Class: Socket
- Inherits:
-
BasicSocket
- Object
- IO
- BasicSocket
- Socket
- Defined in:
- socket.c,
socket.c,
lib/socket.rb
Overview
Class Socket
provides access to the underlying operating system socket implementations. It can be used to provide more operating system specific functionality than the protocol-specific socket classes.
The constants defined under Socket::Constants are also defined under Socket. For example, Socket::AF_INET is usable as well as Socket::Constants::AF_INET. See Socket::Constants for the list of constants.
What’s a socket?
Sockets are endpoints of a bidirectional communication channel. Sockets can communicate within a process, between processes on the same machine or between different machines. There are many types of socket: TCPSocket, UDPSocket or UNIXSocket for example.
Sockets have their own vocabulary:
domain: The family of protocols:
-
Socket::PF_INET
-
Socket::PF_INET6
-
Socket::PF_UNIX
-
etc.
type: The type of communications between the two endpoints, typically
-
Socket::SOCK_STREAM
-
Socket::SOCK_DGRAM.
protocol: Typically zero. This may be used to identify a variant of a protocol.
hostname: The identifier of a network interface:
-
a string (hostname, IPv4 or IPv6 address or
broadcast
which specifies a broadcast address)
-
a zero-length string which specifies INADDR_ANY
-
an integer (interpreted as binary address in host byte order).
Quick start
Many of the classes, such as TCPSocket, UDPSocket or UNIXSocket, ease the use of sockets comparatively to the equivalent C programming interface.
Let’s create an internet socket using the IPv4 protocol in a C-like manner:
require 'socket'
s = Socket.new Socket::AF_INET, Socket::SOCK_STREAM
s.connect Socket.pack_sockaddr_in(80, 'example.com')
You could also use the TCPSocket class:
s = TCPSocket.new 'example.com', 80
A simple server might look like this:
require 'socket'
server = TCPServer.new 2000 # Server bound to port 2000
loop do
client = server.accept # Wait for a client to connect
client.puts "Hello !"
client.puts "Time is #{Time.now}"
client.close
end
A simple client may look like this:
require 'socket'
s = TCPSocket.new 'localhost', 2000
while line = s.gets # Read lines from socket
puts line # and print them
end
s.close # close socket when done
Exception Handling
Ruby’s Socket implementation raises exceptions based on the error generated by the system dependent implementation. This is why the methods are documented in a way that isolate Unix-based system exceptions from Windows based exceptions. If more information on a particular exception is needed, please refer to the Unix manual pages or the Windows WinSock reference.
Convenience methods
Although the general way to create socket is Socket.new, there are several methods of socket creation for most cases.
- TCP client socket
-
Socket.tcp, TCPSocket.open
- TCP server socket
-
Socket.tcp_server_loop, TCPServer.open
- UNIX client socket
-
Socket.unix, UNIXSocket.open
- UNIX server socket
-
Socket.unix_server_loop, UNIXServer.open
Documentation by
-
Zach Dennis
-
Sam Roberts
-
Programming Ruby from The Pragmatic Bookshelf.
Much material in this documentation is taken with permission from Programming Ruby from The Pragmatic Bookshelf.
Defined Under Namespace
Classes: AncillaryData, Ifaddr, Option, UDPSource
Class Method Summary collapse
-
.accept_loop(*sockets) ⇒ Object
yield socket and client address for each a connection accepted via given sockets.
-
.getaddrinfo(nodename, servname[, family[, socktype[, protocol[, flags[, reverse_lookup]]]]]) ⇒ Array
Obtains address information for nodename:servname.
-
.gethostbyaddr(address_string[, address_family]) ⇒ Object
Use Addrinfo#getnameinfo instead.
-
.gethostbyname(hostname) ⇒ Array
Use Addrinfo.getaddrinfo instead.
- .gethostname ⇒ Object
-
.getifaddrs ⇒ Array
Returns an array of interface addresses.
-
.getnameinfo(sockaddr[, flags]) ⇒ Array
Obtains name information for sockaddr.
-
.getservbyname(*args) ⇒ Object
Obtains the port number for service_name.
-
.getservbyport(port[, protocol_name]) ⇒ Object
Obtains the port number for port.
-
.ip_address_list ⇒ Array
Returns local IP addresses as an array.
-
.ip_sockets_port0(ai_list, reuseaddr) ⇒ Object
:stopdoc:.
-
.pack_sockaddr_in(port, host) ⇒ Object
Packs port and host as an AF_INET/AF_INET6 sockaddr string.
-
.pack_sockaddr_un(path) ⇒ Object
Packs path as an AF_UNIX sockaddr string.
-
.pair(*args) ⇒ Object
Creates a pair of sockets connected each other.
-
.sockaddr_in(port, host) ⇒ Object
Packs port and host as an AF_INET/AF_INET6 sockaddr string.
-
.sockaddr_un(path) ⇒ Object
Packs path as an AF_UNIX sockaddr string.
-
.socketpair(*args) ⇒ Object
Creates a pair of sockets connected each other.
-
.tcp(host, port, local_host = nil, local_port = nil, connect_timeout: nil, resolv_timeout: nil) ⇒ Object
:call-seq: Socket.tcp(host, port, local_host=nil, local_port=nil, [opts]) {|socket| … } Socket.tcp(host, port, local_host=nil, local_port=nil, [opts]).
-
.tcp_server_loop(host = nil, port, &b) ⇒ Object
creates a TCP/IP server on port and calls the block for each connection accepted.
-
.tcp_server_sockets(host = nil, port) ⇒ Object
creates TCP/IP server sockets for host and port.
- .tcp_server_sockets_port0(host) ⇒ Object
-
.udp_server_loop(host = nil, port, &b) ⇒ Object
:call-seq: Socket.udp_server_loop(port) {|msg, msg_src| … } Socket.udp_server_loop(host, port) {|msg, msg_src| … }.
-
.udp_server_loop_on(sockets, &b) ⇒ Object
:call-seq: Socket.udp_server_loop_on(sockets) {|msg, msg_src| … }.
-
.udp_server_recv(sockets) ⇒ Object
:call-seq: Socket.udp_server_recv(sockets) {|msg, msg_src| … }.
-
.udp_server_sockets(host = nil, port) ⇒ Object
:call-seq: Socket.udp_server_sockets([host, ] port).
-
.unix(path) ⇒ Object
creates a new socket connected to path using UNIX socket socket.
-
.unix_server_loop(path, &b) ⇒ Object
creates a UNIX socket server on path.
-
.unix_server_socket(path) ⇒ Object
creates a UNIX server socket on path.
-
.unpack_sockaddr_in(sockaddr) ⇒ Array
Unpacks sockaddr into port and ip_address.
-
.unpack_sockaddr_un(sockaddr) ⇒ Object
Unpacks sockaddr into path.
Instance Method Summary collapse
-
#accept ⇒ Array
Accepts a next connection.
-
#accept_nonblock(exception: true) ⇒ Object
call-seq: socket.accept_nonblock() => [client_socket, client_addrinfo].
-
#bind(local_sockaddr) ⇒ 0
Binds to the given local address.
-
#connect(remote_sockaddr) ⇒ 0
Requests a connection to be made on the given
remote_sockaddr
. -
#connect_nonblock(addr, exception: true) ⇒ Object
call-seq: socket.connect_nonblock(remote_sockaddr, [options]) => 0.
-
#new(domain, socktype[, protocol]) ⇒ Object
constructor
Creates a new socket object.
-
#ipv6only! ⇒ Object
enable the socket option IPV6_V6ONLY if IPV6_V6ONLY is available.
-
#listen(int) ⇒ 0
Listens for connections, using the specified
int
as the backlog. -
#recvfrom(*args) ⇒ Object
Receives up to maxlen bytes from
socket
. -
#recvfrom_nonblock(len, flag = 0, str = nil, exception: true) ⇒ Object
call-seq: socket.recvfrom_nonblock(maxlen[, flags[, outbuf[, opts]]]) => [mesg, sender_addrinfo].
-
#sysaccept ⇒ Array
Accepts an incoming connection returning an array containing the (integer) file descriptor for the incoming connection, client_socket_fd, and an Addrinfo, client_addrinfo.
Methods inherited from BasicSocket
#close_read, #close_write, #connect_address, do_not_reverse_lookup, #do_not_reverse_lookup, do_not_reverse_lookup=, #do_not_reverse_lookup=, for_fd, #getpeereid, #getpeername, #getsockname, #getsockopt, #local_address, #read_nonblock, #recv, #recv_nonblock, #recvmsg, #recvmsg_nonblock, #remote_address, #send, #sendmsg, #sendmsg_nonblock, #setsockopt, #shutdown, #write_nonblock
Constructor Details
#new(domain, socktype[, protocol]) ⇒ Object
Creates a new socket object.
domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol is optional and should be a protocol defined in the domain. If protocol is not given, 0 is used internally.
Socket.new(:INET, :STREAM) # TCP socket
Socket.new(:INET, :DGRAM) # UDP socket
Socket.new(:UNIX, :STREAM) # UNIX stream socket
Socket.new(:UNIX, :DGRAM) # UNIX datagram socket
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# File 'socket.c', line 132
static VALUE
sock_initialize(int argc, VALUE *argv, VALUE sock)
{
VALUE domain, type, protocol;
int fd;
int d, t;
rb_scan_args(argc, argv, "21", &domain, &type, &protocol);
if (NIL_P(protocol))
protocol = INT2FIX(0);
setup_domain_and_type(domain, &d, type, &t);
fd = rsock_socket(d, t, NUM2INT(protocol));
if (fd < 0) rb_sys_fail("socket(2)");
return rsock_init_sock(sock, fd);
}
|
Class Method Details
.accept_loop(*sockets) ⇒ Object
yield socket and client address for each a connection accepted via given sockets.
The arguments are a list of sockets. The individual argument should be a socket or an array of sockets.
This method yields the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.
800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
# File 'lib/socket.rb', line 800 def self.accept_loop(*sockets) # :yield: socket, client_addrinfo sockets.flatten!(1) if sockets.empty? raise ArgumentError, "no sockets" end loop { readable, _, _ = IO.select(sockets) readable.each {|r| sock, addr = r.accept_nonblock(exception: false) next if sock == :wait_readable yield sock, addr } } end |
.getaddrinfo(nodename, servname[, family[, socktype[, protocol[, flags[, reverse_lookup]]]]]) ⇒ Array
Obtains address information for nodename:servname.
