Class: Daru::Vector
- Extended by:
- Gem::Deprecate
- Includes:
- Maths::Arithmetic::Vector, Maths::Statistics::Vector, Enumerable
- Defined in:
- lib/daru/vector.rb,
lib/daru/extensions/rserve.rb
Overview
rubocop:disable Metrics/ClassLength
Constant Summary collapse
- DEFAULT_SORTER =
lambda { |(lv, li), (rv, ri)| case when lv.nil? && rv.nil? li <=> ri when lv.nil? -1 when rv.nil? 1 else lv <=> rv end }
- DATE_REGEXP =
/^(\d{2}-\d{2}-\d{4}|\d{4}-\d{2}-\d{2})$/
Instance Attribute Summary collapse
-
#data ⇒ Object
readonly
Store vector data in an array.
-
#dtype ⇒ Object
readonly
The underlying dtype of the Vector.
-
#index ⇒ Object
The row index.
-
#labels ⇒ Object
Store a hash of labels for values.
-
#missing_positions ⇒ Object
readonly
An Array or the positions in the vector that are being treated as ‘missing’.
-
#name ⇒ Object
readonly
The name of the Daru::Vector.
-
#nm_dtype ⇒ Object
readonly
If the dtype is :nmatrix, this attribute represents the data type of the underlying NMatrix object.
-
#plotting_library ⇒ Object
Ploting library being used for this vector.
Class Method Summary collapse
-
.[](*indexes) ⇒ Object
Create a vector using (almost) any object * Array: flattened * Range: transformed using to_a * Daru::Vector * Numeric and string values.
-
._load(data) ⇒ Object
:nodoc:.
- .coerce(data, options = {}) ⇒ Object
-
.new_with_size(n, opts = {}, &block) ⇒ Object
Create a new vector by specifying the size and an optional value and block to generate values.
Instance Method Summary collapse
-
#==(other) ⇒ Object
Two vectors are equal if the have the exact same index values corresponding with the exact same elements.
-
#[](*input_indexes) ⇒ Object
Get one or more elements with specified index or a range.
-
#[]=(*indexes, val) ⇒ Object
Just like in Hashes, you can specify the index label of the Daru::Vector and assign an element an that place in the Daru::Vector.
-
#_dump ⇒ Object
:nodoc:.
- #all?(&block) ⇒ Boolean
- #any?(&block) ⇒ Boolean
-
#at(*positions) ⇒ object
Returns vector of values given positional values.
-
#bootstrap(estimators, nr, s = nil) ⇒ Object
Bootstrap Generate
nr
resamples (with replacement) of sizes
from vector, computing each estimate fromestimators
over each resample. -
#cast(opts = {}) ⇒ Object
Cast a vector to a new data type.
-
#category? ⇒ true, false
Tells if vector is categorical or not.
-
#clone_structure ⇒ Object
Copies the structure of the vector (i.e the index, size, etc.) and fills all all values with nils.
-
#concat(element, index) ⇒ Object
(also: #push, #<<)
Append an element to the vector by specifying the element and index.
-
#count_values(*values) ⇒ Integer
Count the number of values specified.
-
#cut(partitions, opts = {}) ⇒ Daru::Vector
Partition a numeric variable into categories.
-
#daru_vector ⇒ Object
(also: #dv)
:nocov:.
-
#db_type ⇒ Object
Returns the database type for the vector, according to its content.
-
#delete(element) ⇒ Object
Delete an element by value.
-
#delete_at(index) ⇒ Object
Delete element by index.
-
#delete_if ⇒ Object
Delete an element if block returns true.
- #detach_index ⇒ Object
-
#dup ⇒ Daru::Vector
Duplicated a vector.
- #each(&block) ⇒ Object
- #each_index(&block) ⇒ Object
- #each_with_index(&block) ⇒ Object
- #empty? ⇒ Boolean
-
#has_index?(index) ⇒ Boolean
Returns true if an index exists.
-
#has_missing_data? ⇒ Boolean
(also: #flawed?)
Reports whether missing data is present in the Vector.
- #head(q = 10) ⇒ Object
-
#in(other) ⇒ Object
Comparator for checking if any of the elements in other exist in self.
-
#include_values?(*values) ⇒ true, false
Check if any one of mentioned values occur in the vector.
-
#index_of(element) ⇒ Object
Get index of element.
-
#indexes(*values) ⇒ Array
Return indexes of values specified.
-
#initialize(source, opts = {}) ⇒ Vector
constructor
Create a Vector object.
-
#inspect(spacing = 20, threshold = 15) ⇒ Object
Over rides original inspect for pretty printing in irb.
-
#is_nil? ⇒ Boolean
Returns a vector which has true in the position where the element in self is nil, and false otherwise.
-
#jackknife(estimators, k = 1) ⇒ Object
Jacknife Returns a dataset with jacknife delete-
k
estimators
estimators
could be: a) Hash with variable names as keys and lambdas as values a.jacknife(:log_s2=>lambda {|v| Math.log(v.variance)}) b) Array with method names to jacknife a.jacknife([:mean, :sd]) c) A single method to jacknife a.jacknife(:mean)k
represent the block size for block jacknife. -
#keep_if ⇒ Object
Keep an element if block returns true.
-
#lag(k = 1) ⇒ Object
Lags the series by k periods.
- #map!(&block) ⇒ Object
- #method_missing(name, *args, &block) ⇒ Object
-
#n_valid ⇒ Object
number of non-missing elements.
-
#not_nil? ⇒ Boolean
Opposite of #is_nil?.
- #numeric? ⇒ Boolean
- #object? ⇒ Boolean
-
#only_missing(as_a = :vector) ⇒ Object
Returns a Vector containing only missing data (preserves indexes).
-
#only_numerics ⇒ Object
Returns a Vector with only numerical data.
-
#only_valid(as_a = :vector, _duplicate = true) ⇒ Object
Creates a new vector consisting only of non-nil data.
