Module: BigMath

Defined in:
lib/bigdecimal/math.rb,
ext/bigdecimal/bigdecimal.c

Overview

– Contents:

sqrt(x, prec)
sin (x, prec)
cos (x, prec)
atan(x, prec)  Note: |x|<1, x=0.9999 may not converge.
PI  (prec)
E   (prec) == exp(1.0,prec)

where:

x    ... BigDecimal number to be computed.
         |x| must be small enough to get convergence.
prec ... Number of digits to be obtained.

++

Provides mathematical functions.

Example:

require "bigdecimal/math"

include BigMath

a = BigDecimal((PI(100)/2).to_s)
puts sin(a,100) # => 0.99999999999999999999......e0

Class Method Summary collapse

Class Method Details

.atan(x, prec) ⇒ Object

call-seq:

atan(decimal, numeric) -> BigDecimal

Computes the arctangent of decimal to the specified number of digits of precision, numeric.

If decimal is NaN, returns NaN.

BigMath.atan(BigDecimal('-1'), 16).to_s
#=> "-0.785398163397448309615660845819878471907514682065e0"

Raises:

  • (ArgumentError)


146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# File 'lib/bigdecimal/math.rb', line 146

def atan(x, prec)
  raise ArgumentError, "Zero or negative precision for atan" if prec <= 0
  return BigDecimal("NaN") if x.nan?
  pi = PI(prec)
  x = -x if neg = x < 0
  return pi.div(neg ? -2 : 2, prec) if x.infinite?
  return pi / (neg ? -4 : 4) if x.round(prec) == 1
  x = BigDecimal("1").div(x, prec) if inv = x > 1
  x = (-1 + sqrt(1 + x**2, prec))/x if dbl = x > 0.5
  n    = prec + BigDecimal.double_fig
  y = x
  d = y
  t = x
  r = BigDecimal("3")
  x2 = x.mult(x,n)
  while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
    m = BigDecimal.double_fig if m < BigDecimal.double_fig
    t = -t.mult(x2,n)
    d = t.div(r,m)
    y += d
    r += 2
  end
  y *= 2 if dbl
  y = pi / 2 - y if inv
  y = -y if neg
  y
end

.cos(x, prec) ⇒ Object

call-seq:

cos(decimal, numeric) -> BigDecimal

Computes the cosine of decimal to the specified number of digits of precision, numeric.

If decimal is Infinity or NaN, returns NaN.

BigMath.cos(BigMath.PI(4), 16).to_s
#=> "-0.999999999999999999999999999999856613163740061349e0"

Raises:

  • (ArgumentError)


102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# File 'lib/bigdecimal/math.rb', line 102

def cos(x, prec)
  raise ArgumentError, "Zero or negative precision for cos" if prec <= 0
  return BigDecimal("NaN") if x.infinite? || x.nan?
  n    = prec + BigDecimal.double_fig
  one  = BigDecimal("1")
  two  = BigDecimal("2")
  x = -x if x < 0
  if x > (twopi = two * BigMath.PI(prec))
    if x > 30
      x %= twopi
    else
      x -= twopi while x > twopi
    end
  end
  x1 = one
  x2 = x.mult(x,n)
  sign = 1
  y = one
  d = y
  i = BigDecimal("0")
  z = one
  while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
    m = BigDecimal.double_fig if m < BigDecimal.double_fig
    sign = -sign
    x1  = x2.mult(x1,n)
    i  += two
    z  *= (i-one) * i
    d   = sign * x1.div(z,m)
    y  += d
  end
  y
end

.E(prec) ⇒ Object

call-seq:

E(numeric) -> BigDecimal

Computes e (the base of natural logarithms) to the specified number of digits of precision, numeric.

BigMath.E(10).to_s
#=> "0.271828182845904523536028752390026306410273e1"

Raises:

  • (ArgumentError)


228
229
230
231
# File 'lib/bigdecimal/math.rb', line 228

def E(prec)
  raise ArgumentError, "Zero or negative precision for E" if prec <= 0
  BigMath.exp(1, prec)
end

.exp(x, vprec) ⇒ Object

BigMath.exp(decimal, numeric) -> BigDecimal

Computes the value of e (the base of natural logarithms) raised to the power of decimal, to the specified number of digits of precision.