Note that Addrinfo.getaddrinfo provides the same functionality in an object oriented style.
family should be an address family such as: :INET, :INET6, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol should be a protocol defined in the family, and defaults to 0 for the family.
flags should be bitwise OR of Socket::AI_* constants.
Socket.getaddrinfo("www.ruby-lang.org", "http", nil, :STREAM)
#=> [["AF_INET", 80, "carbon.ruby-lang.org", "221.186.184.68", 2, 1, 6]] # PF_INET/SOCK_STREAM/IPPROTO_TCP
Socket.getaddrinfo("localhost", nil)
#=> [["AF_INET", 0, "localhost", "127.0.0.1", 2, 1, 6], # PF_INET/SOCK_STREAM/IPPROTO_TCP
# ["AF_INET", 0, "localhost", "127.0.0.1", 2, 2, 17], # PF_INET/SOCK_DGRAM/IPPROTO_UDP
# ["AF_INET", 0, "localhost", "127.0.0.1", 2, 3, 0]] # PF_INET/SOCK_RAW/IPPROTO_IP
reverse_lookup directs the form of the third element, and has to be one of below. If reverse_lookup is omitted, the default value is nil
.
+true+, +:hostname+: hostname is obtained from numeric address using reverse lookup, which may take a time.
+false+, +:numeric+: hostname is same as numeric address.
+nil+: obey to the current +do_not_reverse_lookup+ flag.
If Addrinfo object is preferred, use Addrinfo.getaddrinfo.
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 |
# File 'socket.c', line 1162
static VALUE
sock_s_getaddrinfo(int argc, VALUE *argv, VALUE _)
{
VALUE host, port, family, socktype, protocol, flags, ret, revlookup;
struct addrinfo hints;
struct rb_addrinfo *res;
int norevlookup;
rb_scan_args(argc, argv, "25", &host, &port, &family, &socktype, &protocol, &flags, &revlookup);
MEMZERO(&hints, struct addrinfo, 1);
hints.ai_family = NIL_P(family) ? PF_UNSPEC : rsock_family_arg(family);
if (!NIL_P(socktype)) {
hints.ai_socktype = rsock_socktype_arg(socktype);
}
if (!NIL_P(protocol)) {
hints.ai_protocol = NUM2INT(protocol);
}
if (!NIL_P(flags)) {
hints.ai_flags = NUM2INT(flags);
}
if (NIL_P(revlookup) || !rsock_revlookup_flag(revlookup, &norevlookup)) {
norevlookup = rsock_do_not_reverse_lookup;
}
res = rsock_getaddrinfo(host, port, &hints, 0);
ret = make_addrinfo(res, norevlookup);
rb_freeaddrinfo(res);
return ret;
}
|
.gethostbyaddr(address_string[, address_family]) ⇒ Object
Use Addrinfo#getnameinfo instead. This method is deprecated for the following reasons:
-
Uncommon address representation: 4/16-bytes binary string to represent IPv4/IPv6 address.
-
gethostbyaddr() may take a long time and it may block other threads. (GVL cannot be released since gethostbyname() is not thread safe.)
-
This method uses gethostbyname() function already removed from POSIX.
This method obtains the host information for address.
p Socket.gethostbyaddr([221,186,184,68].pack("CCCC"))
#=> ["carbon.ruby-lang.org", [], 2, "\xDD\xBA\xB8D"]
p Socket.gethostbyaddr([127,0,0,1].pack("CCCC"))
["localhost", [], 2, "\x7F\x00\x00\x01"]
p Socket.gethostbyaddr(([0]*15+[1]).pack("C"*16))
#=> ["localhost", ["ip6-localhost", "ip6-loopback"], 10,
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"]
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 |
# File 'socket.c', line 999
static VALUE
sock_s_gethostbyaddr(int argc, VALUE *argv, VALUE _)
{
VALUE addr, family;
struct hostent *h;
char **pch;
VALUE ary, names;
int t = AF_INET;
rb_warn("Socket.gethostbyaddr is deprecated; use Addrinfo#getnameinfo instead.");
rb_scan_args(argc, argv, "11", &addr, &family);
StringValue(addr);
if (!NIL_P(family)) {
t = rsock_family_arg(family);
}
#ifdef AF_INET6
else if (RSTRING_LEN(addr) == 16) {
t = AF_INET6;
}
#endif
h = gethostbyaddr(RSTRING_PTR(addr), RSTRING_SOCKLEN(addr), t);
if (h == NULL) {
#ifdef HAVE_HSTRERROR
extern int h_errno;
rb_raise(rb_eSocket, "%s", (char*)hstrerror(h_errno));
#else
rb_raise(rb_eSocket, "host not found");
#endif
}
ary = rb_ary_new();
rb_ary_push(ary, rb_str_new2(h->h_name));
names = rb_ary_new();
rb_ary_push(ary, names);
if (h->h_aliases != NULL) {
for (pch = h->h_aliases; *pch; pch++) {
rb_ary_push(names, rb_str_new2(*pch));
}
}
rb_ary_push(ary, INT2NUM(h->h_addrtype));
#ifdef h_addr
for (pch = h->h_addr_list; *pch; pch++) {
rb_ary_push(ary, rb_str_new(*pch, h->h_length));
}
#else
rb_ary_push(ary, rb_str_new(h->h_addr, h->h_length));
#endif
return ary;
}
|
.gethostbyname(hostname) ⇒ Array
Use Addrinfo.getaddrinfo instead. This method is deprecated for the following reasons:
-
The 3rd element of the result is the address family of the first address. The address families of the rest of the addresses are not returned.
-
Uncommon address representation: 4/16-bytes binary string to represent IPv4/IPv6 address.
-
gethostbyname() may take a long time and it may block other threads. (GVL cannot be released since gethostbyname() is not thread safe.)
-
This method uses gethostbyname() function already removed from POSIX.
This method obtains the host information for hostname.
p Socket.gethostbyname("hal") #=> ["localhost", ["hal"], 2, "\x7F\x00\x00\x01"]
965 966 967 968 969 970 971 972 |
# File 'socket.c', line 965
static VALUE
sock_s_gethostbyname(VALUE obj, VALUE host)
{
rb_warn("Socket.gethostbyname is deprecated; use Addrinfo.getaddrinfo instead.");
struct rb_addrinfo *res =
rsock_addrinfo(host, Qnil, AF_UNSPEC, SOCK_STREAM, AI_CANONNAME);
return rsock_make_hostent(host, res, sock_sockaddr);
}
|
.gethostname ⇒ Object
886 887 888 889 890 891 892 893 |
# File 'socket.c', line 886
static VALUE
sock_gethostname(VALUE obj)
{
struct utsname un;
uname(&un);
return rb_str_new2(un.nodename);
}
|
.getifaddrs ⇒ Array
Returns an array of interface addresses. An element of the array is an instance of Socket::Ifaddr.
This method can be used to find multicast-enabled interfaces:
pp Socket.getifaddrs.reject {|ifaddr|
!ifaddr.addr.ip? || (ifaddr.flags & Socket::IFF_MULTICAST == 0)
}.map {|ifaddr| [ifaddr.name, ifaddr.ifindex, ifaddr.addr] }
#=> [["eth0", 2, #<Addrinfo: 221.186.184.67>],
# ["eth0", 2, #<Addrinfo: fe80::216:3eff:fe95:88bb%eth0>]]
Example result on GNU/Linux:
pp Socket.getifaddrs
#=> [#<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 PACKET[protocol=0 lo hatype=772 HOST hwaddr=00:00:00:00:00:00]>,
# #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 PACKET[protocol=0 eth0 hatype=1 HOST hwaddr=00:16:3e:95:88:bb] broadcast=PACKET[protocol=0 eth0 hatype=1 HOST hwaddr=ff:ff:ff:ff:ff:ff]>,
# #<Socket::Ifaddr sit0 NOARP PACKET[protocol=0 sit0 hatype=776 HOST hwaddr=00:00:00:00]>,
# #<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 127.0.0.1 netmask=255.0.0.0>,
# #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 221.186.184.67 netmask=255.255.255.240 broadcast=221.186.184.79>,
# #<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 ::1 netmask=ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>,
# #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 fe80::216:3eff:fe95:88bb%eth0 netmask=ffff:ffff:ffff:ffff::>]
Example result on FreeBSD:
pp Socket.getifaddrs
#=> [#<Socket::Ifaddr usbus0 UP,0x10000 LINK[usbus0]>,
# #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 LINK[re0 3a:d0:40:9a:fe:e8]>,
# #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 10.250.10.18 netmask=255.255.255.? (7 bytes for 16 bytes sockaddr_in) broadcast=10.250.10.255>,
# #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 fe80:2::38d0:40ff:fe9a:fee8 netmask=ffff:ffff:ffff:ffff::>,
# #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 2001:2e8:408:10::12 netmask=UNSPEC>,
# #<Socket::Ifaddr plip0 POINTOPOINT,MULTICAST,0x800 LINK[plip0]>,
# #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST LINK[lo0]>,
# #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST ::1 netmask=ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>,
# #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST fe80:4::1 netmask=ffff:ffff:ffff:ffff::>,
# #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST 127.0.0.1 netmask=255.?.?.? (5 bytes for 16 bytes sockaddr_in)>]
444 445 446 447 448 |
# File 'ifaddr.c', line 444
static VALUE
socket_s_getifaddrs(VALUE self)
{
return rsock_getifaddrs();
}
|
.getnameinfo(sockaddr[, flags]) ⇒ Array
Obtains name information for sockaddr.
sockaddr should be one of follows.
-
packed sockaddr string such as Socket.sockaddr_in(80, “127.0.0.1”)
-
3-elements array such as [“AF_INET”, 80, “127.0.0.1”]
-
4-elements array such as [“AF_INET”, 80, ignored, “127.0.0.1”]
flags should be bitwise OR of Socket::NI_* constants.
Note: The last form is compatible with IPSocket#addr and IPSocket#peeraddr.
Socket.getnameinfo(Socket.sockaddr_in(80, "127.0.0.1")) #=> ["localhost", "www"]
Socket.getnameinfo(["AF_INET", 80, "127.0.0.1"]) #=> ["localhost", "www"]
Socket.getnameinfo(["AF_INET", 80, "localhost", "127.0.0.1"]) #=> ["localhost", "www"]
If Addrinfo object is preferred, use Addrinfo#getnameinfo.