- #positions(*values) ⇒ Object
-
#recode(dt = nil, &block) ⇒ Object
Like map, but returns a Daru::Vector with the returned values.
-
#recode!(dt = nil, &block) ⇒ Object
Destructive version of recode!.
-
#reindex(new_index) ⇒ Object
Create a new vector with a different index, and preserve the indexing of current elements.
-
#reindex!(new_index) ⇒ Daru::Vector
Sets new index for vector.
-
#reject_values(*values) ⇒ Daru::Vector
Return a vector with specified values removed.
-
#rename(new_name) ⇒ Object
(also: #name=)
Give the vector a new name.
-
#reorder(order) ⇒ Object
Non-destructive version of #reorder!.
-
#reorder!(order) ⇒ Object
Reorder the vector with given positions.
-
#replace_nils(replacement) ⇒ Object
Non-destructive version of #replace_nils!.
-
#replace_nils!(replacement) ⇒ Object
Replace all nils in the vector with the value passed as an argument.
-
#replace_values(old_values, new_value) ⇒ Daru::Vector
Replaces specified values with a new value.
-
#report_building(b) ⇒ Object
:nocov:.
- #reset_index! ⇒ Object
- #resort_index(vector_index, opts) ⇒ Object
- #respond_to_missing?(name, include_private = false) ⇒ Boolean
-
#save(filename) ⇒ Object
Save the vector to a file.
-
#set_at(positions, val) ⇒ Object
Change value at given positions.
- #size ⇒ Object
-
#sort(opts = {}, &block) ⇒ Object
Sorts a vector according to its values.
-
#sorted_data(&block) ⇒ Object
Just sort the data and get an Array in return using Enumerable#sort.
-
#split_by_separator(sep = ',') ⇒ Object
Returns a hash of Vectors, defined by the different values defined on the fields Example:.
- #split_by_separator_freq(sep = ',') ⇒ Object
-
#splitted(sep = ',') ⇒ Object
Return an Array with the data splitted by a separator.
-
#summary(method = :to_text) ⇒ Object
Create a summary of the Vector using Report Builder.
- #tail(q = 10) ⇒ Object
-
#to_a ⇒ Object
Return an array.
-
#to_category(opts = {}) ⇒ Daru::Vector
Converts a non category type vector to category type vector.
-
#to_df ⇒ Daru::DataFrame
The vector as a single-vector dataframe.
-
#to_gsl ⇒ Object
If dtype != gsl, will convert data to GSL::Vector with to_a.
-
#to_h ⇒ Object
Convert to hash (explicit).
-
#to_html(threshold = 30) ⇒ Object
Convert to html for iruby.
-
#to_json ⇒ Object
Convert the hash from to_h to json.
-
#to_matrix(axis = :horizontal) ⇒ Object
Convert Vector to a horizontal or vertical Ruby Matrix.
-
#to_nmatrix(axis = :horizontal) ⇒ NMatrix
Convert vector to nmatrix object.
-
#to_REXP ⇒ Object
rubocop:disable Style/MethodName.
- #to_s ⇒ Object
-
#type ⇒ Object
The type of data contained in the vector.
-
#uniq ⇒ Object
Keep only unique elements of the vector alongwith their indexes.
-
#verify ⇒ Object
Reports all values that doesn’t comply with a condition.
-
#where(bool_array) ⇒ Object
Return a new vector based on the contents of a boolean array.
Methods included from Maths::Statistics::Vector
#acf, #acvf, #average_deviation_population, #box_cox_transformation, #center, #coefficient_of_variation, #count, #covariance_population, #covariance_sample, #cumsum, #describe, #dichotomize, #diff, #ema, #emsd, #emv, #factors, #freqs, #frequencies, #kurtosis, #macd, #max, #max_index, #mean, #median, #median_absolute_deviation, #min, #mode, #percent_change, #percentile, #product, #proportion, #proportions, #range, #ranked, #rolling, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_sum, #rolling_variance, #sample_with_replacement, #sample_without_replacement, #skew, #standard_deviation_population, #standard_deviation_sample, #standard_error, #standardize, #sum, #sum_of_squared_deviation, #sum_of_squares, #value_counts, #variance_population, #variance_sample, #vector_centered_compute, #vector_percentile, #vector_standardized_compute
Methods included from Maths::Arithmetic::Vector
#%, #*, #**, #+, #-, #/, #abs, #exp, #round, #sqrt
Constructor Details
#initialize(source, opts = {}) ⇒ Vector
Create a Vector object.
Arguments
Hash. If Array, a numeric index will be created if not supplied in the options. Specifying more index elements than actual values in source will insert nil into the surplus index elements. When a Hash is specified, the keys of the Hash are taken as the index elements and the corresponding values as the values that populate the vector.
Options
-
:name
- Name of the vector -
:index
- Index of the vector -
:dtype
- The underlying data type. Can be :array, :nmatrix or :gsl.
Default :array.
-
:nm_dtype
- For NMatrix, the data type of the numbers. See the NMatrix docs for
further information on supported data type.
-
:missing_values
- An Array of the values that are to be treated as ‘missing’.
nil is the default missing value.
Usage
vecarr = Daru::Vector.new [1,2,3,4], index: [:a, :e, :i, :o]
vechsh = Daru::Vector.new({a: 1, e: 2, i: 3, o: 4})
178 179 180 181 182 183 184 185 186 187 |
# File 'lib/daru/vector.rb', line 178 def initialize source, opts={} if opts[:type] == :category # Initialize category type vector extend Daru::Category initialize_category source, opts else # Initialize non-category type vector initialize_vector source, opts end end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(name, *args, &block) ⇒ Object
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 |
# File 'lib/daru/vector.rb', line 1265 def method_missing(name, *args, &block) # FIXME: it is shamefully fragile. Should be either made stronger # (string/symbol dychotomy, informative errors) or removed totally. - zverok if name =~ /(.+)\=/ self[$1.to_sym] = args[0] elsif has_index?(name) self[name] else super end end |
Instance Attribute Details
#data ⇒ Object (readonly)
Store vector data in an array
142 143 144 |
# File 'lib/daru/vector.rb', line 142 def data @data end |
#dtype ⇒ Object (readonly)
The underlying dtype of the Vector. Can be either :array, :nmatrix or :gsl.
