Module: Daru::Maths::Statistics::Vector

Included in:
Vector
Defined in:
lib/daru/maths/statistics/vector.rb

Overview

rubocop:disable Metrics/ModuleLength

Instance Method Summary collapse

Instance Method Details

#acf(max_lags = nil) ⇒ Object

Calculates the autocorrelation coefficients of the series.

The first element is always 1, since that is the correlation of the series with itself.

Examples:

ts = Daru::Vector.new((1..100).map { rand })

ts.acf   # => array with first 21 autocorrelations
ts.acf 3 # => array with first 3 autocorrelations

612
613
614
615
616
617
618
619
620
621
622
623
624
625
# File 'lib/daru/maths/statistics/vector.rb', line 612

def acf(max_lags=nil)
  max_lags ||= (10 * Math.log10(size)).to_i

  (0..max_lags).map do |i|
    if i.zero?
      1.0
    else
      m = mean
      # can't use Pearson coefficient since the mean for the lagged series should
      # be the same as the regular series
      ((self - m) * (lag(i) - m)).sum / variance_sample / (size - 1)
    end
  end
end

#acvf(demean = true, unbiased = true) ⇒ Object

Provides autocovariance.

Options

  • :demean = true; optional. Supply false if series is not to be demeaned

  • :unbiased = true; optional. true/false for unbiased/biased form of autocovariance

Returns

Autocovariance value


637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# File 'lib/daru/maths/statistics/vector.rb', line 637

def acvf(demean=true, unbiased=true) # rubocop:disable Metrics/AbcSize,Metrics/MethodLength
  opts = {
    demean: true,
    unbaised: true
  }.merge(opts)

  demean   = opts[:demean]
  unbiased = opts[:unbiased]
  demeaned_series = demean ? self - mean : self

  n = (10 * Math.log10(size)).to_i + 1
  m = mean
  d = if unbiased
        Array.new(size, size)
      else
        (1..size).to_a.reverse[0..n]
      end

  0.upto(n - 1).map do |i|
    (demeaned_series * (lag(i) - m)).sum / d[i]
  end
end

#average_deviation_population(m = nil) ⇒ Object Also known as: adp


226
227
228
229
230
231
232
# File 'lib/daru/maths/statistics/vector.rb', line 226

def average_deviation_population m=nil
  must_be_numeric!
  m ||= mean
  reject_values(*Daru::MISSING_VALUES).data.inject(0) { |memo, val|
    (val - m).abs + memo
  }.quo(size - count_values(*Daru::MISSING_VALUES))
end

#box_cox_transformation(lambda) ⇒ Object

:nocov:


292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# File 'lib/daru/maths/statistics/vector.rb', line 292

def box_cox_transformation lambda # :nodoc:
  must_be_numeric!

  recode do |x|
    if !x.nil?
      if lambda.zero?
        Math.log(x)
      else
        (x ** lambda - 1).quo(lambda)
      end
    else
      nil
    end
  end
end

#centerObject

Center data by subtracting the mean from each non-nil value.


273
274
275
# File 'lib/daru/maths/statistics/vector.rb', line 273

def center
  self - mean
end

#coefficient_of_variationObject Also known as: cov


117
118
119
# File 'lib/daru/maths/statistics/vector.rb', line 117

def coefficient_of_variation
  standard_deviation_sample / mean
end

#count(value = false, &block) ⇒ Object

Retrieves number of cases which comply condition. If block given, retrieves number of instances where block returns true. If other values given, retrieves the frequency for this value. If no value given, counts the number of non-nil elements in the Vector.


125
126
127
128
129
130
131
132
133
# File 'lib/daru/maths/statistics/vector.rb', line 125

def count value=false, &block
  if block_given?
    @data.select(&block).count
  elsif value
    count { |val| val == value }
  else
    size - indexes(*Daru::MISSING_VALUES).size
  end
end

#covariance_population(other) ⇒ Object

Population covariance with denominator (N)


175
176
177
178
# File 'lib/daru/maths/statistics/vector.rb', line 175

def covariance_population other
  size == other.size or raise ArgumentError, 'size of both the vectors must be equal'
  covariance_sum(other) / (size - count_values(*Daru::MISSING_VALUES))
end