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 |
# File 'socket.c', line 1217
static VALUE
sock_s_getnameinfo(int argc, VALUE *argv, VALUE _)
{
VALUE sa, af = Qnil, host = Qnil, port = Qnil, flags, tmp;
char *hptr, *pptr;
char hbuf[1024], pbuf[1024];
int fl;
struct rb_addrinfo *res = NULL;
struct addrinfo hints, *r;
int error, saved_errno;
union_sockaddr ss;
struct sockaddr *sap;
socklen_t salen;
sa = flags = Qnil;
rb_scan_args(argc, argv, "11", &sa, &flags);
fl = 0;
if (!NIL_P(flags)) {
fl = NUM2INT(flags);
}
tmp = rb_check_sockaddr_string_type(sa);
if (!NIL_P(tmp)) {
sa = tmp;
if (sizeof(ss) < (size_t)RSTRING_LEN(sa)) {
rb_raise(rb_eTypeError, "sockaddr length too big");
}
memcpy(&ss, RSTRING_PTR(sa), RSTRING_LEN(sa));
if (!VALIDATE_SOCKLEN(&ss.addr, RSTRING_LEN(sa))) {
rb_raise(rb_eTypeError, "sockaddr size differs - should not happen");
}
sap = &ss.addr;
salen = RSTRING_SOCKLEN(sa);
goto call_nameinfo;
}
tmp = rb_check_array_type(sa);
if (!NIL_P(tmp)) {
sa = tmp;
MEMZERO(&hints, struct addrinfo, 1);
if (RARRAY_LEN(sa) == 3) {
af = RARRAY_AREF(sa, 0);
port = RARRAY_AREF(sa, 1);
host = RARRAY_AREF(sa, 2);
}
else if (RARRAY_LEN(sa) >= 4) {
af = RARRAY_AREF(sa, 0);
port = RARRAY_AREF(sa, 1);
host = RARRAY_AREF(sa, 3);
if (NIL_P(host)) {
host = RARRAY_AREF(sa, 2);
}
else {
/*
* 4th element holds numeric form, don't resolve.
* see rsock_ipaddr().
*/
#ifdef AI_NUMERICHOST /* AIX 4.3.3 doesn't have AI_NUMERICHOST. */
hints.ai_flags |= AI_NUMERICHOST;
#endif
}
}
else {
rb_raise(rb_eArgError, "array size should be 3 or 4, %ld given",
RARRAY_LEN(sa));
}
/* host */
if (NIL_P(host)) {
hptr = NULL;
}
else {
strncpy(hbuf, StringValueCStr(host), sizeof(hbuf));
hbuf[sizeof(hbuf) - 1] = '\0';
hptr = hbuf;
}
/* port */
if (NIL_P(port)) {
strcpy(pbuf, "0");
pptr = NULL;
}
else if (FIXNUM_P(port)) {
snprintf(pbuf, sizeof(pbuf), "%ld", NUM2LONG(port));
pptr = pbuf;
}
else {
strncpy(pbuf, StringValueCStr(port), sizeof(pbuf));
pbuf[sizeof(pbuf) - 1] = '\0';
pptr = pbuf;
}
hints.ai_socktype = (fl & NI_DGRAM) ? SOCK_DGRAM : SOCK_STREAM;
/* af */
hints.ai_family = NIL_P(af) ? PF_UNSPEC : rsock_family_arg(af);
error = rb_getaddrinfo(hptr, pptr, &hints, &res);
if (error) goto error_exit_addr;
sap = res->ai->ai_addr;
salen = res->ai->ai_addrlen;
}
else {
rb_raise(rb_eTypeError, "expecting String or Array");
}
call_nameinfo:
error = rb_getnameinfo(sap, salen, hbuf, sizeof(hbuf),
pbuf, sizeof(pbuf), fl);
if (error) goto error_exit_name;
if (res) {
for (r = res->ai->ai_next; r; r = r->ai_next) {
char hbuf2[1024], pbuf2[1024];
sap = r->ai_addr;
salen = r->ai_addrlen;
error = rb_getnameinfo(sap, salen, hbuf2, sizeof(hbuf2),
pbuf2, sizeof(pbuf2), fl);
if (error) goto error_exit_name;
if (strcmp(hbuf, hbuf2) != 0|| strcmp(pbuf, pbuf2) != 0) {
rb_freeaddrinfo(res);
rb_raise(rb_eSocket, "sockaddr resolved to multiple nodename");
}
}
rb_freeaddrinfo(res);
}
return rb_assoc_new(rb_str_new2(hbuf), rb_str_new2(pbuf));
error_exit_addr:
saved_errno = errno;
if (res) rb_freeaddrinfo(res);
errno = saved_errno;
rsock_raise_socket_error("getaddrinfo", error);
error_exit_name:
saved_errno = errno;
if (res) rb_freeaddrinfo(res);
errno = saved_errno;
rsock_raise_socket_error("getnameinfo", error);
UNREACHABLE_RETURN(Qnil);
}
|
.getservbyname(service_name) ⇒ Object .getservbyname(service_name, protocol_name) ⇒ Object
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 |
# File 'socket.c', line 1063
static VALUE
sock_s_getservbyname(int argc, VALUE *argv, VALUE _)
{
VALUE service, proto;
struct servent *sp;
long port;
const char *servicename, *protoname = "tcp";
rb_scan_args(argc, argv, "11", &service, &proto);
StringValue(service);
if (!NIL_P(proto)) StringValue(proto);
servicename = StringValueCStr(service);
if (!NIL_P(proto)) protoname = StringValueCStr(proto);
sp = getservbyname(servicename, protoname);
if (sp) {
port = ntohs(sp->s_port);
}
else {
char *end;
port = STRTOUL(servicename, &end, 0);
if (*end != '\0') {
rb_raise(rb_eSocket, "no such service %s/%s", servicename, protoname);
}
}
return INT2FIX(port);
}
|
.getservbyport(port[, protocol_name]) ⇒ Object
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 |
# File 'socket.c', line 1104
static VALUE
sock_s_getservbyport(int argc, VALUE *argv, VALUE _)
{
VALUE port, proto;
struct servent *sp;
long portnum;
const char *protoname = "tcp";
rb_scan_args(argc, argv, "11", &port, &proto);
portnum = NUM2LONG(port);
if (portnum != (uint16_t)portnum) {
const char *s = portnum > 0 ? "big" : "small";
rb_raise(rb_eRangeError, "integer %ld too %s to convert into `int16_t'", portnum, s);
}
if (!NIL_P(proto)) protoname = StringValueCStr(proto);
sp = getservbyport((int)htons((uint16_t)portnum), protoname);
if (!sp) {
rb_raise(rb_eSocket, "no such service for port %d/%s", (int)portnum, protoname);
}
return rb_str_new2(sp->s_name);
}
|
.ip_address_list ⇒ Array
Returns local IP addresses as an array.
The array contains Addrinfo objects.
pp Socket.ip_address_list
#=> [#<Addrinfo: 127.0.0.1>,
#<Addrinfo: 192.168.0.128>,
#<Addrinfo: ::1>,
...]
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 |
# File 'socket.c', line 1585
static VALUE
socket_s_ip_address_list(VALUE self)
{
#if defined(HAVE_GETIFADDRS)
struct ifaddrs *ifp = NULL;
struct ifaddrs *p;
int ret;
VALUE list;
ret = getifaddrs(&ifp);
if (ret == -1) {
rb_sys_fail("getifaddrs");
}
list = rb_ary_new();
for (p = ifp; p; p = p->ifa_next) {
if (p->ifa_addr != NULL && IS_IP_FAMILY(p->ifa_addr->sa_family)) {
struct sockaddr *addr = p->ifa_addr;
#if defined(AF_INET6) && defined(__sun)
/*
* OpenIndiana SunOS 5.11 getifaddrs() returns IPv6 link local
* address with sin6_scope_id == 0.
* So fill it from the interface name (ifa_name).