130 131 132 |
# File 'lib/daru/vector.rb', line 130 def dtype @dtype end |
#index ⇒ Object
The row index. Can be either Daru::Index or Daru::MultiIndex.
128 129 130 |
# File 'lib/daru/vector.rb', line 128 def index @index end |
#labels ⇒ Object
Store a hash of labels for values. Supplementary only. Recommend using index for proper usage.
140 141 142 |
# File 'lib/daru/vector.rb', line 140 def labels @labels end |
#missing_positions ⇒ Object (readonly)
An Array or the positions in the vector that are being treated as ‘missing’.
136 137 138 |
# File 'lib/daru/vector.rb', line 136 def missing_positions @missing_positions end |
#name ⇒ Object (readonly)
The name of the Daru::Vector. String.
126 127 128 |
# File 'lib/daru/vector.rb', line 126 def name @name end |
#nm_dtype ⇒ Object (readonly)
If the dtype is :nmatrix, this attribute represents the data type of the underlying NMatrix object. See NMatrix docs for more details on NMatrix data types.
134 135 136 |
# File 'lib/daru/vector.rb', line 134 def nm_dtype @nm_dtype end |
#plotting_library ⇒ Object
Ploting library being used for this vector
144 145 146 |
# File 'lib/daru/vector.rb', line 144 def plotting_library @plotting_library end |
Class Method Details
.[](*indexes) ⇒ Object
Create a vector using (almost) any object
-
Array: flattened
-
Range: transformed using to_a
-
Daru::Vector
-
Numeric and string values
Description
The ‘Vector.[]` class method creates a vector from almost any object that has a `#to_a` method defined on it. It is similar to R’s ‘c` method.
Usage
a = Daru::Vector[1,2,3,4,6..10]
#=>
# <Daru::Vector:99448510 @name = nil @size = 9 >
# nil
# 0 1
# 1 2
# 2 3
# 3 4
# 4 6
# 5 7
# 6 8
# 7 9
# 8 10
66 67 68 69 70 71 |
# File 'lib/daru/vector.rb', line 66 def [](*indexes) values = indexes.map do |a| a.respond_to?(:to_a) ? a.to_a : a end.flatten Daru::Vector.new(values) end |
._load(data) ⇒ Object
:nodoc:
73 74 75 76 77 78 79 |
# File 'lib/daru/vector.rb', line 73 def _load(data) # :nodoc: h = Marshal.load(data) Daru::Vector.new(h[:data], index: h[:index], name: h[:name], dtype: h[:dtype], missing_values: h[:missing_values]) end |
.coerce(data, options = {}) ⇒ Object
81 82 83 84 85 86 87 88 89 90 |
# File 'lib/daru/vector.rb', line 81 def coerce(data, ={}) case data when Daru::Vector data when Array, Hash new(data, ) else raise ArgumentError, "Can't coerce #{data.class} to #{self}" end end |
.new_with_size(n, opts = {}, &block) ⇒ Object
Create a new vector by specifying the size and an optional value and block to generate values.
Description
The new_with_size class method lets you create a Daru::Vector by specifying the size as the argument. The optional block, if supplied, is run once for populating each element in the Vector.
The result of each run of the block is the value that is ultimately assigned to that position in the Vector.
Options
:value All the rest like .new
33 34 35 36 37 |
# File 'lib/daru/vector.rb', line 33 def new_with_size n, opts={}, &block value = opts.delete :value block ||= ->(_) { value } Daru::Vector.new Array.new(n, &block), opts end |
Instance Method Details
#==(other) ⇒ Object
Two vectors are equal if the have the exact same index values corresponding with the exact same elements. Name is ignored.
296 297 298 299 300 301 302 303 304 |
# File 'lib/daru/vector.rb', line 296 def == other case other when Daru::Vector @index == other.index && size == other.size && @index.all? { |index| self[index] == other[index] } else super end end |
#[](*input_indexes) ⇒ Object
Get one or more elements with specified index or a range.
Usage
# For vectors employing single layer Index
v[:one, :two] # => Daru::Vector with indexes :one and :two
v[:one] # => Single element
v[:one..:three] # => Daru::Vector with indexes :one, :two and :three
# For vectors employing hierarchial multi index
213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# File 'lib/daru/vector.rb', line 213 def [](*input_indexes) # Get array of positions indexes positions = @index.pos(*input_indexes) # If one object is asked return it return @data[positions] if positions.is_a? Numeric # Form a new Vector using positional indexes Daru::Vector.new( positions.map { |loc| @data[loc] }, name: @name, index: @index.subset(*input_indexes), dtype: @dtype ) end |
#[]=(*indexes, val) ⇒ Object
284 285 286 287 288 289 290 291 292 |
# File 'lib/daru/vector.rb', line 284 def []=(*indexes, val) cast(dtype: :array) if val.nil? && dtype != :array guard_type_check(val) modify_vector(indexes, val) update_position_cache end |
#_dump ⇒ Object
:nodoc:
1235 1236 1237 1238 1239 1240 1241 1242 |
# File 'lib/daru/vector.rb', line 1235 def _dump(*) # :nodoc: Marshal.dump( data: @data.to_a, dtype: @dtype, name: @name, index: @index ) end |
#all?(&block) ⇒ Boolean
552 553 554 |
# File 'lib/daru/vector.rb', line 552 def all? &block @data.data.all?(&block) end |
#any?(&block) ⇒ Boolean
548 549 550 |
# File 'lib/daru/vector.rb', line 548 def any? &block @data.data.any?(&block) end |
#at(*positions) ⇒ object
Returns vector of values given positional values
238 239 240 241 242 243 244 245 246 247 248 249 250 |
# File 'lib/daru/vector.rb', line 238 def at *positions # to be used to form index original_positions = positions positions = coerce_positions(*positions) validate_positions(*positions) if positions.is_a? Integer @data[positions] else values = positions.map { |pos| @data[pos] } Daru::Vector.new values, index: @index.at(*original_positions), dtype: dtype end end |
#bootstrap(estimators, nr, s = nil) ⇒ Object
Bootstrap
Generate nr
resamples (with replacement) of size s
from vector, computing each estimate from estimators
over each resample. estimators
could be a) Hash with variable names as keys and lambdas as values
a.bootstrap(:log_s2=>lambda {|v| Math.log(v.variance)},1000)
b) Array with names of method to bootstrap
a.bootstrap([:mean, :sd],1000)
c) A single method to bootstrap
a.jacknife(:mean, 1000)
If s is nil, is set to vector size by default.