#covariance_sample(other) ⇒ Object Also known as: covariance

Sample covariance with denominator (N-1)


169
170
171
172
# File 'lib/daru/maths/statistics/vector.rb', line 169

def covariance_sample other
  size == other.size or raise ArgumentError, 'size of both the vectors must be equal'
  covariance_sum(other) / (size - count_values(*Daru::MISSING_VALUES) - 1)
end

#cumsumObject

Calculate cumulative sum of Vector


661
662
663
664
665
666
667
668
669
670
671
672
673
674
# File 'lib/daru/maths/statistics/vector.rb', line 661

def cumsum
  result = []
  acc = 0
  @data.each do |d|
    if include_with_nan? Daru::MISSING_VALUES, d
      result << nil
    else
      acc += d
      result << acc
    end
  end

  Daru::Vector.new(result, index: @index)
end

#describe(methods = nil) ⇒ Object

Create a summary of count, mean, standard deviation, min and max of the vector in one shot.

Arguments

methods - An array with aggregation methods specified as symbols to be applied to vectors. Default is [:count, :mean, :std, :max, :min]. Methods will be applied in the specified order.


44
45
46
47
48
# File 'lib/daru/maths/statistics/vector.rb', line 44

def describe methods=nil
  methods ||= [:count, :mean, :std, :min, :max]
  description = methods.map { |m| send(m) }
  Daru::Vector.new(description, index: methods, name: :statistics)
end

#dichotomize(low = nil) ⇒ Object

Dichotomize the vector with 0 and 1, based on lowest value. If parameter is defined, this value and lower will be 0 and higher, 1.


258
259
260
261
262
263
264
265
266
267
268
269
270
# File 'lib/daru/maths/statistics/vector.rb', line 258

def dichotomize(low=nil)
  low ||= factors.min

  recode do |x|
    if x.nil?
      nil
    elsif x > low
      1
    else
      0
    end
  end
end

#diff(max_lags = 1) ⇒ Daru::Vector

Performs the difference of the series. Note: The first difference of series is X(t) - X(t-1) But, second difference of series is NOT X(t) - X(t-2) It is the first difference of the first difference

> (X(t) - X(t-1)) - (X(t-1) - X(t-2))

Arguments

  • max_lags: integer, (default: 1), number of differences reqd.

Examples:

Using #diff


ts = Daru::Vector.new((1..10).map { rand })
         # => [0.69, 0.23, 0.44, 0.71, ...]

ts.diff   # => [nil, -0.46, 0.21, 0.27, ...]

Returns:


414
415
416
417
418
419
420
421
422
# File 'lib/daru/maths/statistics/vector.rb', line 414

def diff(max_lags=1)
  ts = self
  difference = []
  max_lags.times do
    difference = ts - ts.lag
    ts = difference
  end
  difference
end

#ema(n = 10, wilder = false) ⇒ Daru::Vector

Exponential Moving Average. Calculates an exponential moving average of the series using a specified parameter. If wilder is false (the default) then the EMA uses a smoothing value of 2 / (n + 1), if it is true then it uses the Welles Wilder smoother of 1 / n.

Warning for EMA usage: EMAs are unstable for small series, as they use a lot more than n observations to calculate. The series is stable if the size of the series is >= 3.45 * (n + 1)

Examples:

Using ema


ts = Daru::Vector.new((1..100).map { rand })
         # => [0.577..., 0.123..., 0.173..., 0.233..., ...]

# first 9 observations are nil
ts.ema   # => [ ... nil, 0.455... , 0.395..., 0.323..., ... ]

Parameters:

  • n (Integer) (defaults to: 10)

    (10) Loopback length.

