Class: Aws::MachineLearning::Client
- Inherits:
-
Seahorse::Client::Base
- Object
- Seahorse::Client::Base
- Aws::MachineLearning::Client
- Includes:
- ClientStubs
- Defined in:
- lib/aws-sdk-machinelearning/client.rb
Overview
An API client for MachineLearning. To construct a client, you need to configure a ‘:region` and `:credentials`.
client = Aws::MachineLearning::Client.new(
region: region_name,
credentials: credentials,
# ...
)
For details on configuring region and credentials see the [developer guide](/sdk-for-ruby/v3/developer-guide/setup-config.html).
See #initialize for a full list of supported configuration options.
Class Attribute Summary collapse
- .identifier ⇒ Object readonly private
API Operations collapse
-
#add_tags(params = {}) ⇒ Types::AddTagsOutput
Adds one or more tags to an object, up to a limit of 10.
-
#create_batch_prediction(params = {}) ⇒ Types::CreateBatchPredictionOutput
Generates predictions for a group of observations.
-
#create_data_source_from_rds(params = {}) ⇒ Types::CreateDataSourceFromRDSOutput
Creates a ‘DataSource` object from an [ Amazon Relational Database Service] (Amazon RDS).
-
#create_data_source_from_redshift(params = {}) ⇒ Types::CreateDataSourceFromRedshiftOutput
Creates a ‘DataSource` from a database hosted on an Amazon Redshift cluster.
-
#create_data_source_from_s3(params = {}) ⇒ Types::CreateDataSourceFromS3Output
Creates a ‘DataSource` object.
-
#create_evaluation(params = {}) ⇒ Types::CreateEvaluationOutput
Creates a new ‘Evaluation` of an `MLModel`.
-
#create_ml_model(params = {}) ⇒ Types::CreateMLModelOutput
Creates a new ‘MLModel` using the `DataSource` and the recipe as information sources.
-
#create_realtime_endpoint(params = {}) ⇒ Types::CreateRealtimeEndpointOutput
Creates a real-time endpoint for the ‘MLModel`.
-
#delete_batch_prediction(params = {}) ⇒ Types::DeleteBatchPredictionOutput
Assigns the DELETED status to a ‘BatchPrediction`, rendering it unusable.
-
#delete_data_source(params = {}) ⇒ Types::DeleteDataSourceOutput
Assigns the DELETED status to a ‘DataSource`, rendering it unusable.
-
#delete_evaluation(params = {}) ⇒ Types::DeleteEvaluationOutput
Assigns the ‘DELETED` status to an `Evaluation`, rendering it unusable.
-
#delete_ml_model(params = {}) ⇒ Types::DeleteMLModelOutput
Assigns the ‘DELETED` status to an `MLModel`, rendering it unusable.
-
#delete_realtime_endpoint(params = {}) ⇒ Types::DeleteRealtimeEndpointOutput
Deletes a real time endpoint of an ‘MLModel`.
-
#delete_tags(params = {}) ⇒ Types::DeleteTagsOutput
Deletes the specified tags associated with an ML object.
-
#describe_batch_predictions(params = {}) ⇒ Types::DescribeBatchPredictionsOutput
Returns a list of ‘BatchPrediction` operations that match the search criteria in the request.
-
#describe_data_sources(params = {}) ⇒ Types::DescribeDataSourcesOutput
Returns a list of ‘DataSource` that match the search criteria in the request.
-
#describe_evaluations(params = {}) ⇒ Types::DescribeEvaluationsOutput
Returns a list of ‘DescribeEvaluations` that match the search criteria in the request.
-
#describe_ml_models(params = {}) ⇒ Types::DescribeMLModelsOutput
Returns a list of ‘MLModel` that match the search criteria in the request.
-
#describe_tags(params = {}) ⇒ Types::DescribeTagsOutput
Describes one or more of the tags for your Amazon ML object.
-
#get_batch_prediction(params = {}) ⇒ Types::GetBatchPredictionOutput
Returns a ‘BatchPrediction` that includes detailed metadata, status, and data file information for a `Batch Prediction` request.