If decimal is infinity, returns Infinity.

If decimal is NaN, returns NaN.



2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
# File 'ext/bigdecimal/bigdecimal.c', line 2878

static VALUE
BigMath_s_exp(VALUE klass, VALUE x, VALUE vprec)
{
    ssize_t prec, n, i;
    Real* vx = NULL;
    VALUE one, d, y;
    int negative = 0;
    int infinite = 0;
    int nan = 0;
    double flo;

    prec = NUM2SSIZET(vprec);
    if (prec <= 0) {
	rb_raise(rb_eArgError, "Zero or negative precision for exp");
    }

    /* TODO: the following switch statement is almost same as one in the
     *       BigDecimalCmp function. */
    switch (TYPE(x)) {
      case T_DATA:
	if (!is_kind_of_BigDecimal(x)) break;
	vx = DATA_PTR(x);
	negative = BIGDECIMAL_NEGATIVE_P(vx);
	infinite = VpIsPosInf(vx) || VpIsNegInf(vx);
	nan = VpIsNaN(vx);
	break;

      case T_FIXNUM:
	/* fall through */
      case T_BIGNUM:
	vx = GetVpValue(x, 0);
	break;

      case T_FLOAT:
	flo = RFLOAT_VALUE(x);
	negative = flo < 0;
	infinite = isinf(flo);
	nan = isnan(flo);
	if (!infinite && !nan) {
	    vx = GetVpValueWithPrec(x, DBL_DIG+1, 0);
	}
	break;

      case T_RATIONAL:
	vx = GetVpValueWithPrec(x, prec, 0);
	break;

      default:
	break;
    }
    if (infinite) {
	if (negative) {
	    return ToValue(GetVpValueWithPrec(INT2FIX(0), prec, 1));
	}
	else {
	    Real* vy;
	    vy = VpCreateRbObject(prec, "#0");
	    VpSetInf(vy, VP_SIGN_POSITIVE_INFINITE);
	    RB_GC_GUARD(vy->obj);
	    return ToValue(vy);
	}
    }
    else if (nan) {
	Real* vy;
	vy = VpCreateRbObject(prec, "#0");
	VpSetNaN(vy);
	RB_GC_GUARD(vy->obj);
	return ToValue(vy);
    }
    else if (vx == NULL) {
	cannot_be_coerced_into_BigDecimal(rb_eArgError, x);
    }
    x = vx->obj;

    n = prec + rmpd_double_figures();
    negative = BIGDECIMAL_NEGATIVE_P(vx);
    if (negative) {
	VpSetSign(vx, 1);
    }

    one = ToValue(VpCreateRbObject(1, "1"));
    y   = one;
    d   = y;
    i   = 1;

    while (!VpIsZero((Real*)DATA_PTR(d))) {
	SIGNED_VALUE const ey = VpExponent10(DATA_PTR(y));
	SIGNED_VALUE const ed = VpExponent10(DATA_PTR(d));
	ssize_t m = n - vabs(ey - ed);

	rb_thread_check_ints();

	if (m <= 0) {
	    break;
	}
	else if ((size_t)m < rmpd_double_figures()) {
	    m = rmpd_double_figures();
	}

	d = BigDecimal_mult(d, x);                             /* d <- d * x */
	d = BigDecimal_div2(d, SSIZET2NUM(i), SSIZET2NUM(m));  /* d <- d / i */
	y = BigDecimal_add(y, d);                              /* y <- y + d  */
	++i;                                                   /* i  <- i + 1 */
    }

    if (negative) {
	return BigDecimal_div2(one, y, vprec);
    }
    else {
	vprec = SSIZET2NUM(prec - VpExponent10(DATA_PTR(y)));
	return BigDecimal_round(1, &vprec, y);
    }

    RB_GC_GUARD(one);
    RB_GC_GUARD(x);
    RB_GC_GUARD(y);
    RB_GC_GUARD(d);
}

.log(x, vprec) ⇒ Object

BigMath.log(decimal, numeric) -> BigDecimal

Computes the natural logarithm of decimal to the specified number of digits of precision, numeric.

If decimal is zero or negative, raises Math::DomainError.

If decimal is positive infinity, returns Infinity.