Returns a DataFrame where each vector is a vector of length nr
containing the computed resample estimates.
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 |
# File 'lib/daru/vector.rb', line 1034 def bootstrap(estimators, nr, s=nil) s ||= size h_est, es, bss = prepare_bootstrap(estimators) nr.times do bs = sample_with_replacement(s) es.each do |estimator| bss[estimator].push(h_est[estimator].call(bs)) end end es.each do |est| bss[est] = Daru::Vector.new bss[est] end Daru::DataFrame.new bss end |
#cast(opts = {}) ⇒ Object
Cast a vector to a new data type.
Options
-
:dtype
- :array for Ruby Array. :nmatrix for NMatrix.
479 480 481 482 483 484 485 |
# File 'lib/daru/vector.rb', line 479 def cast opts={} dt = opts[:dtype] raise ArgumentError, "Unsupported dtype #{opts[:dtype]}" unless dt == :array || dt == :nmatrix || dt == :gsl @data = cast_vector_to dt unless @dtype == dt end |
#category? ⇒ true, false
Tells if vector is categorical or not.
528 529 530 |
# File 'lib/daru/vector.rb', line 528 def category? type == :category end |
#clone_structure ⇒ Object
Copies the structure of the vector (i.e the index, size, etc.) and fills all all values with nils.
1222 1223 1224 |
# File 'lib/daru/vector.rb', line 1222 def clone_structure Daru::Vector.new(([nil]*size), name: @name, index: @index.dup) end |
#concat(element, index) ⇒ Object Also known as: push, <<
Append an element to the vector by specifying the element and index
463 464 465 466 467 468 469 470 |
# File 'lib/daru/vector.rb', line 463 def concat element, index raise IndexError, 'Expected new unique index' if @index.include? index @index |= [index] @data[@index[index]] = element update_position_cache end |
#count_values(*values) ⇒ Integer
Count the number of values specified
798 799 800 |
# File 'lib/daru/vector.rb', line 798 def count_values(*values) positions(*values).size end |
#cut(partitions, opts = {}) ⇒ Daru::Vector
Partition a numeric variable into categories.
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 |
# File 'lib/daru/vector.rb', line 1299 def cut partitions, opts={} close_at, labels = opts[:close_at] || :right, opts[:labels] partitions = partitions.to_a values = to_a.map { |val| cut_find_category partitions, val, close_at } cats = cut_categories(partitions, close_at) dv = Daru::Vector.new values, index: @index, type: :category, categories: cats # Rename categories if new labels provided if labels dv.rename_categories Hash[cats.zip(labels)] else dv end end |
#daru_vector ⇒ Object Also known as: dv
:nocov:
1245 1246 1247 |
# File 'lib/daru/vector.rb', line 1245 def daru_vector(*) self end |
#db_type ⇒ Object
Returns the database type for the vector, according to its content
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 |
# File 'lib/daru/vector.rb', line 1206 def db_type # first, detect any character not number case when @data.any? { |v| v.to_s =~ DATE_REGEXP } 'DATE' when @data.any? { |v| v.to_s =~ /[^0-9e.-]/ } 'VARCHAR (255)' when @data.any? { |v| v.to_s =~ /\./ } 'DOUBLE' else 'INTEGER' end end |
#delete(element) ⇒ Object
Delete an element by value
488 489 490 |
# File 'lib/daru/vector.rb', line 488 def delete element delete_at index_of(element) end |
#delete_at(index) ⇒ Object
Delete element by index
493 494 495 496 497 498 |
# File 'lib/daru/vector.rb', line 493 def delete_at index @data.delete_at @index[index] @index = Daru::Index.new(@index.to_a - [index]) update_position_cache end |
#delete_if ⇒ Object
Delete an element if block returns true. Destructive.
630 631 632 633 634 635 636 637 638 639 640 641 |
# File 'lib/daru/vector.rb', line 630 def delete_if return to_enum(:delete_if) unless block_given? keep_e, keep_i = each_with_index.select { |n, _i| !yield(n) }.transpose @data = cast_vector_to @dtype, keep_e @index = Daru::Index.new(keep_i) update_position_cache self end |
#detach_index ⇒ Object
773 774 775 776 777 778 |
# File 'lib/daru/vector.rb', line 773 def detach_index Daru::DataFrame.new( index: @index.to_a, values: @data.to_a ) end |
#dup ⇒ Daru::Vector
Duplicated a vector
1015 1016 1017 |
# File 'lib/daru/vector.rb', line 1015 def dup Daru::Vector.new @data.dup, name: @name, index: @index.dup end |
#each(&block) ⇒ Object
97 98 99 100 101 102 |
# File 'lib/daru/vector.rb', line 97 def each(&block) return to_enum(:each) unless block_given? @data.each(&block) self end |
#each_index(&block) ⇒ Object
104 105 106 107 108 109 |
# File 'lib/daru/vector.rb', line 104 def each_index(&block) return to_enum(:each_index) unless block_given? @index.each(&block) self end |
#each_with_index(&block) ⇒ Object
111 112 113 114 115 116 117 |
# File 'lib/daru/vector.rb', line 111 def each_with_index &block return to_enum(:each_with_index) unless block_given? @data.to_a.zip(@index.to_a).each(&block) self end |
#empty? ⇒ Boolean
430 431 432 |
# File 'lib/daru/vector.rb', line 430 def empty? @index.empty? end |
#has_index?(index) ⇒ Boolean
Returns true if an index exists
803 804 805 |
# File 'lib/daru/vector.rb', line 803 def has_index? index @index.include? index end |
#has_missing_data? ⇒ Boolean Also known as: flawed?