  • wilder (TrueClass, FalseClass) (defaults to: false)

    (false) If true, 1/n value is used for smoothing; if false, uses 2/(n+1) value

Returns:


498
499
500
501
502
503
504
505
506
507
508
509
510
511
# File 'lib/daru/maths/statistics/vector.rb', line 498

def ema(n=10, wilder=false) # rubocop:disable Metrics/AbcSize
  smoother = wilder ? 1.0 / n : 2.0 / (n + 1)
  # need to start everything from the first non-nil observation
  start = @data.index { |i| !i.nil? }
  # first n - 1 observations are nil
  base = [nil] * (start + n - 1)
  # nth observation is just a moving average
  base << @data[start...(start + n)].inject(0.0) { |s, a| a.nil? ? s : s + a } / n
  (start + n).upto size - 1 do |i|
    base << self[i] * smoother + (1 - smoother) * base.last
  end

  Daru::Vector.new(base, index: @index, name: @name)
end

#emsd(n = 10, wilder = false) ⇒ Daru::Vector

Exponential Moving Standard Deviation. Calculates an exponential moving standard deviation of the series using a specified parameter. If wilder is false (the default) then the EMSD uses a smoothing value of 2 / (n + 1), if it is true then it uses the Welles Wilder smoother of 1 / n.

Examples:

Using emsd


ts = Daru::Vector.new((1..100).map { rand })
         # => [0.400..., 0.727..., 0.862..., 0.013..., ...]

# first 9 observations are nil
ts.emsd   # => [ ... nil, 0.285... , 0.258..., 0.243..., ...]

Parameters:

  • n (Integer) (defaults to: 10)

    (10) Loopback length.

  • wilder (TrueClass, FalseClass) (defaults to: false)

    (false) If true, 1/n value is used for smoothing; if false, uses 2/(n+1) value

Returns:


569
570
571
572
573
574
575
576
# File 'lib/daru/maths/statistics/vector.rb', line 569

def emsd(n=10, wilder=false)
  result = []
  emv_return = emv(n, wilder)
  emv_return.each do |d|
    result << (d.nil? ? nil : Math.sqrt(d))
  end
  Daru::Vector.new(result, index: @index, name: @name)
end

#emv(n = 10, wilder = false) ⇒ Daru::Vector

Exponential Moving Variance. Calculates an exponential moving variance of the series using a specified parameter. If wilder is false (the default) then the EMV uses a smoothing value of 2 / (n + 1), if it is true then it uses the Welles Wilder smoother of 1 / n.

Examples:

Using emv


ts = Daru::Vector.new((1..100).map { rand })
         # => [0.047..., 0.23..., 0.836..., 0.845..., ...]

# first 9 observations are nil
ts.emv   # => [ ... nil, 0.073... , 0.082..., 0.080..., ...]

Parameters:

  • n (Integer) (defaults to: 10)

    (10) Loopback length.

  • wilder (TrueClass, FalseClass) (defaults to: false)

    (false) If true, 1/n value is used for smoothing; if false, uses 2/(n+1) value

Returns:


532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# File 'lib/daru/maths/statistics/vector.rb', line 532

def emv(n=10, wilder=false) # rubocop:disable Metrics/AbcSize
  smoother = wilder ? 1.0 / n : 2.0 / (n + 1)
  # need to start everything from the first non-nil observation
  start = @data.index { |i| !i.nil? }
  # first n - 1 observations are nil
  var_base = [nil] * (start + n - 1)
  mean_base = [nil] * (start + n - 1)
  mean_base << @data[start...(start + n)].inject(0.0) { |s, a| a.nil? ? s : s + a } / n
  # nth observation is just a moving variance_population
  var_base << @data[start...(start + n)].inject(0.0) { |s,x| x.nil? ? s : s + (x - mean_base.last)**2 } / n
  (start + n).upto size - 1 do |i|
    last = mean_base.last
    mean_base << self[i] * smoother + (1 - smoother) * last
    var_base << (1 - smoother) * var_base.last + smoother * (self[i] - last) * (self[i] - mean_base.last)
  end
  Daru::Vector.new(var_base, index: @index, name: @name)
end

#factorsObject

Retrieve unique values of non-nil data


66
67
68
# File 'lib/daru/maths/statistics/vector.rb', line 66

def factors
  reject_values(*Daru::MISSING_VALUES).uniq.reset_index!
end

#freqsObject


96
97
98
# File 'lib/daru/maths/statistics/vector.rb', line 96

def freqs
  Daru::Vector.new(frequencies)
end

#frequenciesObject


90
91
92
93
94
# File 'lib/daru/maths/statistics/vector.rb', line 90

def frequencies
  @data.each_with_object(Hash.new(0)) do |element, hash|
    hash[element] += 1 unless element.nil?
  end
end