*/
struct sockaddr_in6 addr6;
if (addr->sa_family == AF_INET6) {
socklen_t len = (socklen_t)sizeof(struct sockaddr_in6);
memcpy(&addr6, addr, len);
addr = (struct sockaddr *)&addr6;
if (IN6_IS_ADDR_LINKLOCAL(&addr6.sin6_addr) &&
addr6.sin6_scope_id == 0) {
unsigned int ifindex = if_nametoindex(p->ifa_name);
if (ifindex != 0) {
addr6.sin6_scope_id = ifindex;
}
}
}
#endif
rb_ary_push(list, sockaddr_obj(addr, sockaddr_len(addr)));
}
}
freeifaddrs(ifp);
return list;
#elif defined(SIOCGLIFCONF) && defined(SIOCGLIFNUM) && !defined(__hpux)
/* Solaris if_tcp(7P) */
/* HP-UX has SIOCGLIFCONF too. But it uses different struct */
int fd = -1;
int ret;
struct lifnum ln;
struct lifconf lc;
const char *reason = NULL;
int save_errno;
int i;
VALUE list = Qnil;
lc.lifc_buf = NULL;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd == -1)
rb_sys_fail("socket(2)");
memset(&ln, 0, sizeof(ln));
ln.lifn_family = AF_UNSPEC;
ret = ioctl(fd, SIOCGLIFNUM, &ln);
if (ret == -1) {
reason = "SIOCGLIFNUM";
goto finish;
}
memset(&lc, 0, sizeof(lc));
lc.lifc_family = AF_UNSPEC;
lc.lifc_flags = 0;
lc.lifc_len = sizeof(struct lifreq) * ln.lifn_count;
lc.lifc_req = xmalloc(lc.lifc_len);
ret = ioctl(fd, SIOCGLIFCONF, &lc);
if (ret == -1) {
reason = "SIOCGLIFCONF";
goto finish;
}
list = rb_ary_new();
for (i = 0; i < ln.lifn_count; i++) {
struct lifreq *req = &lc.lifc_req[i];
if (IS_IP_FAMILY(req->lifr_addr.ss_family)) {
if (req->lifr_addr.ss_family == AF_INET6 &&
IN6_IS_ADDR_LINKLOCAL(&((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_addr) &&
((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_scope_id == 0) {
struct lifreq req2;
memcpy(req2.lifr_name, req->lifr_name, LIFNAMSIZ);
ret = ioctl(fd, SIOCGLIFINDEX, &req2);
if (ret == -1) {
reason = "SIOCGLIFINDEX";
goto finish;
}
((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_scope_id = req2.lifr_index;
}
rb_ary_push(list, sockaddr_obj((struct sockaddr *)&req->lifr_addr, req->lifr_addrlen));
}
}
finish:
save_errno = errno;
if (lc.lifc_buf != NULL)
xfree(lc.lifc_req);
if (fd != -1)
close(fd);
errno = save_errno;
if (reason)
rb_syserr_fail(save_errno, reason);
return list;
#elif defined(SIOCGIFCONF)
int fd = -1;
int ret;
#define EXTRA_SPACE ((int)(sizeof(struct ifconf) + sizeof(union_sockaddr)))
char initbuf[4096+EXTRA_SPACE];
char *buf = initbuf;
int bufsize;
struct ifconf conf;
struct ifreq *req;
VALUE list = Qnil;
const char *reason = NULL;
int save_errno;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd == -1)
rb_sys_fail("socket(2)");
bufsize = sizeof(initbuf);
buf = initbuf;
retry:
conf.ifc_len = bufsize;
conf.ifc_req = (struct ifreq *)buf;
/* fprintf(stderr, "bufsize: %d\n", bufsize); */
ret = ioctl(fd, SIOCGIFCONF, &conf);
if (ret == -1) {
reason = "SIOCGIFCONF";
goto finish;
}
/* fprintf(stderr, "conf.ifc_len: %d\n", conf.ifc_len); */
if (bufsize - EXTRA_SPACE < conf.ifc_len) {
if (bufsize < conf.ifc_len) {
/* NetBSD returns required size for all interfaces. */
bufsize = conf.ifc_len + EXTRA_SPACE;
}
else {
bufsize = bufsize << 1;
}
if (buf == initbuf)
buf = NULL;
buf = xrealloc(buf, bufsize);
goto retry;
}
close(fd);
fd = -1;
list = rb_ary_new();
req = conf.ifc_req;
while ((char*)req < (char*)conf.ifc_req + conf.ifc_len) {
struct sockaddr *addr = &req->ifr_addr;
if (IS_IP_FAMILY(addr->sa_family)) {
rb_ary_push(list, sockaddr_obj(addr, sockaddr_len(addr)));
}
#ifdef HAVE_STRUCT_SOCKADDR_SA_LEN
# ifndef _SIZEOF_ADDR_IFREQ
# define _SIZEOF_ADDR_IFREQ(r) \
(sizeof(struct ifreq) + \
(sizeof(struct sockaddr) < (r).ifr_addr.sa_len ? \
(r).ifr_addr.sa_len - sizeof(struct sockaddr) : \
0))
# endif
req = (struct ifreq *)((char*)req + _SIZEOF_ADDR_IFREQ(*req));
#else
req = (struct ifreq *)((char*)req + sizeof(struct ifreq));
#endif
}
finish:
save_errno = errno;
if (buf != initbuf)
xfree(buf);
if (fd != -1)
close(fd);
errno = save_errno;
if (reason)
rb_syserr_fail(save_errno, reason);
return list;
#undef EXTRA_SPACE
#elif defined(_WIN32)
typedef struct ip_adapter_unicast_address_st {
unsigned LONG_LONG dummy0;
struct ip_adapter_unicast_address_st *Next;
struct {
struct sockaddr *lpSockaddr;
int iSockaddrLength;
} Address;
int dummy1;
int dummy2;
int dummy3;
long dummy4;
long dummy5;
long dummy6;
} ip_adapter_unicast_address_t;
typedef struct ip_adapter_anycast_address_st {
unsigned LONG_LONG dummy0;
struct ip_adapter_anycast_address_st *Next;
struct {
struct sockaddr *lpSockaddr;
int iSockaddrLength;
} Address;
} ip_adapter_anycast_address_t;
typedef struct ip_adapter_addresses_st {
unsigned LONG_LONG dummy0;
struct ip_adapter_addresses_st *Next;
void *dummy1;
ip_adapter_unicast_address_t *FirstUnicastAddress;
ip_adapter_anycast_address_t *FirstAnycastAddress;
void *dummy2;
void *dummy3;
void *dummy4;
void *dummy5;
void *dummy6;
BYTE dummy7[8];
DWORD dummy8;
DWORD dummy9;
DWORD dummy10;
DWORD IfType;
int OperStatus;
DWORD dummy12;
DWORD dummy13[16];
void *dummy14;
} ip_adapter_addresses_t;
typedef ULONG (WINAPI *GetAdaptersAddresses_t)(ULONG, ULONG, PVOID, ip_adapter_addresses_t *, PULONG);
HMODULE h;
GetAdaptersAddresses_t pGetAdaptersAddresses;
ULONG len;
DWORD ret;
ip_adapter_addresses_t *adapters;
VALUE list;
h = LoadLibrary("iphlpapi.dll");
if (!h)
rb_notimplement();
pGetAdaptersAddresses = (GetAdaptersAddresses_t)GetProcAddress(h, "GetAdaptersAddresses");
if (!pGetAdaptersAddresses) {
FreeLibrary(h);
rb_notimplement();
}
ret = pGetAdaptersAddresses(AF_UNSPEC, 0, NULL, NULL, &len);
if (ret != ERROR_SUCCESS && ret != ERROR_BUFFER_OVERFLOW) {
errno = rb_w32_map_errno(ret);
FreeLibrary(h);
rb_sys_fail("GetAdaptersAddresses");
}
adapters = (ip_adapter_addresses_t *)ALLOCA_N(BYTE, len);
ret = pGetAdaptersAddresses(AF_UNSPEC, 0, NULL, adapters, &len);
if (ret != ERROR_SUCCESS) {
errno = rb_w32_map_errno(ret);
FreeLibrary(h);
rb_sys_fail("GetAdaptersAddresses");
}
list = rb_ary_new();
for (; adapters; adapters = adapters->Next) {
ip_adapter_unicast_address_t *uni;
ip_adapter_anycast_address_t *any;
if (adapters->OperStatus != 1) /* 1 means IfOperStatusUp */
continue;
for (uni = adapters->FirstUnicastAddress; uni; uni = uni->Next) {
#ifndef INET6
if (uni->Address.lpSockaddr->sa_family == AF_INET)
#else
if (IS_IP_FAMILY(uni->Address.lpSockaddr->sa_family))
#endif
rb_ary_push(list, sockaddr_obj(uni->Address.lpSockaddr, uni->Address.iSockaddrLength));
}
for (any = adapters->FirstAnycastAddress; any; any = any->Next) {
#ifndef INET6
if (any->Address.lpSockaddr->sa_family == AF_INET)
#else
if (IS_IP_FAMILY(any->Address.lpSockaddr->sa_family))
#endif
rb_ary_push(list, sockaddr_obj(any->Address.lpSockaddr, any->Address.iSockaddrLength));
}
}
FreeLibrary(h);
return list;
#endif
}
|
.ip_sockets_port0(ai_list, reuseaddr) ⇒ Object
:stopdoc:
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
# File 'lib/socket.rb', line 669 def self.ip_sockets_port0(ai_list, reuseaddr) sockets = [] begin sockets.clear port = nil ai_list.each {|ai| begin s = Socket.new(ai.pfamily, ai.socktype, ai.protocol) rescue SystemCallError next end sockets << s s.ipv6only! if ai.ipv6? if reuseaddr s.setsockopt(:SOCKET, :REUSEADDR, 1) end unless port s.bind(ai) port = s.local_address.ip_port else s.bind(ai.family_addrinfo(ai.ip_address, port)) end } rescue Errno::EADDRINUSE sockets.each(&:close) retry rescue Exception sockets.each(&:close) raise end sockets end |
.sockaddr_in(port, host) ⇒ Object .pack_sockaddr_in(port, host) ⇒ Object
Packs port and host as an AF_INET/AF_INET6 sockaddr string.
Socket.sockaddr_in(80, "127.0.0.1")
#=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
Socket.sockaddr_in(80, "::1")
#=> "\n\x00\x00P\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00"
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 |
# File 'socket.c', line 1368
static VALUE
sock_s_pack_sockaddr_in(VALUE self, VALUE port, VALUE host)
{
struct rb_addrinfo *res = rsock_addrinfo(host, port, AF_UNSPEC, 0, 0);
VALUE addr = rb_str_new((char*)res->ai->ai_addr, res->ai->ai_addrlen);
rb_freeaddrinfo(res);
return addr;
}
|
.sockaddr_un(path) ⇒ Object .pack_sockaddr_un(path) ⇒ Object
Packs path as an AF_UNIX sockaddr string.
Socket.sockaddr_un("/tmp/sock") #=> "\x01\x00/tmp/sock\x00\x00..."
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 |
# File 'socket.c', line 1431
static VALUE
sock_s_pack_sockaddr_un(VALUE self, VALUE path)
{
struct sockaddr_un sockaddr;
VALUE addr;
StringValue(path);
INIT_SOCKADDR_UN(&sockaddr, sizeof(struct sockaddr_un));
if (sizeof(sockaddr.sun_path) < (size_t)RSTRING_LEN(path)) {
rb_raise(rb_eArgError, "too long unix socket path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)",
(size_t)RSTRING_LEN(path), sizeof(sockaddr.sun_path));
}
memcpy(sockaddr.sun_path, RSTRING_PTR(path), RSTRING_LEN(path));
addr = rb_str_new((char*)&sockaddr, rsock_unix_sockaddr_len(path));
return addr;
}
|
.pair(domain, type, protocol) ⇒ Array .socketpair(domain, type, protocol) ⇒ Array
Creates a pair of sockets connected each other.
domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol should be a protocol defined in the domain, defaults to 0 for the domain.
s1, s2 = Socket.pair(:UNIX, :STREAM, 0)
s1.send "a", 0
s1.send "b", 0
s1.close
p s2.recv(10) #=> "ab"
p s2.recv(10) #=> ""
p s2.recv(10) #=> ""
s1, s2 = Socket.pair(:UNIX, :DGRAM, 0)
s1.send "a", 0
s1.send "b", 0
p s2.recv(10) #=> "a"
p s2.recv(10) #=> "b"
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# File 'socket.c', line 243
VALUE
rsock_sock_s_socketpair(int argc, VALUE *argv, VALUE klass)
{
VALUE domain, type, protocol;
int d, t, p, sp[2];
int ret;
VALUE s1, s2, r;
rb_scan_args(argc, argv, "21", &domain, &type, &protocol);
if (NIL_P(protocol))
protocol = INT2FIX(0);
setup_domain_and_type(domain, &d, type, &t);
p = NUM2INT(protocol);
ret = rsock_socketpair(d, t, p, sp);
if (ret < 0) {
rb_sys_fail("socketpair(2)");
}
s1 = rsock_init_sock(rb_obj_alloc(klass), sp[0]);
s2 = rsock_init_sock(rb_obj_alloc(klass), sp[1]);
r = rb_assoc_new(s1, s2);
if (rb_block_given_p()) {
return rb_ensure(pair_yield, r, io_close, s1);
}
return r;
}
|
.sockaddr_in(port, host) ⇒ Object .pack_sockaddr_in(port, host) ⇒ Object
Packs port and host as an AF_INET/AF_INET6 sockaddr string.