-
#get_data_source(params = {}) ⇒ Types::GetDataSourceOutput
Returns a ‘DataSource` that includes metadata and data file information, as well as the current status of the `DataSource`.
-
#get_evaluation(params = {}) ⇒ Types::GetEvaluationOutput
Returns an ‘Evaluation` that includes metadata as well as the current status of the `Evaluation`.
-
#get_ml_model(params = {}) ⇒ Types::GetMLModelOutput
Returns an ‘MLModel` that includes detailed metadata, data source information, and the current status of the `MLModel`.
-
#predict(params = {}) ⇒ Types::PredictOutput
Generates a prediction for the observation using the specified ‘ML Model`.
-
#update_batch_prediction(params = {}) ⇒ Types::UpdateBatchPredictionOutput
Updates the ‘BatchPredictionName` of a `BatchPrediction`.
-
#update_data_source(params = {}) ⇒ Types::UpdateDataSourceOutput
Updates the ‘DataSourceName` of a `DataSource`.
-
#update_evaluation(params = {}) ⇒ Types::UpdateEvaluationOutput
Updates the ‘EvaluationName` of an `Evaluation`.
-
#update_ml_model(params = {}) ⇒ Types::UpdateMLModelOutput
Updates the ‘MLModelName` and the `ScoreThreshold` of an `MLModel`.
Class Method Summary collapse
- .errors_module ⇒ Object private
Instance Method Summary collapse
- #build_request(operation_name, params = {}) ⇒ Object private
-
#initialize(options) ⇒ Client
constructor
A new instance of Client.
-
#wait_until(waiter_name, params = {}, options = {}) {|w.waiter| ... } ⇒ Boolean
Polls an API operation until a resource enters a desired state.
- #waiter_names ⇒ Object deprecated private Deprecated.
Constructor Details
#initialize(options) ⇒ Client
Returns a new instance of Client.
453 454 455 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 453 def initialize(*args) super end |
Class Attribute Details
.identifier ⇒ Object (readonly)
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
2621 2622 2623 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2621 def identifier @identifier end |
Class Method Details
.errors_module ⇒ Object
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
2624 2625 2626 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2624 def errors_module Errors end |
Instance Method Details
#add_tags(params = {}) ⇒ Types::AddTagsOutput
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object, ‘AddTags` updates the tag’s value.
500 501 502 503 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 500 def (params = {}, = {}) req = build_request(:add_tags, params) req.send_request() end |
#build_request(operation_name, params = {}) ⇒ Object
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2475 def build_request(operation_name, params = {}) handlers = @handlers.for(operation_name) tracer = config.telemetry_provider.tracer_provider.tracer( Aws::Telemetry.module_to_tracer_name('Aws::MachineLearning') ) context = Seahorse::Client::RequestContext.new( operation_name: operation_name, operation: config.api.operation(operation_name), client: self, params: params, config: config, tracer: tracer ) context[:gem_name] = 'aws-sdk-machinelearning' context[:gem_version] = '1.66.0' Seahorse::Client::Request.new(handlers, context) end |
#create_batch_prediction(params = {}) ⇒ Types::CreateBatchPredictionOutput
Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a ‘DataSource`. This operation creates a new `BatchPrediction`, and uses an `MLModel` and the data files referenced by the `DataSource` as information sources.
‘CreateBatchPrediction` is an asynchronous operation. In response to `CreateBatchPrediction`, Amazon Machine Learning (Amazon ML) immediately returns and sets the `BatchPrediction` status to `PENDING`. After the `BatchPrediction` completes, Amazon ML sets the status to `COMPLETED`.
You can poll for status updates by using the GetBatchPrediction operation and checking the ‘Status` parameter of the result. After the `COMPLETED` status appears, the results are available in the location specified by the `OutputUri` parameter.
571 572 573 574 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 571 def create_batch_prediction(params = {}, = {}) req = build_request(:create_batch_prediction, params) req.send_request() end |
#create_data_source_from_rds(params = {}) ⇒ Types::CreateDataSourceFromRDSOutput
Creates a ‘DataSource` object from an [ Amazon Relational Database Service] (Amazon RDS). A `DataSource` references data that can be used to perform `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction` operations.