If decimal is NaN, returns NaN.



3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
# File 'ext/bigdecimal/bigdecimal.c', line 3009

static VALUE
BigMath_s_log(VALUE klass, VALUE x, VALUE vprec)
{
    ssize_t prec, n, i;
    SIGNED_VALUE expo;
    Real* vx = NULL;
    VALUE vn, one, two, w, x2, y, d;
    int zero = 0;
    int negative = 0;
    int infinite = 0;
    int nan = 0;
    double flo;
    long fix;

    if (!is_integer(vprec)) {
	rb_raise(rb_eArgError, "precision must be an Integer");
    }

    prec = NUM2SSIZET(vprec);
    if (prec <= 0) {
	rb_raise(rb_eArgError, "Zero or negative precision for exp");
    }

    /* TODO: the following switch statement is almost same as one in the
     *       BigDecimalCmp function. */
    switch (TYPE(x)) {
      case T_DATA:
	  if (!is_kind_of_BigDecimal(x)) break;
	  vx = DATA_PTR(x);
	  zero = VpIsZero(vx);
	  negative = BIGDECIMAL_NEGATIVE_P(vx);
	  infinite = VpIsPosInf(vx) || VpIsNegInf(vx);
	  nan = VpIsNaN(vx);
	  break;

      case T_FIXNUM:
	fix = FIX2LONG(x);
	zero = fix == 0;
	negative = fix < 0;
	goto get_vp_value;

      case T_BIGNUM:
        i = FIX2INT(rb_big_cmp(x, INT2FIX(0)));
	zero = i == 0;
	negative = i < 0;
get_vp_value:
	if (zero || negative) break;
	vx = GetVpValue(x, 0);
	break;

      case T_FLOAT:
	flo = RFLOAT_VALUE(x);
	zero = flo == 0;
	negative = flo < 0;
	infinite = isinf(flo);
	nan = isnan(flo);
	if (!zero && !negative && !infinite && !nan) {
	    vx = GetVpValueWithPrec(x, DBL_DIG+1, 1);
	}
	break;

      case T_RATIONAL:
	zero = RRATIONAL_ZERO_P(x);
	negative = RRATIONAL_NEGATIVE_P(x);
	if (zero || negative) break;
	vx = GetVpValueWithPrec(x, prec, 1);
	break;

      case T_COMPLEX:
	rb_raise(rb_eMathDomainError,
		 "Complex argument for BigMath.log");

      default:
	break;
    }
    if (infinite && !negative) {
	Real* vy;
	vy = VpCreateRbObject(prec, "#0");
	RB_GC_GUARD(vy->obj);
	VpSetInf(vy, VP_SIGN_POSITIVE_INFINITE);
	return ToValue(vy);
    }
    else if (nan) {
	Real* vy;
	vy = VpCreateRbObject(prec, "#0");
	RB_GC_GUARD(vy->obj);
	VpSetNaN(vy);
	return ToValue(vy);
    }
    else if (zero || negative) {
	rb_raise(rb_eMathDomainError,
		 "Zero or negative argument for log");
    }
    else if (vx == NULL) {
	cannot_be_coerced_into_BigDecimal(rb_eArgError, x);
    }
    x = ToValue(vx);

    RB_GC_GUARD(one) = ToValue(VpCreateRbObject(1, "1"));
    RB_GC_GUARD(two) = ToValue(VpCreateRbObject(1, "2"));

    n = prec + rmpd_double_figures();
    RB_GC_GUARD(vn) = SSIZET2NUM(n);
    expo = VpExponent10(vx);
    if (expo < 0 || expo >= 3) {
	char buf[DECIMAL_SIZE_OF_BITS(SIZEOF_VALUE * CHAR_BIT) + 4];
	snprintf(buf, sizeof(buf), "1E%"PRIdVALUE, -expo);
	x = BigDecimal_mult2(x, ToValue(VpCreateRbObject(1, buf)), vn);
    }
    else {
	expo = 0;
    }
    w = BigDecimal_sub(x, one);
    x = BigDecimal_div2(w, BigDecimal_add(x, one), vn);
    RB_GC_GUARD(x2) = BigDecimal_mult2(x, x, vn);
    RB_GC_GUARD(y)  = x;
    RB_GC_GUARD(d)  = y;
    i = 1;
    while (!VpIsZero((Real*)DATA_PTR(d))) {
	SIGNED_VALUE const ey = VpExponent10(DATA_PTR(y));
	SIGNED_VALUE const ed = VpExponent10(DATA_PTR(d));
	ssize_t m = n - vabs(ey - ed);
	if (m <= 0) {
	    break;
	}
	else if ((size_t)m < rmpd_double_figures()) {
	    m = rmpd_double_figures();
	}