Reports whether missing data is present in the Vector.
443 444 445 |
# File 'lib/daru/vector.rb', line 443 def has_missing_data? !indexes(*Daru::MISSING_VALUES).empty? end |
#head(q = 10) ⇒ Object
421 422 423 |
# File 'lib/daru/vector.rb', line 421 def head q=10 self[0..(q-1)] end |
#in(other) ⇒ Object
Comparator for checking if any of the elements in other exist in self.
372 373 374 375 376 377 378 379 |
# File 'lib/daru/vector.rb', line 372 def in other other = Hash[other.zip(Array.new(other.size, 0))] Daru::Core::Query::BoolArray.new( @data.each_with_object([]) do |d, memo| memo << (other.key?(d) ? true : false) end ) end |
#include_values?(*values) ⇒ true, false
Check if any one of mentioned values occur in the vector
458 459 460 |
# File 'lib/daru/vector.rb', line 458 def include_values?(*values) values.any? { |v| include_with_nan? @data, v } end |
#index_of(element) ⇒ Object
Get index of element
533 534 535 536 537 538 |
# File 'lib/daru/vector.rb', line 533 def index_of element case dtype when :array then @index.key @data.index { |x| x.eql? element } else @index.key @data.index(element) end end |
#indexes(*values) ⇒ Array
Return indexes of values specified
1153 1154 1155 |
# File 'lib/daru/vector.rb', line 1153 def indexes(*values) index.to_a.values_at(*positions(*values)) end |
#inspect(spacing = 20, threshold = 15) ⇒ Object
Over rides original inspect for pretty printing in irb
928 929 930 931 932 933 934 935 936 937 938 939 |
# File 'lib/daru/vector.rb', line 928 def inspect spacing=20, threshold=15 row_headers = index.is_a?(MultiIndex) ? index.sparse_tuples : index.to_a "#<#{self.class}(#{size})#{':cataegory' if category?}>\n" + Formatters::Table.format( to_a.lazy.map { |v| [v] }, headers: @name && [@name], row_headers: row_headers, threshold: threshold, spacing: spacing ) end |
#is_nil? ⇒ Boolean
726 727 728 729 |
# File 'lib/daru/vector.rb', line 726 def is_nil? # FIXME: EXTREMELY bad name for method not returning boolean - zverok, 2016-05-18 recode(&:nil?) end |
#jackknife(estimators, k = 1) ⇒ Object
Jacknife
Returns a dataset with jacknife delete-k
estimators
estimators
could be: a) Hash with variable names as keys and lambdas as values
a.jacknife(:log_s2=>lambda {|v| Math.log(v.variance)})
b) Array with method names to jacknife
a.jacknife([:mean, :sd])
c) A single method to jacknife
a.jacknife(:mean)
k
represent the block size for block jacknife. By default is set to 1, for classic delete-one jacknife.
Returns a dataset where each vector is an vector of length cases
/k
containing the computed jacknife estimates.
Reference:
-
Sawyer, S. (2005). Resampling Data: Using a Statistical Jacknife.
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 |
# File 'lib/daru/vector.rb', line 1069 def jackknife(estimators, k=1) # rubocop:disable Metrics/AbcSize,Metrics/MethodLength raise "n should be divisible by k:#{k}" unless (size % k).zero? nb = (size / k).to_i h_est, es, ps = prepare_bootstrap(estimators) est_n = es.map { |v| [v, h_est[v].call(self)] }.to_h nb.times do |i| other = @data.dup other.slice!(i*k, k) other = Daru::Vector.new other es.each do |estimator| # Add pseudovalue ps[estimator].push( nb * est_n[estimator] - (nb-1) * h_est[estimator].call(other) ) end end es.each do |est| ps[est] = Daru::Vector.new ps[est] end Daru::DataFrame.new ps end |
#keep_if ⇒ Object
Keep an element if block returns true. Destructive.
644 645 646 647 648 |
# File 'lib/daru/vector.rb', line 644 def keep_if return to_enum(:keep_if) unless block_given? delete_if { |val| !yield(val) } end |
#lag(k = 1) ⇒ Object
Lags the series by k periods.
The convention is to set the oldest observations (the first ones in the series) to nil so that the size of the lagged series is the same as the original.
Usage:
ts = Daru::Vector.new((1..10).map { rand })
# => [0.69, 0.23, 0.44, 0.71, ...]
ts.lag # => [nil, 0.69, 0.23, 0.44, ...]
ts.lag(2) # => [nil, nil, 0.69, 0.23, ...]
763 764 765 766 767 768 769 770 771 |
# File 'lib/daru/vector.rb', line 763 def lag k=1 return dup if k.zero? dat = @data.to_a.dup (dat.size - 1).downto(k) { |i| dat[i] = dat[i - k] } (0...k).each { |i| dat[i] = nil } Daru::Vector.new(dat, index: @index, name: @name) end |
#map!(&block) ⇒ Object
119 120 121 122 123 |
# File 'lib/daru/vector.rb', line 119 def map!(&block) return to_enum(:map!) unless block_given? @data.map!(&block) self end |
#n_valid ⇒ Object
number of non-missing elements
786 787 788 |
# File 'lib/daru/vector.rb', line 786 def n_valid size - indexes(*Daru::MISSING_VALUES).size end |
#not_nil? ⇒ Boolean
Opposite of #is_nil?