Socket.sockaddr_in(80, "127.0.0.1")
#=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
Socket.sockaddr_in(80, "::1")
#=> "\n\x00\x00P\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00"
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 |
# File 'socket.c', line 1368
static VALUE
sock_s_pack_sockaddr_in(VALUE self, VALUE port, VALUE host)
{
struct rb_addrinfo *res = rsock_addrinfo(host, port, AF_UNSPEC, 0, 0);
VALUE addr = rb_str_new((char*)res->ai->ai_addr, res->ai->ai_addrlen);
rb_freeaddrinfo(res);
return addr;
}
|
.sockaddr_un(path) ⇒ Object .pack_sockaddr_un(path) ⇒ Object
Packs path as an AF_UNIX sockaddr string.
Socket.sockaddr_un("/tmp/sock") #=> "\x01\x00/tmp/sock\x00\x00..."
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 |
# File 'socket.c', line 1431
static VALUE
sock_s_pack_sockaddr_un(VALUE self, VALUE path)
{
struct sockaddr_un sockaddr;
VALUE addr;
StringValue(path);
INIT_SOCKADDR_UN(&sockaddr, sizeof(struct sockaddr_un));
if (sizeof(sockaddr.sun_path) < (size_t)RSTRING_LEN(path)) {
rb_raise(rb_eArgError, "too long unix socket path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)",
(size_t)RSTRING_LEN(path), sizeof(sockaddr.sun_path));
}
memcpy(sockaddr.sun_path, RSTRING_PTR(path), RSTRING_LEN(path));
addr = rb_str_new((char*)&sockaddr, rsock_unix_sockaddr_len(path));
return addr;
}
|
.pair(domain, type, protocol) ⇒ Array .socketpair(domain, type, protocol) ⇒ Array
Creates a pair of sockets connected each other.
domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol should be a protocol defined in the domain, defaults to 0 for the domain.
s1, s2 = Socket.pair(:UNIX, :STREAM, 0)
s1.send "a", 0
s1.send "b", 0
s1.close
p s2.recv(10) #=> "ab"
p s2.recv(10) #=> ""
p s2.recv(10) #=> ""
s1, s2 = Socket.pair(:UNIX, :DGRAM, 0)
s1.send "a", 0
s1.send "b", 0
p s2.recv(10) #=> "a"
p s2.recv(10) #=> "b"
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# File 'socket.c', line 243
VALUE
rsock_sock_s_socketpair(int argc, VALUE *argv, VALUE klass)
{
VALUE domain, type, protocol;
int d, t, p, sp[2];
int ret;
VALUE s1, s2, r;
rb_scan_args(argc, argv, "21", &domain, &type, &protocol);
if (NIL_P(protocol))
protocol = INT2FIX(0);
setup_domain_and_type(domain, &d, type, &t);
p = NUM2INT(protocol);
ret = rsock_socketpair(d, t, p, sp);
if (ret < 0) {
rb_sys_fail("socketpair(2)");
}
s1 = rsock_init_sock(rb_obj_alloc(klass), sp[0]);
s2 = rsock_init_sock(rb_obj_alloc(klass), sp[1]);
r = rb_assoc_new(s1, s2);
if (rb_block_given_p()) {
return rb_ensure(pair_yield, r, io_close, s1);
}
return r;
}
|
.tcp(host, port, local_host = nil, local_port = nil, connect_timeout: nil, resolv_timeout: nil) ⇒ Object
:call-seq:
Socket.tcp(host, port, local_host=nil, local_port=nil, [opts]) {|socket| ... }
Socket.tcp(host, port, local_host=nil, local_port=nil, [opts])
creates a new socket object connected to host:port using TCP/IP.
If local_host:local_port is given, the socket is bound to it.
The optional last argument opts is options represented by a hash. opts may have following options:
- :connect_timeout
-
specify the timeout in seconds.
- :resolv_timeout
-
specify the name resolution timeout in seconds.
If a block is given, the block is called with the socket. The value of the block is returned. The socket is closed when this method returns.
If no block is given, the socket is returned.
Socket.tcp("www.ruby-lang.org", 80) {|sock|
sock.print "GET / HTTP/1.0\r\nHost: www.ruby-lang.org\r\n\r\n"
sock.close_write
puts sock.read
}
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
# File 'lib/socket.rb', line 623 def self.tcp(host, port, local_host = nil, local_port = nil, connect_timeout: nil, resolv_timeout: nil) # :yield: socket last_error = nil ret = nil local_addr_list = nil if local_host != nil || local_port != nil local_addr_list = Addrinfo.getaddrinfo(local_host, local_port, nil, :STREAM, nil) end Addrinfo.foreach(host, port, nil, :STREAM, timeout: resolv_timeout) {|ai| if local_addr_list local_addr = local_addr_list.find {|local_ai| local_ai.afamily == ai.afamily } next unless local_addr else local_addr = nil end begin sock = local_addr ? ai.connect_from(local_addr, timeout: connect_timeout) : ai.connect(timeout: connect_timeout) rescue SystemCallError last_error = $! next end ret = sock break } unless ret if last_error raise last_error else raise SocketError, "no appropriate local address" end end if block_given? begin yield ret ensure ret.close end else ret end end |
.tcp_server_loop(host = nil, port, &b) ⇒ Object
creates a TCP/IP server on port and calls the block for each connection accepted. The block is called with a socket and a client_address as an Addrinfo object.
If host is specified, it is used with port to determine the server addresses.
The socket is not closed when the block returns. So application should close it explicitly.
This method calls the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.
Note that Addrinfo.getaddrinfo is used to determine the server socket addresses. When Addrinfo.getaddrinfo returns two or more addresses, IPv4 and IPv6 address for example, all of them are used. Socket.tcp_server_loop succeeds if one socket can be used at least.
# Sequential echo server.
# It services only one client at a time.
Socket.tcp_server_loop(16807) {|sock, client_addrinfo|
begin
IO.copy_stream(sock, sock)
ensure
sock.close
end
}
# Threaded echo server
# It services multiple clients at a time.
# Note that it may accept connections too much.
Socket.tcp_server_loop(16807) {|sock, client_addrinfo|
Thread.new {
begin
IO.copy_stream(sock, sock)
ensure
sock.close
end
}
}
856 857 858 859 860 |
# File 'lib/socket.rb', line 856 def self.tcp_server_loop(host=nil, port, &b) # :yield: socket, client_addrinfo tcp_server_sockets(host, port) {|sockets| accept_loop(sockets, &b) } end |
.tcp_server_sockets(host = nil, port) ⇒ Object
creates TCP/IP server sockets for host and port. host is optional.
If no block given, it returns an array of listening sockets.
If a block is given, the block is called with the sockets. The value of the block is returned. The socket is closed when this method returns.
If port is 0, actual port number is chosen dynamically. However all sockets in the result has same port number.
# tcp_server_sockets returns two sockets.
sockets = Socket.tcp_server_sockets(1296)
p sockets #=> [#<Socket:fd 3>, #<Socket:fd 4>]
# The sockets contains IPv6 and IPv4 sockets.
sockets.each {|s| p s.local_address }
#=> #<Addrinfo: [::]:1296 TCP>
# #<Addrinfo: 0.0.0.0:1296 TCP>
# IPv6 and IPv4 socket has same port number, 53114, even if it is chosen dynamically.
sockets = Socket.tcp_server_sockets(0)
sockets.each {|s| p s.local_address }
#=> #<Addrinfo: [::]:53114 TCP>
# #<Addrinfo: 0.0.0.0:53114 TCP>
# The block is called with the sockets.
Socket.tcp_server_sockets(0) {|sockets|
p sockets #=> [#<Socket:fd 3>, #<Socket:fd 4>]
}
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
# File 'lib/socket.rb', line 756 def self.tcp_server_sockets(host=nil, port) if port == 0 sockets = tcp_server_sockets_port0(host) else last_error = nil sockets = [] begin Addrinfo.foreach(host, port, nil, :STREAM, nil, Socket::AI_PASSIVE) {|ai| begin s = ai.listen rescue SystemCallError last_error = $! next end sockets << s } if sockets.empty? raise last_error end rescue Exception sockets.each(&:close) raise end end if block_given? begin yield sockets ensure sockets.each(&:close) end else sockets end end |
.tcp_server_sockets_port0(host) ⇒ Object
705 706 707 708 709 710 711 712 713 714 715 716 717 |
# File 'lib/socket.rb', line 705 def self.tcp_server_sockets_port0(host) ai_list = Addrinfo.getaddrinfo(host, 0, nil, :STREAM, nil, Socket::AI_PASSIVE) sockets = ip_sockets_port0(ai_list, true) begin sockets.each {|s| s.listen(Socket::SOMAXCONN) } rescue Exception sockets.each(&:close) raise end sockets end |
.udp_server_loop(host = nil, port, &b) ⇒ Object
:call-seq:
Socket.udp_server_loop(port) {|msg, msg_src| ... }
Socket.udp_server_loop(host, port) {|msg, msg_src| ... }
creates a UDP/IP server on port and calls the block for each message arrived. The block is called with the message and its source information.
This method allocates sockets internally using port. If host is specified, it is used conjunction with port to determine the server addresses.
The msg is a string.
The msg_src is a Socket::UDPSource object. It is used for reply.
# UDP/IP echo server.
Socket.udp_server_loop(9261) {|msg, msg_src|
msg_src.reply msg
}
1026 1027 1028 1029 1030 |
# File 'lib/socket.rb', line 1026 def self.udp_server_loop(host=nil, port, &b) # :yield: message, message_source udp_server_sockets(host, port) {|sockets| udp_server_loop_on(sockets, &b) } end |
.udp_server_loop_on(sockets, &b) ⇒ Object
:call-seq:
Socket.udp_server_loop_on(sockets) {|msg, msg_src| ... }
Run UDP/IP server loop on the given sockets.
The return value of Socket.udp_server_sockets is appropriate for the argument.
It calls the block for each message received.