	x = BigDecimal_mult2(x2, x, vn);
	i += 2;
	d = BigDecimal_div2(x, SSIZET2NUM(i), SSIZET2NUM(m));
	y = BigDecimal_add(y, d);
    }

    y = BigDecimal_mult(y, two);
    if (expo != 0) {
	VALUE log10, vexpo, dy;
	log10 = BigMath_s_log(klass, INT2FIX(10), vprec);
	vexpo = ToValue(GetVpValue(SSIZET2NUM(expo), 1));
	dy = BigDecimal_mult(log10, vexpo);
	y = BigDecimal_add(y, dy);
    }

    return y;
}

.PI(prec) ⇒ Object

call-seq:

PI(numeric) -> BigDecimal

Computes the value of pi to the specified number of digits of precision, numeric.

BigMath.PI(10).to_s
#=> "0.3141592653589793238462643388813853786957412e1"

Raises:

  • (ArgumentError)


183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# File 'lib/bigdecimal/math.rb', line 183

def PI(prec)
  raise ArgumentError, "Zero or negative precision for PI" if prec <= 0
  n      = prec + BigDecimal.double_fig
  zero   = BigDecimal("0")
  one    = BigDecimal("1")
  two    = BigDecimal("2")

  m25    = BigDecimal("-0.04")
  m57121 = BigDecimal("-57121")

  pi     = zero

  d = one
  k = one
  t = BigDecimal("-80")
  while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
    m = BigDecimal.double_fig if m < BigDecimal.double_fig
    t   = t*m25
    d   = t.div(k,m)
    k   = k+two
    pi  = pi + d
  end

  d = one
  k = one
  t = BigDecimal("956")
  while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
    m = BigDecimal.double_fig if m < BigDecimal.double_fig
    t   = t.div(m57121,n)
    d   = t.div(k,m)
    pi  = pi + d
    k   = k+two
  end
  pi
end

.sin(x, prec) ⇒ Object

call-seq:

sin(decimal, numeric) -> BigDecimal

Computes the sine of decimal to the specified number of digits of precision, numeric.

If decimal is Infinity or NaN, returns NaN.

BigMath.sin(BigMath.PI(5)/4, 5).to_s
#=> "0.70710678118654752440082036563292800375e0"

Raises:

  • (ArgumentError)


58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# File 'lib/bigdecimal/math.rb', line 58

def sin(x, prec)
  raise ArgumentError, "Zero or negative precision for sin" if prec <= 0
  return BigDecimal("NaN") if x.infinite? || x.nan?
  n    = prec + BigDecimal.double_fig
  one  = BigDecimal("1")
  two  = BigDecimal("2")
  x = -x if neg = x < 0
  if x > (twopi = two * BigMath.PI(prec))
    if x > 30
      x %= twopi
    else
      x -= twopi while x > twopi
    end
  end
  x1   = x
  x2   = x.mult(x,n)
  sign = 1
  y    = x
  d    = y
  i    = one
  z    = one
  while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
    m = BigDecimal.double_fig if m < BigDecimal.double_fig
    sign = -sign
    x1  = x2.mult(x1,n)
    i  += two
    z  *= (i-one) * i
    d   = sign * x1.div(z,m)
    y  += d
  end
  neg ? -y : y
end

.sqrt(x, prec) ⇒ Object

call-seq:

sqrt(decimal, numeric) -> BigDecimal

Computes the square root of decimal to the specified number of digits of precision, numeric.

BigMath.sqrt(BigDecimal('2'), 16).to_s
#=> "0.1414213562373095048801688724e1"


43
44
45
# File 'lib/bigdecimal/math.rb', line 43

def sqrt(x, prec)
  x.sqrt(prec)
end