#kurtosis(m = nil) ⇒ Object


216
217
218
219
220
221
222
223
224
# File 'lib/daru/maths/statistics/vector.rb', line 216

def kurtosis m=nil
  if @data.respond_to? :kurtosis
    @data.kurtosis
  else
    m ||= mean
    fo  = @data.inject(0) { |a, x| a + ((x - m) ** 4) }
    fo.quo((size - indexes(*Daru::MISSING_VALUES).size) * standard_deviation_sample(m) ** 4) - 3
  end
end

#macd(fast = 12, slow = 26, signal = 9) ⇒ Object

Moving Average Convergence-Divergence. Calculates the MACD (moving average convergence-divergence) of the time series - this is a comparison of a fast EMA with a slow EMA.

Arguments

  • fast: integer, (default = 12) - fast component of MACD

  • slow: integer, (default = 26) - slow component of MACD

  • signal: integer, (default = 9) - signal component of MACD

Usage

ts = Daru::Vector.new((1..100).map { rand })
         # => [0.69, 0.23, 0.44, 0.71, ...]
ts.macd(13)

Returns

Array of two Daru::Vectors - comparison of fast EMA with slow and EMA with signal value


597
598
599
600
# File 'lib/daru/maths/statistics/vector.rb', line 597

def macd(fast=12, slow=26, signal=9)
  series = ema(fast) - ema(slow)
  [series, series.ema(signal)]
end

#max(return_type = :stored_type) ⇒ Object

Maximum element of the vector.

Parameters:

  • return_type (Symbol) (defaults to: :stored_type)

    Data type of the returned value. Defaults to returning only the maximum number but passing :vector will return a Daru::Vector with the index of the corresponding maximum value.


75
76
77
78
79
80
81
82
# File 'lib/daru/maths/statistics/vector.rb', line 75

def max return_type=:stored_type
  max_value = @data.max
  if return_type == :vector
    Daru::Vector.new({index_of(max_value) => max_value}, name: @name, dtype: @dtype)
  else
    max_value
  end
end

#max_indexDaru::Vector

Return a Vector with the max element and its index.

Returns:


86
87
88
# File 'lib/daru/maths/statistics/vector.rb', line 86

def max_index
  max :vector
end

#meanObject


8
9
10
# File 'lib/daru/maths/statistics/vector.rb', line 8

def mean
  @data.mean
end

#medianObject


28
29
30
# File 'lib/daru/maths/statistics/vector.rb', line 28

def median
  @data.respond_to?(:median) ? @data.median : percentile(50)
end

#median_absolute_deviationObject Also known as: mad


50
51
52
53
# File 'lib/daru/maths/statistics/vector.rb', line 50

def median_absolute_deviation
  m = median
  recode { |val| (val - m).abs }.median
end

#minObject


20
21
22
# File 'lib/daru/maths/statistics/vector.rb', line 20

def min
  @data.min
end

#modeObject


32
33
34
# File 'lib/daru/maths/statistics/vector.rb', line 32

def mode
  frequencies.max { |a,b| a[1]<=>b[1] }.first
end

#percent_change(periods = 1) ⇒ Object

The percent_change method computes the percent change over the given number of periods.

Examples:


vector = Daru::Vector.new([4,6,6,8,10],index: ['a','f','t','i','k'])
vector.percent_change
#=>
#   <Daru::Vector:28713060 @name = nil size: 5 >
#              nil
#   a
#   f	   0.5
#   t	   0.0
#   i	   0.3333333333333333
#   k          0.25

Parameters:

  • periods (Integer) (defaults to: 1)

    (1) number of nils to insert at the beginning.


379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# File 'lib/daru/maths/statistics/vector.rb', line 379

def percent_change periods=1
  must_be_numeric!

  prev = nil
  arr = @data.each_with_index.map do |cur, i|
    if i < periods ||
       include_with_nan?(Daru::MISSING_VALUES, cur) ||
       include_with_nan?(Daru::MISSING_VALUES, prev)
      nil
    else
      (cur - prev) / prev.to_f
    end.tap { prev = cur if cur }
  end

  Daru::Vector.new(arr, index: @index, name: @name)
end

#percentile(q, strategy = :midpoint) ⇒ Object Also known as: percentil

Returns the value of the percentile q

Accepts an optional second argument specifying the strategy to interpolate when the requested percentile lies between two data points a and b Valid strategies are:

  • :midpoint (Default): (a + b) / 2

  • :linear : a + (b - a) * d where d is the decimal part of the index between a and b.