732 733 734 |
# File 'lib/daru/vector.rb', line 732 def not_nil? recode { |v| !v.nil? } end |
#numeric? ⇒ Boolean
434 435 436 |
# File 'lib/daru/vector.rb', line 434 def numeric? type == :numeric end |
#object? ⇒ Boolean
438 439 440 |
# File 'lib/daru/vector.rb', line 438 def object? type == :object end |
#only_missing(as_a = :vector) ⇒ Object
Returns a Vector containing only missing data (preserves indexes).
1183 1184 1185 1186 1187 1188 1189 |
# File 'lib/daru/vector.rb', line 1183 def only_missing as_a=:vector if as_a == :vector self[*indexes(*Daru::MISSING_VALUES)] elsif as_a == :array self[*indexes(*Daru::MISSING_VALUES)].to_a end end |
#only_numerics ⇒ Object
Returns a Vector with only numerical data. Missing data is included but non-Numeric objects are excluded. Preserves index.
1194 1195 1196 1197 1198 1199 1200 1201 |
# File 'lib/daru/vector.rb', line 1194 def only_numerics numeric_indexes = each_with_index .select { |v, _i| v.is_a?(Numeric) || v.nil? } .map(&:last) self[*numeric_indexes] end |
#only_valid(as_a = :vector, _duplicate = true) ⇒ Object
Creates a new vector consisting only of non-nil data
Arguments
as an Array. Otherwise will return a Daru::Vector.
vector, setting this to false will return the same vector. Otherwise, a duplicate will be returned irrespective of presence of missing data.
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 |
# File 'lib/daru/vector.rb', line 1108 def only_valid as_a=:vector, _duplicate=true # FIXME: Now duplicate is just ignored. # There are no spec that fail on this case, so I'll leave it # this way for now - zverok, 2016-05-07 new_index = @index.to_a - indexes(*Daru::MISSING_VALUES) new_vector = new_index.map { |idx| self[idx] } if as_a == :vector Daru::Vector.new new_vector, index: new_index, name: @name, dtype: dtype else new_vector end end |
#positions(*values) ⇒ Object
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 |
# File 'lib/daru/vector.rb', line 1318 def positions(*values) case values when [nil] nil_positions when [Float::NAN] nan_positions when [nil, Float::NAN], [Float::NAN, nil] nil_positions + nan_positions else size.times.select { |i| include_with_nan? values, @data[i] } end end |
#recode(dt = nil, &block) ⇒ Object
Like map, but returns a Daru::Vector with the returned values.
614 615 616 617 618 |
# File 'lib/daru/vector.rb', line 614 def recode dt=nil, &block return to_enum(:recode) unless block_given? dup.recode! dt, &block end |
#recode!(dt = nil, &block) ⇒ Object
Destructive version of recode!
621 622 623 624 625 626 627 |
# File 'lib/daru/vector.rb', line 621 def recode! dt=nil, &block return to_enum(:recode!) unless block_given? @data.map!(&block).data @data = cast_vector_to(dt || @dtype) self end |
#reindex(new_index) ⇒ Object
Create a new vector with a different index, and preserve the indexing of current elements.
988 989 990 |
# File 'lib/daru/vector.rb', line 988 def reindex new_index dup.reindex!(new_index) end |
#reindex!(new_index) ⇒ Daru::Vector
Unlike #reorder! which takes positions as input it takes index as an input to reorder the vector
Sets new index for vector. Preserves index->value correspondence. Sets nil for new index keys absent from original index.
947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
# File 'lib/daru/vector.rb', line 947 def reindex! new_index values = [] each_with_index do |val, i| values[new_index[i]] = val if new_index.include?(i) end values.fill(nil, values.size, new_index.size - values.size) @data = cast_vector_to @dtype, values @index = new_index update_position_cache self end |
#reject_values(*values) ⇒ Daru::Vector
Return a vector with specified values removed
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 |
# File 'lib/daru/vector.rb', line 1133 def reject_values(*values) resultant_pos = size.times.to_a - positions(*values) dv = at(*resultant_pos) # Handle the case when number of positions is 1 # and hence #at doesn't return a vector if dv.is_a?(Daru::Vector) dv else pos = resultant_pos.first at(pos..pos) end end |
#rename(new_name) ⇒ Object Also known as: name=
Give the vector a new name
1006 1007 1008 1009 |
# File 'lib/daru/vector.rb', line 1006 def rename new_name @name = new_name self end |
#reorder(order) ⇒ Object
Non-destructive version of #reorder!
982 983 984 |
# File 'lib/daru/vector.rb', line 982 def reorder order dup.reorder! order end |
#reorder!(order) ⇒ Object
Unlike #reindex! which takes index as input, it takes positions as an input to reorder the vector
Reorder the vector with given positions
974 975 976 977 978 979 |
# File 'lib/daru/vector.rb', line 974 def reorder! order @index = @index.reorder order @data = order.map { |i| @data[i] } update_position_cache self end |
#replace_nils(replacement) ⇒ Object
Non-destructive version of #replace_nils!
781 782 783 |
# File 'lib/daru/vector.rb', line 781 def replace_nils replacement dup.replace_nils!(replacement) end |
#replace_nils!(replacement) ⇒ Object
Replace all nils in the vector with the value passed as an argument. Destructive. See #replace_nils for non-destructive version
Arguments
-
replacement
- The value which should replace all nils
742 743 744 745 746 747 748 |
# File 'lib/daru/vector.rb', line 742 def replace_nils! replacement indexes(*Daru::MISSING_VALUES).each do |idx| self[idx] = replacement end self end |
#replace_values(old_values, new_value) ⇒ Daru::Vector
It performs the replace in place.