‘CreateDataSourceFromRDS` is an asynchronous operation. In response to `CreateDataSourceFromRDS`, Amazon Machine Learning (Amazon ML) immediately returns and sets the `DataSource` status to `PENDING`. After the `DataSource` is created and ready for use, Amazon ML sets the `Status` parameter to `COMPLETED`. `DataSource` in the `COMPLETED` or `PENDING` state can be used only to perform `>CreateMLModel`>, `CreateEvaluation`, or `CreateBatchPrediction` operations.
If Amazon ML cannot accept the input source, it sets the ‘Status` parameter to `FAILED` and includes an error message in the `Message` attribute of the `GetDataSource` operation response.
[1]: aws.amazon.com/rds/
706 707 708 709 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 706 def create_data_source_from_rds(params = {}, = {}) req = build_request(:create_data_source_from_rds, params) req.send_request() end |
#create_data_source_from_redshift(params = {}) ⇒ Types::CreateDataSourceFromRedshiftOutput
Creates a ‘DataSource` from a database hosted on an Amazon Redshift cluster. A `DataSource` references data that can be used to perform either `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction` operations.
‘CreateDataSourceFromRedshift` is an asynchronous operation. In response to `CreateDataSourceFromRedshift`, Amazon Machine Learning (Amazon ML) immediately returns and sets the `DataSource` status to `PENDING`. After the `DataSource` is created and ready for use, Amazon ML sets the `Status` parameter to `COMPLETED`. `DataSource` in `COMPLETED` or `PENDING` states can be used to perform only `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction` operations.
If Amazon ML can’t accept the input source, it sets the ‘Status` parameter to `FAILED` and includes an error message in the `Message` attribute of the `GetDataSource` operation response.
The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a ‘SelectSqlQuery` query. Amazon ML executes an `Unload` command in Amazon Redshift to transfer the result set of the `SelectSqlQuery` query to `S3StagingLocation`.
After the ‘DataSource` has been created, it’s ready for use in evaluations and batch predictions. If you plan to use the ‘DataSource` to train an `MLModel`, the `DataSource` also requires a recipe. A recipe describes how each input variable will be used in training an `MLModel`. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
You can’t change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call ‘GetDataSource` for an existing datasource and copy the values to a `CreateDataSource` call. Change the settings that you want to change and make sure that all required fields have the appropriate values.
840 841 842 843 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 840 def create_data_source_from_redshift(params = {}, = {}) req = build_request(:create_data_source_from_redshift, params) req.send_request() end |
#create_data_source_from_s3(params = {}) ⇒ Types::CreateDataSourceFromS3Output
Creates a ‘DataSource` object. A `DataSource` references data that can be used to perform `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction` operations.
‘CreateDataSourceFromS3` is an asynchronous operation. In response to `CreateDataSourceFromS3`, Amazon Machine Learning (Amazon ML) immediately returns and sets the `DataSource` status to `PENDING`. After the `DataSource` has been created and is ready for use, Amazon ML sets the `Status` parameter to `COMPLETED`. `DataSource` in the `COMPLETED` or `PENDING` state can be used to perform only `CreateMLModel`, `CreateEvaluation` or `CreateBatchPrediction` operations.
If Amazon ML can’t accept the input source, it sets the ‘Status` parameter to `FAILED` and includes an error message in the `Message` attribute of the `GetDataSource` operation response.
The observation data used in a ‘DataSource` should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by the `DataSource`.
After the ‘DataSource` has been created, it’s ready to use in evaluations and batch predictions. If you plan to use the ‘DataSource` to train an `MLModel`, the `DataSource` also needs a recipe. A recipe describes how each input variable will be used in training an `MLModel`. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
933 934 935 936 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 933 def create_data_source_from_s3(params = {}, = {}) req = build_request(:create_data_source_from_s3, params) req.send_request() end |
#create_evaluation(params = {}) ⇒ Types::CreateEvaluationOutput
Creates a new ‘Evaluation` of an `MLModel`. An `MLModel` is evaluated on a set of observations associated to a `DataSource`. Like a `DataSource` for an `MLModel`, the `DataSource` for an `Evaluation` contains values for the `Target Variable`. The `Evaluation` compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the `MLModel` functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding `MLModelType`: `BINARY`, `REGRESSION` or `MULTICLASS`.