References

This is the NIST recommended method (en.wikipedia.org/wiki/Percentile#NIST_method)


244
245
246
247
248
249
250
251
252
253
# File 'lib/daru/maths/statistics/vector.rb', line 244

def percentile(q, strategy=:midpoint)
  case strategy
  when :midpoint
    midpoint_percentile(q)
  when :linear
    linear_percentile(q)
  else
    raise ArgumentError, "Unknown strategy #{strategy}"
  end
end

#productObject


16
17
18
# File 'lib/daru/maths/statistics/vector.rb', line 16

def product
  @data.product
end

#proportion(value = 1) ⇒ Object


144
145
146
# File 'lib/daru/maths/statistics/vector.rb', line 144

def proportion value=1
  frequencies[value].quo(size - count_values(*Daru::MISSING_VALUES)).to_f
end

#proportionsObject


100
101
102
103
104
105
# File 'lib/daru/maths/statistics/vector.rb', line 100

def proportions
  len = size - count_values(*Daru::MISSING_VALUES)
  frequencies.each_with_object({}) do |(el, count), hash|
    hash[el] = count / len
  end
end

#rangeObject


24
25
26
# File 'lib/daru/maths/statistics/vector.rb', line 24

def range
  max - min
end

#rankedObject


107
108
109
110
111
112
113
114
115
# File 'lib/daru/maths/statistics/vector.rb', line 107

def ranked
  sum = 0
  r = frequencies.sort.each_with_object({}) do |(el, count), memo|
    memo[el] = ((sum + 1) + (sum + count)).quo(2)
    sum += count
  end

  recode { |e| r[e] }
end

#rolling(function, n = 10) ⇒ Daru::Vector

Calculate the rolling function for a loopback value.

Examples:

Using #rolling

ts = Daru::Vector.new((1..100).map { rand })
         # => [0.69, 0.23, 0.44, 0.71, ...]
# first 9 observations are nil
ts.rolling(:mean)    # => [ ... nil, 0.484... , 0.445... , 0.513 ... , ... ]

Parameters:

  • function (Symbol)

    The rolling function to be applied. Can be any function applicatble to Daru::Vector (:mean, :median, :count, :min, :max, etc.)

  • n (Integer) (defaults to: 10)

    (10) A non-negative value which serves as the loopback length.

Returns:


436
437
438
439
440
441
442
443
# File 'lib/daru/maths/statistics/vector.rb', line 436

def rolling function, n=10
  Daru::Vector.new(
    [nil] * (n - 1) +
    (0..(size - n)).map do |i|
      Daru::Vector.new(@data[i...(i + n)]).send(function)
    end, index: @index
  )
end

#rolling_countObject

Calculate rolling non-missing count

Parameters:

  • n (Integer)

    (10) Loopback length


469
470
471
472
473
# File 'lib/daru/maths/statistics/vector.rb', line 469

[:count, :mean, :median, :max, :min, :sum, :std, :variance].each do |meth|
  define_method("rolling_#{meth}".to_sym) do |n=10|
    rolling(meth, n)
  end
end

#rolling_maxObject

Calculate rolling max value

Parameters:

  • n (Integer)

    (10) Loopback length


469
470
471
472
473
# File 'lib/daru/maths/statistics/vector.rb', line 469

[:count, :mean, :median, :max, :min, :sum, :std, :variance].each do |meth|
  define_method("rolling_#{meth}".to_sym) do |n=10|
    rolling(meth, n)
  end
end

#rolling_meanObject

Calculate rolling average

Parameters:

  • n (Integer)

    (10) Loopback length


469
470
471
472
473
# File 'lib/daru/maths/statistics/vector.rb', line 469

[:count, :mean, :median, :max, :min, :sum, :std, :variance].each do |meth|
  define_method("rolling_#{meth}".to_sym) do |n=10|
    rolling(meth, n)
  end
end

#rolling_medianObject

Calculate rolling median

Parameters:

  • n (Integer)