999 1000 1001 1002 1003 1004 |
# File 'lib/socket.rb', line 999 def self.udp_server_loop_on(sockets, &b) # :yield: msg, msg_src loop { readable, _, _ = IO.select(sockets) udp_server_recv(readable, &b) } end |
.udp_server_recv(sockets) ⇒ Object
:call-seq:
Socket.udp_server_recv(sockets) {|msg, msg_src| ... }
Receive UDP/IP packets from the given sockets. For each packet received, the block is called.
The block receives msg and msg_src. msg is a string which is the payload of the received packet. msg_src is a Socket::UDPSource object which is used for reply.
Socket.udp_server_loop can be implemented using this method as follows.
udp_server_sockets(host, port) {|sockets|
loop {
readable, _, _ = IO.select(sockets)
udp_server_recv(readable) {|msg, msg_src| ... }
}
}
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 |
# File 'lib/socket.rb', line 972 def self.udp_server_recv(sockets) sockets.each {|r| msg, sender_addrinfo, _, *controls = r.recvmsg_nonblock(exception: false) next if msg == :wait_readable ai = r.local_address if ai.ipv6? and pktinfo = controls.find {|c| c.cmsg_is?(:IPV6, :PKTINFO) } ai = Addrinfo.udp(pktinfo.ipv6_pktinfo_addr.ip_address, ai.ip_port) yield msg, UDPSource.new(sender_addrinfo, ai) {|reply_msg| r.sendmsg reply_msg, 0, sender_addrinfo, pktinfo } else yield msg, UDPSource.new(sender_addrinfo, ai) {|reply_msg| r.send reply_msg, 0, sender_addrinfo } end } end |
.udp_server_sockets(host = nil, port) ⇒ Object
:call-seq:
Socket.udp_server_sockets([host, ] port)
Creates UDP/IP sockets for a UDP server.
If no block given, it returns an array of sockets.
If a block is given, the block is called with the sockets. The value of the block is returned. The sockets are closed when this method returns.
If port is zero, some port is chosen. But the chosen port is used for the all sockets.
# UDP/IP echo server
Socket.udp_server_sockets(0) {|sockets|
p sockets.first.local_address.ip_port #=> 32963
Socket.udp_server_loop_on(sockets) {|msg, msg_src|
msg_src.reply msg
}
}
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
# File 'lib/socket.rb', line 884 def self.udp_server_sockets(host=nil, port) last_error = nil sockets = [] ipv6_recvpktinfo = nil if defined? Socket::AncillaryData if defined? Socket::IPV6_RECVPKTINFO # RFC 3542 ipv6_recvpktinfo = Socket::IPV6_RECVPKTINFO elsif defined? Socket::IPV6_PKTINFO # RFC 2292 ipv6_recvpktinfo = Socket::IPV6_PKTINFO end end local_addrs = Socket.ip_address_list ip_list = [] Addrinfo.foreach(host, port, nil, :DGRAM, nil, Socket::AI_PASSIVE) {|ai| if ai.ipv4? && ai.ip_address == "0.0.0.0" local_addrs.each {|a| next unless a.ipv4? ip_list << Addrinfo.new(a.to_sockaddr, :INET, :DGRAM, 0); } elsif ai.ipv6? && ai.ip_address == "::" && !ipv6_recvpktinfo local_addrs.each {|a| next unless a.ipv6? ip_list << Addrinfo.new(a.to_sockaddr, :INET6, :DGRAM, 0); } else ip_list << ai end } ip_list.uniq!(&:to_sockaddr) if port == 0 sockets = ip_sockets_port0(ip_list, false) else ip_list.each {|ip| ai = Addrinfo.udp(ip.ip_address, port) begin s = ai.bind rescue SystemCallError last_error = $! next end sockets << s } if sockets.empty? raise last_error end end sockets.each {|s| ai = s.local_address if ipv6_recvpktinfo && ai.ipv6? && ai.ip_address == "::" s.setsockopt(:IPV6, ipv6_recvpktinfo, 1) end } if block_given? begin yield sockets ensure sockets.each(&:close) if sockets end else sockets end end |
.unix(path) ⇒ Object
creates a new socket connected to path using UNIX socket socket.
If a block is given, the block is called with the socket. The value of the block is returned. The socket is closed when this method returns.
If no block is given, the socket is returned.
# talk to /tmp/sock socket.
Socket.unix("/tmp/sock") {|sock|
t = Thread.new { IO.copy_stream(sock, STDOUT) }
IO.copy_stream(STDIN, sock)
t.join
}
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 |
# File 'lib/socket.rb', line 1076 def self.unix(path) # :yield: socket addr = Addrinfo.unix(path) sock = addr.connect if block_given? begin yield sock ensure sock.close end else sock end end |
.unix_server_loop(path, &b) ⇒ Object
creates a UNIX socket server on path. It calls the block for each socket accepted.
If host is specified, it is used with port to determine the server ports.
The socket is not closed when the block returns. So application should close it.
This method deletes the socket file pointed by path at first if the file is a socket file and it is owned by the user of the application. This is safe only if the directory of path is not changed by a malicious user. So don’t use /tmp/malicious-users-directory/socket. Note that /tmp/socket and /tmp/your-private-directory/socket is safe assuming that /tmp has sticky bit.
# Sequential echo server.
# It services only one client at a time.
Socket.unix_server_loop("/tmp/sock") {|sock, client_addrinfo|
begin
IO.copy_stream(sock, sock)
ensure
sock.close
end
}
1163 1164 1165 1166 1167 |
# File 'lib/socket.rb', line 1163 def self.unix_server_loop(path, &b) # :yield: socket, client_addrinfo unix_server_socket(path) {|serv| accept_loop(serv, &b) } end |
.unix_server_socket(path) ⇒ Object
creates a UNIX server socket on path
If no block given, it returns a listening socket.
If a block is given, it is called with the socket and the block value is returned. When the block exits, the socket is closed and the socket file is removed.
socket = Socket.unix_server_socket("/tmp/s")
p socket #=> #<Socket:fd 3>
p socket.local_address #=> #<Addrinfo: /tmp/s SOCK_STREAM>
Socket.unix_server_socket("/tmp/sock") {|s|
p s #=> #<Socket:fd 3>
p s.local_address #=> # #<Addrinfo: /tmp/sock SOCK_STREAM>
}
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 |
# File 'lib/socket.rb', line 1106 def self.unix_server_socket(path) unless unix_socket_abstract_name?(path) begin st = File.lstat(path) rescue Errno::ENOENT end if st&.socket? && st.owned? File.unlink path end end s = Addrinfo.unix(path).listen if block_given? begin yield s ensure s.close unless unix_socket_abstract_name?(path) File.unlink path end end else s end end |
.unpack_sockaddr_in(sockaddr) ⇒ Array
Unpacks sockaddr into port and ip_address.
sockaddr should be a string or an addrinfo for AF_INET/AF_INET6.
sockaddr = Socket.sockaddr_in(80, "127.0.0.1")
p sockaddr #=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
p Socket.unpack_sockaddr_in(sockaddr) #=> [80, "127.0.0.1"]
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 |
# File 'socket.c', line 1392
static VALUE
sock_s_unpack_sockaddr_in(VALUE self, VALUE addr)
{
struct sockaddr_in * sockaddr;
VALUE host;
sockaddr = (struct sockaddr_in*)SockAddrStringValuePtr(addr);
if (RSTRING_LEN(addr) <
(char*)&((struct sockaddr *)sockaddr)->sa_family +
sizeof(((struct sockaddr *)sockaddr)->sa_family) -
(char*)sockaddr)
rb_raise(rb_eArgError, "too short sockaddr");
if (((struct sockaddr *)sockaddr)->sa_family != AF_INET
#ifdef INET6
&& ((struct sockaddr *)sockaddr)->sa_family != AF_INET6
#endif
) {
#ifdef INET6
rb_raise(rb_eArgError, "not an AF_INET/AF_INET6 sockaddr");
#else
rb_raise(rb_eArgError, "not an AF_INET sockaddr");
#endif
}
host = rsock_make_ipaddr((struct sockaddr*)sockaddr, RSTRING_SOCKLEN(addr));
return rb_assoc_new(INT2NUM(ntohs(sockaddr->sin_port)), host);
}
|
.unpack_sockaddr_un(sockaddr) ⇒ Object
Unpacks sockaddr into path.
sockaddr should be a string or an addrinfo for AF_UNIX.
sockaddr = Socket.sockaddr_un("/tmp/sock")
p Socket.unpack_sockaddr_un(sockaddr) #=> "/tmp/sock"
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 |
# File 'socket.c', line 1461
static VALUE
sock_s_unpack_sockaddr_un(VALUE self, VALUE addr)
{
struct sockaddr_un * sockaddr;
VALUE path;
sockaddr = (struct sockaddr_un*)SockAddrStringValuePtr(addr);
if (RSTRING_LEN(addr) <
(char*)&((struct sockaddr *)sockaddr)->sa_family +
sizeof(((struct sockaddr *)sockaddr)->sa_family) -
(char*)sockaddr)
rb_raise(rb_eArgError, "too short sockaddr");
if (((struct sockaddr *)sockaddr)->sa_family != AF_UNIX) {
rb_raise(rb_eArgError, "not an AF_UNIX sockaddr");
}
if (sizeof(struct sockaddr_un) < (size_t)RSTRING_LEN(addr)) {
rb_raise(rb_eTypeError, "too long sockaddr_un - %ld longer than %d",
RSTRING_LEN(addr), (int)sizeof(struct sockaddr_un));
}
path = rsock_unixpath_str(sockaddr, RSTRING_SOCKLEN(addr));
return path;
}
|
Instance Method Details
#accept ⇒ Array
752 753 754 755 756 757 758 759 760 761 762 763 764 |
# File 'socket.c', line 752
static VALUE
sock_accept(VALUE sock)
{
rb_io_t *fptr;
VALUE sock2;
union_sockaddr buf;
socklen_t len = (socklen_t)sizeof buf;
GetOpenFile(sock, fptr);
sock2 = rsock_s_accept(rb_cSocket,fptr->fd,&buf.addr,&len);
return rb_assoc_new(sock2, rsock_io_socket_addrinfo(sock2, &buf.addr, len));
}
|
#accept_nonblock(exception: true) ⇒ Object
call-seq:
socket.accept_nonblock([]) => [client_socket, client_addrinfo]
Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an array containing the accepted socket for the incoming connection, client_socket, and an Addrinfo, client_addrinfo.
