debug_startObject


316
317
318
319
320
321
322
323
324
325
326
# File 'object_tracing.c', line 316

static VALUE
trace_object_allocations_debug_start(VALUE self)
{
    tmp_keep_remains = 1;
    if (object_allocations_reporter_registered == 0) {
	object_allocations_reporter_registered = 1;
	rb_bug_reporter_add(object_allocations_reporter, 0);
    }

    return trace_object_allocations_start(self);
}

.trace_object_allocations_startObject

Starts tracing object allocations.


178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# File 'object_tracing.c', line 178

static VALUE
trace_object_allocations_start(VALUE self)
{
    struct traceobj_arg *arg = get_traceobj_arg();

    if (arg->running++ > 0) {
	/* do nothing */
    }
    else {
	if (arg->newobj_trace == 0) {
	    arg->newobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_NEWOBJ, newobj_i, arg);
	    rb_gc_register_mark_object(arg->newobj_trace);
	    arg->freeobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_FREEOBJ, freeobj_i, arg);
	    rb_gc_register_mark_object(arg->freeobj_trace);
	}
	rb_tracepoint_enable(arg->newobj_trace);
	rb_tracepoint_enable(arg->freeobj_trace);
    }

    return Qnil;
}

.trace_object_allocations_stopObject

Stop tracing object allocations.

Note that if ::trace_object_allocations_start is called n-times, then tracing will stop after calling ::trace_object_allocations_stop n-times.


209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# File 'object_tracing.c', line 209

static VALUE
trace_object_allocations_stop(VALUE self)
{
    struct traceobj_arg *arg = get_traceobj_arg();

    if (arg->running > 0) {
	arg->running--;
    }

    if (arg->running == 0) {
	rb_tracepoint_disable(arg->newobj_trace);
	rb_tracepoint_disable(arg->freeobj_trace);
    }

    return Qnil;
}