‘CreateEvaluation` is an asynchronous operation. In response to `CreateEvaluation`, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to `PENDING`. After the `Evaluation` is created and ready for use, Amazon ML sets the status to `COMPLETED`.
You can use the ‘GetEvaluation` operation to check progress of the evaluation during the creation operation.
993 994 995 996 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 993 def create_evaluation(params = {}, = {}) req = build_request(:create_evaluation, params) req.send_request() end |
#create_ml_model(params = {}) ⇒ Types::CreateMLModelOutput
Creates a new ‘MLModel` using the `DataSource` and the recipe as information sources.
An ‘MLModel` is nearly immutable. Users can update only the `MLModelName` and the `ScoreThreshold` in an `MLModel` without creating a new `MLModel`.
‘CreateMLModel` is an asynchronous operation. In response to `CreateMLModel`, Amazon Machine Learning (Amazon ML) immediately returns and sets the `MLModel` status to `PENDING`. After the `MLModel` has been created and ready is for use, Amazon ML sets the status to `COMPLETED`.
You can use the ‘GetMLModel` operation to check the progress of the `MLModel` during the creation operation.
‘CreateMLModel` requires a `DataSource` with computed statistics, which can be created by setting `ComputeStatistics` to `true` in `CreateDataSourceFromRDS`, `CreateDataSourceFromS3`, or `CreateDataSourceFromRedshift` operations.
1125 1126 1127 1128 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1125 def create_ml_model(params = {}, = {}) req = build_request(:create_ml_model, params) req.send_request() end |
#create_realtime_endpoint(params = {}) ⇒ Types::CreateRealtimeEndpointOutput
Creates a real-time endpoint for the ‘MLModel`. The endpoint contains the URI of the `MLModel`; that is, the location to send real-time prediction requests for the specified `MLModel`.
1158 1159 1160 1161 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1158 def create_realtime_endpoint(params = {}, = {}) req = build_request(:create_realtime_endpoint, params) req.send_request() end |
#delete_batch_prediction(params = {}) ⇒ Types::DeleteBatchPredictionOutput
Assigns the DELETED status to a ‘BatchPrediction`, rendering it unusable.
After using the ‘DeleteBatchPrediction` operation, you can use the GetBatchPrediction operation to verify that the status of the `BatchPrediction` changed to DELETED.
Caution: The result of the ‘DeleteBatchPrediction` operation is irreversible.
1192 1193 1194 1195 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1192 def delete_batch_prediction(params = {}, = {}) req = build_request(:delete_batch_prediction, params) req.send_request() end |
#delete_data_source(params = {}) ⇒ Types::DeleteDataSourceOutput
Assigns the DELETED status to a ‘DataSource`, rendering it unusable.
After using the ‘DeleteDataSource` operation, you can use the GetDataSource operation to verify that the status of the `DataSource` changed to DELETED.
Caution: The results of the ‘DeleteDataSource` operation are irreversible.
1225 1226 1227 1228 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1225 def delete_data_source(params = {}, = {}) req = build_request(:delete_data_source, params) req.send_request() end |
#delete_evaluation(params = {}) ⇒ Types::DeleteEvaluationOutput
Assigns the ‘DELETED` status to an `Evaluation`, rendering it unusable.
After invoking the ‘DeleteEvaluation` operation, you can use the `GetEvaluation` operation to verify that the status of the `Evaluation` changed to `DELETED`.
Caution: The results of the ‘DeleteEvaluation` operation are irreversible.
1260 1261 1262 1263 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1260 def delete_evaluation(params = {}, = {}) req = build_request(:delete_evaluation, params) req.send_request() end |
#delete_ml_model(params = {}) ⇒ Types::DeleteMLModelOutput
Assigns the ‘DELETED` status to an `MLModel`, rendering it unusable.
After using the ‘DeleteMLModel` operation, you can use the `GetMLModel` operation to verify that the status of the `MLModel` changed to DELETED.