    (10) Loopback length


469
470
471
472
473
# File 'lib/daru/maths/statistics/vector.rb', line 469

[:count, :mean, :median, :max, :min, :sum, :std, :variance].each do |meth|
  define_method("rolling_#{meth}".to_sym) do |n=10|
    rolling(meth, n)
  end
end

#rolling_minObject

Calculate rolling min value

Parameters:

  • n (Integer)

    (10) Loopback length


469
470
471
472
473
# File 'lib/daru/maths/statistics/vector.rb', line 469

[:count, :mean, :median, :max, :min, :sum, :std, :variance].each do |meth|
  define_method("rolling_#{meth}".to_sym) do |n=10|
    rolling(meth, n)
  end
end

#rolling_stdObject

Calculate rolling standard deviation

Parameters:

  • n (Integer)

    (10) Loopback length


469
470
471
472
473
# File 'lib/daru/maths/statistics/vector.rb', line 469

[:count, :mean, :median, :max, :min, :sum, :std, :variance].each do |meth|
  define_method("rolling_#{meth}".to_sym) do |n=10|
    rolling(meth, n)
  end
end

#rolling_sumObject

Calculate rolling sum

Parameters:

  • n (Integer)

    (10) Loopback length


469
470
471
472
473
# File 'lib/daru/maths/statistics/vector.rb', line 469

[:count, :mean, :median, :max, :min, :sum, :std, :variance].each do |meth|
  define_method("rolling_#{meth}".to_sym) do |n=10|
    rolling(meth, n)
  end
end

#rolling_varianceObject

Calculate rolling variance

Parameters:

  • n (Integer)

    (10) Loopback length


469
470
471
472
473
# File 'lib/daru/maths/statistics/vector.rb', line 469

[:count, :mean, :median, :max, :min, :sum, :std, :variance].each do |meth|
  define_method("rolling_#{meth}".to_sym) do |n=10|
    rolling(meth, n)
  end
end

#sample_with_replacement(sample = 1) ⇒ Object

Returns an random sample of size n, with replacement, only with non-nil data.

In all the trails, every item have the same probability of been selected.


338
339
340
341
342
343
344
345
346
# File 'lib/daru/maths/statistics/vector.rb', line 338

def sample_with_replacement(sample=1)
  if @data.respond_to? :sample_with_replacement
    @data.sample_with_replacement sample
  else
    valid = indexes(*Daru::MISSING_VALUES).empty? ? self : reject_values(*Daru::MISSING_VALUES)
    vds = valid.size
    (0...sample).collect { valid[rand(vds)] }
  end
end

#sample_without_replacement(sample = 1) ⇒ Object

Returns an random sample of size n, without replacement, only with valid data.

Every element could only be selected once.

A sample of the same size of the vector is the vector itself.


354
355
356
357
358
359
360
# File 'lib/daru/maths/statistics/vector.rb', line 354

def sample_without_replacement(sample=1)
  if @data.respond_to? :sample_without_replacement
    @data.sample_without_replacement sample
  else
    raw_sample_without_replacement(sample)
  end
end

#skew(m = nil) ⇒ Object

Calculate skewness using (sigma(xi - mean)^3)/((N)*std_dev_sample^3)


206
207
208
209
210
211
212
213
214
# File 'lib/daru/maths/statistics/vector.rb', line 206

def skew m=nil
  if @data.respond_to? :skew
    @data.skew
  else
    m ||= mean
    th  = @data.inject(0) { |memo, val| memo + ((val - m)**3) }
    th.quo((size - indexes(*Daru::MISSING_VALUES).size) * (standard_deviation_sample(m)**3))
  end
end

#standard_deviation_population(m = nil) ⇒ Object Also known as: sdp


187
188
189
190
191
192
193
194
# File 'lib/daru/maths/statistics/vector.rb', line 187

def standard_deviation_population m=nil
  m ||= mean
  if @data.respond_to? :standard_deviation_population
    @data.standard_deviation_population(m)
  else
    Math.sqrt(variance_population(m))
  end
end

#standard_deviation_sample(m = nil) ⇒ Object Also known as: sds, sd


196
197
198
199
200
201
202
203
# File 'lib/daru/maths/statistics/vector.rb', line 196

def standard_deviation_sample m=nil
  m ||= mean
  if @data.respond_to? :standard_deviation_sample
    @data.standard_deviation_sample m
  else
    Math.sqrt(variance_sample(m))
  end
end

#standard_errorObject Also known as: se


57
58
59
# File 'lib/daru/maths/statistics/vector.rb', line 57

def standard_error
  standard_deviation_sample/Math.sqrt(size - count_values(*Daru::MISSING_VALUES))
end

#standardize(use_population = false) ⇒ Object

Standardize data.