Replaces specified values with a new value
1174 1175 1176 1177 1178 1179 1180 |
# File 'lib/daru/vector.rb', line 1174 def replace_values(old_values, new_value) old_values = [old_values] unless old_values.is_a? Array size.times do |pos| set_at([pos], new_value) if include_with_nan? old_values, at(pos) end self end |
#report_building(b) ⇒ Object
:nocov:
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 |
# File 'lib/daru/vector.rb', line 897 def report_building b # rubocop:disable Metrics/AbcSize,Metrics/MethodLength b.section(name: name) do |s| s.text "n :#{size}" s.text "n valid:#{count_values(*Daru::MISSING_VALUES)}" if @type == :object s.text "factors: #{factors.to_a.join(',')}" s.text "mode: #{mode}" s.table(name: 'Distribution') do |t| frequencies.sort_by(&:to_s).each do |k,v| key = @index.include?(k) ? @index[k] : k t.row [key, v, ('%0.2f%%' % (v.quo(count_values(*Daru::MISSING_VALUES))*100))] end end end s.text "median: #{median}" if @type==:numeric || @type==:numeric if @type==:numeric s.text 'mean: %0.4f' % mean if sd s.text 'std.dev.: %0.4f' % sd s.text 'std.err.: %0.4f' % se s.text 'skew: %0.4f' % skew s.text 'kurtosis: %0.4f' % kurtosis end end end end |
#reset_index! ⇒ Object
706 707 708 709 |
# File 'lib/daru/vector.rb', line 706 def reset_index! @index = Daru::Index.new(Array.new(size) { |i| i }) self end |
#resort_index(vector_index, opts) ⇒ Object
596 597 598 599 600 601 602 603 |
# File 'lib/daru/vector.rb', line 596 def resort_index vector_index, opts if block_given? vector_index.sort { |(lv, _li), (rv, _ri)| yield(lv, rv) } else vector_index.sort(&DEFAULT_SORTER) end .tap { |res| res.reverse! unless opts[:ascending] } end |
#respond_to_missing?(name, include_private = false) ⇒ Boolean
1277 1278 1279 |
# File 'lib/daru/vector.rb', line 1277 def respond_to_missing?(name, include_private=false) name.to_s.end_with?('=') || has_index?(name) || super end |
#save(filename) ⇒ Object
Save the vector to a file
Arguments
-
filename - Path of file where the vector is to be saved
1231 1232 1233 |
# File 'lib/daru/vector.rb', line 1231 def save filename Daru::IO.save self, filename end |
#set_at(positions, val) ⇒ Object
Change value at given positions
265 266 267 268 269 |
# File 'lib/daru/vector.rb', line 265 def set_at positions, val validate_positions(*positions) positions.map { |pos| @data[pos] = val } update_position_cache end |
#size ⇒ Object
93 94 95 |
# File 'lib/daru/vector.rb', line 93 def size @data.size end |
#sort(opts = {}, &block) ⇒ Object
Sorts a vector according to its values. If a block is specified, the contents will be evaluated and data will be swapped whenever the block evaluates to true. Defaults to ascending order sorting. Any missing values will be put at the end of the vector. Preserves indexing. Default sort algorithm is quick sort.
Options
-
:ascending
- if false, will sort in descending order. Defaults to true. -
:type
- Specify the sorting algorithm. Only supports quick_sort for now.
Usage
v = Daru::Vector.new ["My first guitar", "jazz", "guitar"]
# Say you want to sort these strings by length.
v.sort(ascending: false) { |a,b| a.length <=> b.length }
572 573 574 575 576 577 578 579 580 581 |
# File 'lib/daru/vector.rb', line 572 def sort opts={}, &block opts = {ascending: true}.merge(opts) vector_index = resort_index(@data.each_with_index, opts, &block) vector, index = vector_index.transpose index = @index.reorder index Daru::Vector.new(vector, index: index, name: @name, dtype: @dtype) end |
#sorted_data(&block) ⇒ Object
Just sort the data and get an Array in return using Enumerable#sort. Non-destructive. :nocov:
608 609 610 |
# File 'lib/daru/vector.rb', line 608 def sorted_data &block @data.to_a.sort(&block) end |
#split_by_separator(sep = ',') ⇒ Object
Returns a hash of Vectors, defined by the different values defined on the fields Example:
a=Daru::Vector.new(["a,b","c,d","a,b"])
a.split_by_separator
=> {"a"=>#<Daru::Vector:0x7f2dbcc09d88
@data=[1, 0, 1]>,
"b"=>#<Daru::Vector:0x7f2dbcc09c48
@data=[1, 1, 0]>,
"c"=>#<Daru::Vector:0x7f2dbcc09b08
@data=[0, 1, 1]>}
689 690 691 692 693 694 695 696 697 698 |
# File 'lib/daru/vector.rb', line 689 def split_by_separator sep=',' split_data = splitted sep split_data .flatten.uniq.compact.map do |key| [ key, Daru::Vector.new(split_data.map { |v| split_value(key, v) }) ] end.to_h end |
#split_by_separator_freq(sep = ',') ⇒ Object
700 701 702 703 704 |
# File 'lib/daru/vector.rb', line 700 def split_by_separator_freq(sep=',') split_by_separator(sep).map { |k, v| [k, v.map(&:to_i).inject(:+)] }.to_h end |
#splitted(sep = ',') ⇒ Object
Return an Array with the data splitted by a separator.
a=Daru::Vector.new(["a,b","c,d","a,b","d"])
a.splitted
=>
[["a","b"],["c","d"],["a","b"],["d"]]
664 665 666 667 668 669 670 671 672 673 674 |
# File 'lib/daru/vector.rb', line 664 def splitted sep=',' @data.map do |s| if s.nil? nil elsif s.respond_to? :split s.split sep else [s] end end end |
#summary(method = :to_text) ⇒ Object
Create a summary of the Vector using Report Builder.