Caution: The result of the ‘DeleteMLModel` operation is irreversible.
1293 1294 1295 1296 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1293 def delete_ml_model(params = {}, = {}) req = build_request(:delete_ml_model, params) req.send_request() end |
#delete_realtime_endpoint(params = {}) ⇒ Types::DeleteRealtimeEndpointOutput
Deletes a real time endpoint of an ‘MLModel`.
1324 1325 1326 1327 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1324 def delete_realtime_endpoint(params = {}, = {}) req = build_request(:delete_realtime_endpoint, params) req.send_request() end |
#delete_tags(params = {}) ⇒ Types::DeleteTagsOutput
Deletes the specified tags associated with an ML object. After this operation is complete, you can’t recover deleted tags.
If you specify a tag that doesn’t exist, Amazon ML ignores it.
1363 1364 1365 1366 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1363 def (params = {}, = {}) req = build_request(:delete_tags, params) req.send_request() end |
#describe_batch_predictions(params = {}) ⇒ Types::DescribeBatchPredictionsOutput
Returns a list of ‘BatchPrediction` operations that match the search criteria in the request.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
The following waiters are defined for this operation (see #wait_until for detailed usage):
* batch_prediction_available
1508 1509 1510 1511 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1508 def describe_batch_predictions(params = {}, = {}) req = build_request(:describe_batch_predictions, params) req.send_request() end |
#describe_data_sources(params = {}) ⇒ Types::DescribeDataSourcesOutput
Returns a list of ‘DataSource` that match the search criteria in the request.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
The following waiters are defined for this operation (see #wait_until for detailed usage):
* data_source_available
1656 1657 1658 1659 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1656 def describe_data_sources(params = {}, = {}) req = build_request(:describe_data_sources, params) req.send_request() end |
#describe_evaluations(params = {}) ⇒ Types::DescribeEvaluationsOutput
Returns a list of ‘DescribeEvaluations` that match the search criteria in the request.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
The following waiters are defined for this operation (see #wait_until for detailed usage):
* evaluation_available
1799 1800 1801 1802 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1799 def describe_evaluations(params = {}, = {}) req = build_request(:describe_evaluations, params) req.send_request() end |
#describe_ml_models(params = {}) ⇒ Types::DescribeMLModelsOutput
Returns a list of ‘MLModel` that match the search criteria in the request.
The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.
The following waiters are defined for this operation (see #wait_until for detailed usage):
* ml_model_available
1955 1956 1957 1958 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1955 def describe_ml_models(params = {}, = {}) req = build_request(:describe_ml_models, params) req.send_request() end |
#describe_tags(params = {}) ⇒ Types::DescribeTagsOutput
Describes one or more of the tags for your Amazon ML object.
1991 1992 1993 1994 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 1991 def (params = {}, = {}) req = build_request(:describe_tags, params) req.send_request() end |
#get_batch_prediction(params = {}) ⇒ Types::GetBatchPredictionOutput
Returns a ‘BatchPrediction` that includes detailed metadata, status, and data file information for a `Batch Prediction` request.
2050 2051 2052 2053 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2050 def get_batch_prediction(params = {}, = {}) req = build_request(:get_batch_prediction, params) req.send_request() end |
#get_data_source(params = {}) ⇒ Types::GetDataSourceOutput
Returns a ‘DataSource` that includes metadata and data file information, as well as the current status of the `DataSource`.
‘GetDataSource` provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.
2137 2138 2139 2140 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2137 def get_data_source(params = {}, = {}) req = build_request(:get_data_source, params) req.send_request() end |
#get_evaluation(params = {}) ⇒ Types::GetEvaluationOutput
Returns an ‘Evaluation` that includes metadata as well as the current status of the `Evaluation`.
2195 2196 2197 2198 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2195 def get_evaluation(params = {}, = {}) req = build_request(:get_evaluation, params) req.send_request() end |
#get_ml_model(params = {}) ⇒ Types::GetMLModelOutput
Returns an ‘MLModel` that includes detailed metadata, data source information, and the current status of the `MLModel`.
‘GetMLModel` provides results in normal or verbose format.