Arguments

  • use_population - Pass as true if you want to use population

standard deviation instead of sample standard deviation.


283
284
285
286
287
288
289
# File 'lib/daru/maths/statistics/vector.rb', line 283

def standardize use_population=false
  m ||= mean
  sd = use_population ? sdp : sds
  return Daru::Vector.new([nil]*size) if m.nil? || sd == 0.0

  vector_standardized_compute m, sd
end

#sumObject


12
13
14
# File 'lib/daru/maths/statistics/vector.rb', line 12

def sum
  @data.sum
end

#sum_of_squared_deviationObject


61
62
63
# File 'lib/daru/maths/statistics/vector.rb', line 61

def sum_of_squared_deviation
  (@data.inject(0) { |a,x| x**2 + a } - (sum**2).quo(size - count_values(*Daru::MISSING_VALUES)).to_f).to_f
end

#sum_of_squares(m = nil) ⇒ Object Also known as: ss


180
181
182
183
184
185
# File 'lib/daru/maths/statistics/vector.rb', line 180

def sum_of_squares(m=nil)
  m ||= mean
  reject_values(*Daru::MISSING_VALUES).data.inject(0) { |memo, val|
    memo + (val - m)**2
  }
end

#value_countsObject

Count number of occurrences of each value in the Vector


136
137
138
139
140
141
142
# File 'lib/daru/maths/statistics/vector.rb', line 136

def value_counts
  values = @data.each_with_object(Hash.new(0)) do |d, memo|
    memo[d] += 1
  end

  Daru::Vector.new(values)
end

#variance_population(m = nil) ⇒ Object

Population variance with denominator (N)


159
160
161
162
163
164
165
166
# File 'lib/daru/maths/statistics/vector.rb', line 159

def variance_population m=nil
  m ||= mean
  if @data.respond_to? :variance_population
    @data.variance_population m
  else
    sum_of_squares(m).quo(size - count_values(*Daru::MISSING_VALUES)).to_f
  end
end

#variance_sample(m = nil) ⇒ Object Also known as: variance

Sample variance with denominator (N-1)


149
150
151
152
153
154
155
156
# File 'lib/daru/maths/statistics/vector.rb', line 149

def variance_sample m=nil
  m ||= mean
  if @data.respond_to? :variance_sample
    @data.variance_sample m
  else
    sum_of_squares(m).quo(size - count_values(*Daru::MISSING_VALUES) - 1)
  end
end

#vector_centered_compute(m) ⇒ Object


324
325
326
327
328
329
330
331
# File 'lib/daru/maths/statistics/vector.rb', line 324

def vector_centered_compute(m)
  if @data.respond_to? :vector_centered_compute
    @data.vector_centered_compute(m)
  else
    Daru::Vector.new @data.collect { |x| x.nil? ? nil : x.to_f-m },
      index: index, name: name, dtype: dtype
  end
end

#vector_percentileObject

Replace each non-nil value in the vector with its percentile.


310
311
312
313
# File 'lib/daru/maths/statistics/vector.rb', line 310

def vector_percentile
  c = size - indexes(*Daru::MISSING_VALUES).size
  ranked.recode! { |i| i.nil? ? nil : (i.quo(c)*100).to_f }
end

#vector_standardized_compute(m, sd) ⇒ Object


315
316
317
318
319
320
321
322
# File 'lib/daru/maths/statistics/vector.rb', line 315

def vector_standardized_compute(m,sd)
  if @data.respond_to? :vector_standardized_compute
    @data.vector_standardized_compute(m,sd)
  else
    Daru::Vector.new @data.collect { |x| x.nil? ? nil : (x.to_f - m).quo(sd) },
      index: index, name: name, dtype: dtype
  end
end