892 893 894 |
# File 'lib/daru/vector.rb', line 892 def summary(method=:to_text) ReportBuilder.new(no_title: true).add(self).send(method) end |
#tail(q = 10) ⇒ Object
425 426 427 428 |
# File 'lib/daru/vector.rb', line 425 def tail q=10 start = [size - q, 0].max self[start..(size-1)] end |
#to_a ⇒ Object
Return an array
868 869 870 |
# File 'lib/daru/vector.rb', line 868 def to_a @data.to_a end |
#to_category(opts = {}) ⇒ Daru::Vector
Converts a non category type vector to category type vector.
1258 1259 1260 1261 1262 1263 |
# File 'lib/daru/vector.rb', line 1258 def to_category opts={} dv = Daru::Vector.new to_a, type: :category, name: @name, index: @index dv.ordered = opts[:ordered] || false dv.categories = opts[:categories] if opts[:categories] dv end |
#to_df ⇒ Daru::DataFrame
Returns the vector as a single-vector dataframe.
808 809 810 |
# File 'lib/daru/vector.rb', line 808 def to_df Daru::DataFrame.new({@name => @data}, name: @name, index: @index) end |
#to_gsl ⇒ Object
If dtype != gsl, will convert data to GSL::Vector with to_a. Otherwise returns the stored GSL::Vector object.
853 854 855 856 857 858 859 860 |
# File 'lib/daru/vector.rb', line 853 def to_gsl raise NoMethodError, 'Install gsl-nmatrix for access to this functionality.' unless Daru.has_gsl? if dtype == :gsl @data.data else GSL::Vector.alloc(reject_values(*Daru::MISSING_VALUES).to_a) end end |
#to_h ⇒ Object
Convert to hash (explicit). Hash keys are indexes and values are the correspoding elements
863 864 865 |
# File 'lib/daru/vector.rb', line 863 def to_h @index.map { |index| [index, self[index]] }.to_h end |
#to_html(threshold = 30) ⇒ Object
Convert to html for iruby
878 879 880 881 882 883 884 885 |
# File 'lib/daru/vector.rb', line 878 def to_html threshold=30 path = if index.is_a?(MultiIndex) File.('../iruby/templates/vector_mi.html.erb', __FILE__) else File.('../iruby/templates/vector.html.erb', __FILE__) end ERB.new(File.read(path).strip).result(binding) end |
#to_json ⇒ Object
Convert the hash from to_h to json
873 874 875 |
# File 'lib/daru/vector.rb', line 873 def to_json(*) to_h.to_json end |
#to_matrix(axis = :horizontal) ⇒ Object
Convert Vector to a horizontal or vertical Ruby Matrix.
Arguments
-
axis
- Specify whether you want a :horizontal or a :vertical matrix.
817 818 819 820 821 822 823 824 825 |
# File 'lib/daru/vector.rb', line 817 def to_matrix axis=:horizontal if axis == :horizontal Matrix[to_a] elsif axis == :vertical Matrix.columns([to_a]) else raise ArgumentError, "axis should be either :horizontal or :vertical, not #{axis}" end end |
#to_nmatrix(axis = :horizontal) ⇒ NMatrix
Convert vector to nmatrix object
836 837 838 839 840 841 842 843 844 845 846 847 848 849 |
# File 'lib/daru/vector.rb', line 836 def to_nmatrix axis=:horizontal raise ArgumentError, 'Can not convert to nmatrix'\ 'because the vector is numeric' unless numeric? && !include?(nil) case axis when :horizontal NMatrix.new [1, size], to_a when :vertical NMatrix.new [size, 1], to_a else raise ArgumentError, 'Invalid axis specified. '\ 'Valid axis are :horizontal and :vertical' end end |
#to_REXP ⇒ Object
rubocop:disable Style/MethodName
17 18 19 |
# File 'lib/daru/extensions/rserve.rb', line 17 def to_REXP # rubocop:disable Style/MethodName Rserve::REXP::Wrapper.wrap(to_a) end |
#to_s ⇒ Object
887 888 889 |
# File 'lib/daru/vector.rb', line 887 def to_s to_html end |
#type ⇒ Object
The type of data contained in the vector. Can be :object or :numeric. If the underlying dtype is an NMatrix, this method will return the data type of the NMatrix object.
Running through the data to figure out the kind of data is delayed to the last possible moment.
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# File 'lib/daru/vector.rb', line 506 def type return @data.nm_dtype if dtype == :nmatrix if @type.nil? || @possibly_changed_type @type = :numeric each do |e| next if e.nil? || e.is_a?(Numeric) @type = :object break end @possibly_changed_type = false end @type end |
#uniq ⇒ Object
Keep only unique elements of the vector alongwith their indexes.
541 542 543 544 545 546 |
# File 'lib/daru/vector.rb', line 541 def uniq uniq_vector = @data.uniq new_index = uniq_vector.map { |element| index_of(element) } Daru::Vector.new uniq_vector, name: @name, index: new_index, dtype: @dtype end |
#verify ⇒ Object
Reports all values that doesn’t comply with a condition. Returns a hash with the index of data and the invalid data.
652 653 654 655 656 657 |
# File 'lib/daru/vector.rb', line 652 def verify (0...size) .map { |i| [i, @data[i]] } .reject { |_i, val| yield(val) } .to_h end |
#where(bool_array) ⇒ Object
Return a new vector based on the contents of a boolean array. Use with the comparator methods to obtain meaningful results. See this notebook for a good overview of using #where.
417 418 419 |
# File 'lib/daru/vector.rb', line 417 def where bool_array Daru::Core::Query.vector_where self, bool_array end |