2276 2277 2278 2279 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2276 def get_ml_model(params = {}, = {}) req = build_request(:get_ml_model, params) req.send_request() end |
#predict(params = {}) ⇒ Types::PredictOutput
Generates a prediction for the observation using the specified ‘ML Model`.
Note: Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
2321 2322 2323 2324 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2321 def predict(params = {}, = {}) req = build_request(:predict, params) req.send_request() end |
#update_batch_prediction(params = {}) ⇒ Types::UpdateBatchPredictionOutput
Updates the ‘BatchPredictionName` of a `BatchPrediction`.
You can use the ‘GetBatchPrediction` operation to view the contents of the updated data element.
2354 2355 2356 2357 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2354 def update_batch_prediction(params = {}, = {}) req = build_request(:update_batch_prediction, params) req.send_request() end |
#update_data_source(params = {}) ⇒ Types::UpdateDataSourceOutput
Updates the ‘DataSourceName` of a `DataSource`.
You can use the ‘GetDataSource` operation to view the contents of the updated data element.
2388 2389 2390 2391 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2388 def update_data_source(params = {}, = {}) req = build_request(:update_data_source, params) req.send_request() end |
#update_evaluation(params = {}) ⇒ Types::UpdateEvaluationOutput
Updates the ‘EvaluationName` of an `Evaluation`.
You can use the ‘GetEvaluation` operation to view the contents of the updated data element.
2422 2423 2424 2425 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2422 def update_evaluation(params = {}, = {}) req = build_request(:update_evaluation, params) req.send_request() end |
#update_ml_model(params = {}) ⇒ Types::UpdateMLModelOutput
Updates the ‘MLModelName` and the `ScoreThreshold` of an `MLModel`.
You can use the ‘GetMLModel` operation to view the contents of the updated data element.
2466 2467 2468 2469 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2466 def update_ml_model(params = {}, = {}) req = build_request(:update_ml_model, params) req.send_request() end |
#wait_until(waiter_name, params = {}, options = {}) {|w.waiter| ... } ⇒ Boolean
Polls an API operation until a resource enters a desired state.
## Basic Usage
A waiter will call an API operation until:
-
It is successful
-
It enters a terminal state
-
It makes the maximum number of attempts
In between attempts, the waiter will sleep.
# polls in a loop, sleeping between attempts
client.wait_until(waiter_name, params)
## Configuration
You can configure the maximum number of polling attempts, and the delay (in seconds) between each polling attempt. You can pass configuration as the final arguments hash.
# poll for ~25 seconds
client.wait_until(waiter_name, params, {
max_attempts: 5,
delay: 5,
})
## Callbacks
You can be notified before each polling attempt and before each delay. If you throw ‘:success` or `:failure` from these callbacks, it will terminate the waiter.
started_at = Time.now
client.wait_until(waiter_name, params, {
# disable max attempts
max_attempts: nil,
# poll for 1 hour, instead of a number of attempts
before_wait: -> (attempts, response) do
throw :failure if Time.now - started_at > 3600
end
})
## Handling Errors
When a waiter is unsuccessful, it will raise an error. All of the failure errors extend from Waiters::Errors::WaiterFailed.
begin
client.wait_until(...)
rescue Aws::Waiters::Errors::WaiterFailed
# resource did not enter the desired state in time
end
## Valid Waiters
The following table lists the valid waiter names, the operations they call, and the default ‘:delay` and `:max_attempts` values.
| waiter_name | params | :delay | :max_attempts | | ————————– | ———————————– | ——– | ————- | | batch_prediction_available | #describe_batch_predictions | 30 | 60 | | data_source_available | #describe_data_sources | 30 | 60 | | evaluation_available | #describe_evaluations | 30 | 60 | | ml_model_available | #describe_ml_models | 30 | 60 |
2584 2585 2586 2587 2588 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2584 def wait_until(waiter_name, params = {}, = {}) w = waiter(waiter_name, ) yield(w.waiter) if block_given? # deprecated w.wait(params) end |
#waiter_names ⇒ Object
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
2592 2593 2594 |
# File 'lib/aws-sdk-machinelearning/client.rb', line 2592 def waiter_names waiters.keys end |