Example
# In one script, start this first
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.bind(sockaddr)
socket.listen(5)
begin # emulate blocking accept
client_socket, client_addrinfo = socket.accept_nonblock
rescue IO::WaitReadable, Errno::EINTR
IO.select([socket])
retry
end
puts "The client said, '#{client_socket.readline.chomp}'"
client_socket.puts "Hello from script one!"
socket.close
# In another script, start this second
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.connect(sockaddr)
socket.puts "Hello from script 2."
puts "The server said, '#{socket.readline.chomp}'"
socket.close
Refer to Socket#accept for the exceptions that may be thrown if the call to accept_nonblock fails.
Socket#accept_nonblock may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED or Errno::EPROTO, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying accept_nonblock.
By specifying a keyword argument exception to false
, you can indicate that accept_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable
instead.
See
-
Socket#accept
592 593 594 |
# File 'lib/socket.rb', line 592 def accept_nonblock(exception: true) __accept_nonblock(exception) end |
#bind(local_sockaddr) ⇒ 0
Binds to the given local address.
Parameter
-
local_sockaddr
- thestruct
sockaddr contained in a string or an Addrinfo object
Example
require 'socket'
# use Addrinfo
socket = Socket.new(:INET, :STREAM, 0)
socket.bind(Addrinfo.tcp("127.0.0.1", 2222))
p socket.local_address #=> #<Addrinfo: 127.0.0.1:2222 TCP>
# use struct sockaddr
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
Unix-based Exceptions
On unix-based based systems the following system exceptions may be raised if the call to bind fails:
-
Errno::EACCES - the specified sockaddr is protected and the current user does not have permission to bind to it
-
Errno::EADDRINUSE - the specified sockaddr is already in use
-
Errno::EADDRNOTAVAIL - the specified sockaddr is not available from the local machine
-
Errno::EAFNOSUPPORT - the specified sockaddr is not a valid address for the family of the calling
socket
-
Errno::EBADF - the sockaddr specified is not a valid file descriptor
-
Errno::EFAULT - the sockaddr argument cannot be accessed
-
Errno::EINVAL - the
socket
is already bound to an address, and the protocol does not support binding to the new sockaddr or thesocket
has been shut down. -
Errno::EINVAL - the address length is not a valid length for the address family
-
Errno::ENAMETOOLONG - the pathname resolved had a length which exceeded PATH_MAX
-
Errno::ENOBUFS - no buffer space is available
-
Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation
-
Errno::ENOTSOCK - the
socket
does not refer to a socket -
Errno::EOPNOTSUPP - the socket type of the
socket
does not support binding to an address
On unix-based based systems if the address family of the calling socket
is Socket::AF_UNIX the follow exceptions may be raised if the call to bind fails:
-
Errno::EACCES - search permission is denied for a component of the prefix path or write access to the
socket
is denied -
Errno::EDESTADDRREQ - the sockaddr argument is a null pointer
-
Errno::EISDIR - same as Errno::EDESTADDRREQ
-
Errno::EIO - an i/o error occurred
-
Errno::ELOOP - too many symbolic links were encountered in translating the pathname in sockaddr
-
Errno::ENAMETOOLLONG - a component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters
-
Errno::ENOENT - a component of the pathname does not name an existing file or the pathname is an empty string
-
Errno::ENOTDIR - a component of the path prefix of the pathname in sockaddr is not a directory
-
Errno::EROFS - the name would reside on a read only filesystem
Windows Exceptions
On Windows systems the following system exceptions may be raised if the call to bind fails:
-
Errno::ENETDOWN– the network is down
-
Errno::EACCES - the attempt to connect the datagram socket to the broadcast address failed
-
Errno::EADDRINUSE - the socket’s local address is already in use
-
Errno::EADDRNOTAVAIL - the specified address is not a valid address for this computer
-
Errno::EFAULT - the socket’s internal address or address length parameter is too small or is not a valid part of the user space addressed
-
Errno::EINVAL - the
socket
is already bound to an address -
Errno::ENOBUFS - no buffer space is available
-
Errno::ENOTSOCK - the
socket
argument does not refer to a socket
See
-
bind manual pages on unix-based systems
-
bind function in Microsoft’s Winsock functions reference
522 523 524 525 526 527 528 529 530 531 532 533 534 |
# File 'socket.c', line 522
static VALUE
sock_bind(VALUE sock, VALUE addr)
{
VALUE rai;
rb_io_t *fptr;
SockAddrStringValueWithAddrinfo(addr, rai);
GetOpenFile(sock, fptr);
if (bind(fptr->fd, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_SOCKLEN(addr)) < 0)
rsock_sys_fail_raddrinfo_or_sockaddr("bind(2)", addr, rai);
return INT2FIX(0);
}
|
#connect(remote_sockaddr) ⇒ 0
Requests a connection to be made on the given remote_sockaddr
. Returns 0 if successful, otherwise an exception is raised.
Parameter
-
remote_sockaddr
- thestruct
sockaddr contained in a string or Addrinfo object
Example:
# Pull down Google's web page
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 80, 'www.google.com' )
socket.connect( sockaddr )
socket.write( "GET / HTTP/1.0\r\n\r\n" )
results = socket.read
Unix-based Exceptions
On unix-based systems the following system exceptions may be raised if the call to connect fails:
-
Errno::EACCES - search permission is denied for a component of the prefix path or write access to the
socket
is denied -
Errno::EADDRINUSE - the sockaddr is already in use
-
Errno::EADDRNOTAVAIL - the specified sockaddr is not available from the local machine
-
Errno::EAFNOSUPPORT - the specified sockaddr is not a valid address for the address family of the specified
socket
-
Errno::EALREADY - a connection is already in progress for the specified socket
-
Errno::EBADF - the
socket
is not a valid file descriptor -
Errno::ECONNREFUSED - the target sockaddr was not listening for connections refused the connection request
-
Errno::ECONNRESET - the remote host reset the connection request
-
Errno::EFAULT - the sockaddr cannot be accessed
-
Errno::EHOSTUNREACH - the destination host cannot be reached (probably because the host is down or a remote router cannot reach it)
-
Errno::EINPROGRESS - the O_NONBLOCK is set for the
socket
and the connection cannot be immediately established; the connection will be established asynchronously -
Errno::EINTR - the attempt to establish the connection was interrupted by delivery of a signal that was caught; the connection will be established asynchronously
-
Errno::EISCONN - the specified
socket
is already connected -
Errno::EINVAL - the address length used for the sockaddr is not a valid length for the address family or there is an invalid family in sockaddr
-
Errno::ENAMETOOLONG - the pathname resolved had a length which exceeded PATH_MAX
-
Errno::ENETDOWN - the local interface used to reach the destination is down
-
Errno::ENETUNREACH - no route to the network is present
-
Errno::ENOBUFS - no buffer space is available
-
Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation
-
Errno::ENOTSOCK - the
socket
argument does not refer to a socket -
Errno::EOPNOTSUPP - the calling
socket
is listening and cannot be connected -
Errno::EPROTOTYPE - the sockaddr has a different type than the socket bound to the specified peer address
-
Errno::ETIMEDOUT - the attempt to connect time out before a connection was made.
On unix-based systems if the address family of the calling socket
is AF_UNIX the follow exceptions may be raised if the call to connect fails:
-
Errno::EIO - an i/o error occurred while reading from or writing to the file system
-
Errno::ELOOP - too many symbolic links were encountered in translating the pathname in sockaddr
-
Errno::ENAMETOOLLONG - a component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters
-
Errno::ENOENT - a component of the pathname does not name an existing file or the pathname is an empty string
-
Errno::ENOTDIR - a component of the path prefix of the pathname in sockaddr is not a directory
Windows Exceptions
On Windows systems the following system exceptions may be raised if the call to connect fails:
-
Errno::ENETDOWN - the network is down
-
Errno::EADDRINUSE - the socket’s local address is already in use
-
Errno::EINTR - the socket was cancelled
-
Errno::EINPROGRESS - a blocking socket is in progress or the service provider is still processing a callback function. Or a nonblocking connect call is in progress on the
socket
. -
Errno::EALREADY - see Errno::EINVAL
-
Errno::EADDRNOTAVAIL - the remote address is not a valid address, such as ADDR_ANY TODO check ADDRANY TO INADDR_ANY
-
Errno::EAFNOSUPPORT - addresses in the specified family cannot be used with with this
socket
-
Errno::ECONNREFUSED - the target sockaddr was not listening for connections refused the connection request
-
Errno::EFAULT - the socket’s internal address or address length parameter is too small or is not a valid part of the user space address
-
Errno::EINVAL - the
socket
is a listening socket -
Errno::EISCONN - the
socket
is already connected -
Errno::ENETUNREACH - the network cannot be reached from this host at this time
-
Errno::EHOSTUNREACH - no route to the network is present
-
Errno::ENOBUFS - no buffer space is available
-
Errno::ENOTSOCK - the
socket
argument does not refer to a socket -
Errno::ETIMEDOUT - the attempt to connect time out before a connection was made.
-
Errno::EWOULDBLOCK - the socket is marked as nonblocking and the connection cannot be completed immediately
-
Errno::EACCES - the attempt to connect the datagram socket to the broadcast address failed
See
-
connect manual pages on unix-based systems
-
connect function in Microsoft’s Winsock functions reference
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# File 'socket.c', line 385
static VALUE
sock_connect(VALUE sock, VALUE addr)
{
VALUE rai;
rb_io_t *fptr;
int fd, n;
SockAddrStringValueWithAddrinfo(addr, rai);
addr = rb_str_new4(addr);
GetOpenFile(sock, fptr);
fd = fptr->fd;
n = rsock_connect(fd, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_SOCKLEN(addr), 0, NULL);
if (n < 0) {
rsock_sys_fail_raddrinfo_or_sockaddr("connect(2)", addr, rai);
}
return INT2FIX(n);
}
|
#connect_nonblock(addr, exception: true) ⇒ Object
call-seq:
socket.connect_nonblock(remote_sockaddr, []) => 0
Requests a connection to be made on the given remote_sockaddr
after O_NONBLOCK is set for the underlying file descriptor. Returns 0 if successful, otherwise an exception is raised.
Parameter
# +remote_sockaddr+ - the +struct+ sockaddr contained in a string or Addrinfo object
Example:
# Pull down Google's web page
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(80, 'www.google.com')
begin # emulate blocking connect
socket.connect_nonblock(sockaddr)
rescue IO::WaitWritable
IO.select(nil, [socket]) # wait 3-way handshake completion
begin
socket.connect_nonblock(sockaddr) # check connection failure
rescue Errno::EISCONN
end
end
socket.write("GET / HTTP/1.0\r\n\r\n")
results = socket.read
Refer to Socket#connect for the exceptions that may be thrown if the call to connect_nonblock fails.
Socket#connect_nonblock may raise any error corresponding to connect(2) failure, including Errno::EINPROGRESS.
If the exception is Errno::EINPROGRESS, it is extended by IO::WaitWritable. So IO::WaitWritable can be used to rescue the exceptions for retrying connect_nonblock.
By specifying a keyword argument exception to false
, you can indicate that connect_nonblock should not raise an IO::WaitWritable exception, but return the symbol :wait_writable
instead.
See
# Socket#connect
1213 1214 1215 |
# File 'lib/socket.rb', line 1213 def connect_nonblock(addr, exception: true) __connect_nonblock(addr, exception) end |
#ipv6only! ⇒ Object
enable the socket option IPV6_V6ONLY if IPV6_V6ONLY is available.
463 464 465 466 467 |
# File 'lib/socket.rb', line 463 def ipv6only! if defined? Socket::IPV6_V6ONLY self.setsockopt(:IPV6, :V6ONLY, 1) end end |
#listen(int) ⇒ 0
Listens for connections, using the specified int
as the backlog. A call to listen only applies if the socket
is of type SOCK_STREAM or SOCK_SEQPACKET.
Parameter
-
backlog
- the maximum length of the queue for pending connections.
Example 1
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )
Example 2 (listening on an arbitrary port, unix-based systems only):
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
socket.listen( 1 )
Unix-based Exceptions
On unix based systems the above will work because a new sockaddr
struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket
is bound by calling bind before it can listen.
If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.
On unix-based based systems the following system exceptions may be raised if the call to listen fails:
-
Errno::EBADF - the socket argument is not a valid file descriptor
-
Errno::EDESTADDRREQ - the socket is not bound to a local address, and the protocol does not support listening on an unbound socket
-
Errno::EINVAL - the socket is already connected
-
Errno::ENOTSOCK - the socket argument does not refer to a socket
-
Errno::EOPNOTSUPP - the socket protocol does not support listen
-
Errno::EACCES - the calling process does not have appropriate privileges
-
Errno::EINVAL - the socket has been shut down
-
Errno::ENOBUFS - insufficient resources are available in the system to complete the call
Windows Exceptions
On Windows systems the following system exceptions may be raised if the call to listen fails:
-
Errno::ENETDOWN - the network is down
-
Errno::EADDRINUSE - the socket’s local address is already in use. This usually occurs during the execution of bind but could be delayed if the call to bind was to a partially wildcard address (involving ADDR_ANY) and if a specific address needs to be committed at the time of the call to listen
-
Errno::EINPROGRESS - a Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function
-
Errno::EINVAL - the
socket
has not been bound with a call to bind. -
Errno::EISCONN - the
socket
is already connected -
Errno::EMFILE - no more socket descriptors are available
-
Errno::ENOBUFS - no buffer space is available
-
Errno::ENOTSOC -
socket
is not a socket -
Errno::EOPNOTSUPP - the referenced
socket
is not a type that supports the listen method
See
-
listen manual pages on unix-based systems
-
listen function in Microsoft’s Winsock functions reference
606 607 608 609 610 611 612 613 614 615 616 617 618 |
# File 'socket.c', line 606
VALUE
rsock_sock_listen(VALUE sock, VALUE log)
{
rb_io_t *fptr;
int backlog;
backlog = NUM2INT(log);
GetOpenFile(sock, fptr);
if (listen(fptr->fd, backlog) < 0)
rb_sys_fail("listen(2)");
return INT2FIX(0);
}
|
#recvfrom(maxlen) ⇒ Array #recvfrom(maxlen, flags) ⇒ Array
Receives up to maxlen bytes from socket
. flags is zero or more of the MSG_
options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.
Parameters
-
maxlen
- the maximum number of bytes to receive from the socket -
flags
- zero or more of theMSG_
options
Example
# In one file, start this first
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )
client, client_addrinfo = socket.accept
data = client.recvfrom( 20 )[0].chomp
puts "I only received 20 bytes '#{data}'"
sleep 1
socket.close
# In another file, start this second
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.connect( sockaddr )
socket.puts "Watch this get cut short!"
socket.close
Unix-based Exceptions
On unix-based based systems the following system exceptions may be raised if the call to recvfrom fails:
-
Errno::EAGAIN - the
socket
file descriptor is marked as O_NONBLOCK and no data is waiting to be received; or MSG_OOB is set and no out-of-band data is available and either thesocket
file descriptor is marked as O_NONBLOCK or thesocket
does not support blocking to wait for out-of-band-data -
Errno::EWOULDBLOCK - see Errno::EAGAIN
-
Errno::EBADF - the
socket
is not a valid file descriptor -
Errno::ECONNRESET - a connection was forcibly closed by a peer
-
Errno::EFAULT - the socket’s internal buffer, address or address length cannot be accessed or written
-
Errno::EINTR - a signal interrupted recvfrom before any data was available
-
Errno::EINVAL - the MSG_OOB flag is set and no out-of-band data is available
-
Errno::EIO - an i/o error occurred while reading from or writing to the filesystem
-
Errno::ENOBUFS - insufficient resources were available in the system to perform the operation
-
Errno::ENOMEM - insufficient memory was available to fulfill the request
-
Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation
-
Errno::ENOTCONN - a receive is attempted on a connection-mode socket that is not connected
-
Errno::ENOTSOCK - the
socket
does not refer to a socket -
Errno::EOPNOTSUPP - the specified flags are not supported for this socket type
-
Errno::ETIMEDOUT - the connection timed out during connection establishment or due to a transmission timeout on an active connection
Windows Exceptions
On Windows systems the following system exceptions may be raised if the call to recvfrom fails:
-
Errno::ENETDOWN - the network is down
-
Errno::EFAULT - the internal buffer and from parameters on
socket
are not part of the user address space, or the internal fromlen parameter is too small to accommodate the peer address -
Errno::EINTR - the (blocking) call was cancelled by an internal call to the WinSock function WSACancelBlockingCall
-
Errno::EINPROGRESS - a blocking Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function
-
Errno::EINVAL -
socket
has not been bound with a call to bind, or an unknown flag was specified, or MSG_OOB was specified for a socket with SO_OOBINLINE enabled, or (for byte stream-style sockets only) the internal len parameter onsocket
was zero or negative -
Errno::EISCONN -
socket
is already connected. The call to recvfrom is not permitted with a connected socket on a socket that is connection oriented or connectionless. -
Errno::ENETRESET - the connection has been broken due to the keep-alive activity detecting a failure while the operation was in progress.
-
Errno::EOPNOTSUPP - MSG_OOB was specified, but
socket
is not stream-style such as type SOCK_STREAM. OOB data is not supported in the communication domain associated withsocket
, orsocket
is unidirectional and supports only send operations -
Errno::ESHUTDOWN -
socket
has been shutdown. It is not possible to call recvfrom on a socket after shutdown has been invoked. -
Errno::EWOULDBLOCK -
socket
is marked as nonblocking and a call to recvfrom would block. -
Errno::EMSGSIZE - the message was too large to fit into the specified buffer and was truncated.
-
Errno::ETIMEDOUT - the connection has been dropped, because of a network failure or because the system on the other end went down without notice
-
Errno::ECONNRESET - the virtual circuit was reset by the remote side executing a hard or abortive close. The application should close the socket; it is no longer usable. On a UDP-datagram socket this error indicates a previous send operation resulted in an ICMP Port Unreachable message.
725 726 727 728 729 |
# File 'socket.c', line 725
static VALUE
sock_recvfrom(int argc, VALUE *argv, VALUE sock)
{
return rsock_s_recvfrom(sock, argc, argv, RECV_SOCKET);
}
|
#recvfrom_nonblock(len, flag = 0, str = nil, exception: true) ⇒ Object
call-seq:
socket.recvfrom_nonblock(maxlen[, flags[, outbuf[, opts]]]) => [mesg, sender_addrinfo]
Receives up to maxlen bytes from socket
using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_
options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.
When recvfrom(2) returns 0, Socket#recvfrom_nonblock returns an empty string as data. The meaning depends on the socket: EOF on TCP, empty packet on UDP, etc.
Parameters
-
maxlen
- the maximum number of bytes to receive from the socket -
flags
- zero or more of theMSG_
options -
outbuf
- destination String buffer -
opts
- keyword hash, supporting ‘exception: false`
Example
# In one file, start this first
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.bind(sockaddr)
socket.listen(5)
client, client_addrinfo = socket.accept
begin # emulate blocking recvfrom
pair = client.recvfrom_nonblock(20)
rescue IO::WaitReadable
IO.select([client])
retry
end
data = pair[0].chomp
puts "I only received 20 bytes '#{data}'"
sleep 1
socket.close
# In another file, start this second
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.connect(sockaddr)
socket.puts "Watch this get cut short!"
socket.close
Refer to Socket#recvfrom for the exceptions that may be thrown if the call to recvfrom_nonblock fails.
Socket#recvfrom_nonblock may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying recvfrom_nonblock.
By specifying a keyword argument exception to false
, you can indicate that recvfrom_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable
instead.
See
-
Socket#recvfrom
535 536 537 |
# File 'lib/socket.rb', line 535 def recvfrom_nonblock(len, flag = 0, str = nil, exception: true) __recvfrom_nonblock(len, flag, str, exception) end |
#sysaccept ⇒ Array
Accepts an incoming connection returning an array containing the (integer) file descriptor for the incoming connection, client_socket_fd, and an Addrinfo, client_addrinfo.
Example
# In one script, start this first
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )
client_fd, client_addrinfo = socket.sysaccept
client_socket = Socket.for_fd( client_fd )
puts "The client said, '#{client_socket.readline.chomp}'"
client_socket.puts "Hello from script one!"
socket.close
# In another script, start this second
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.connect( sockaddr )
socket.puts "Hello from script 2."
puts "The server said, '#{socket.readline.chomp}'"
socket.close
Refer to Socket#accept for the exceptions that may be thrown if the call to sysaccept fails.
See
-
Socket#accept
822 823 824 825 826 827 828 829 830 831 832 833 834 |
# File 'socket.c', line 822
static VALUE
sock_sysaccept(VALUE sock)
{
rb_io_t *fptr;
VALUE sock2;
union_sockaddr buf;
socklen_t len = (socklen_t)sizeof buf;
GetOpenFile(sock, fptr);
sock2 = rsock_s_accept(0,fptr->fd,&buf.addr,&len);
return rb_assoc_new(sock2, rsock_io_socket_addrinfo(sock2, &buf.addr, len));
}
|