Class: Daru::DataFrame
- Extended by:
- Gem::Deprecate
- Includes:
- Maths::Arithmetic::DataFrame, Maths::Statistics::DataFrame, Plotting::DataFrame::NyaplotLibrary
- Defined in:
- lib/daru/dataframe.rb,
lib/daru/extensions/rserve.rb
Overview
rubocop:disable Metrics/ClassLength
Instance Attribute Summary collapse
-
#data ⇒ Object
readonly
TOREMOVE.
-
#index ⇒ Object
The index of the rows of the DataFrame.
-
#name ⇒ Object
readonly
The name of the DataFrame.
-
#size ⇒ Object
readonly
The number of rows present in the DataFrame.
-
#vectors ⇒ Object
The vectors (columns) index of the DataFrame.
Class Method Summary collapse
- ._load(data) ⇒ Object
-
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors - Rows - Columns - Values.
-
.from_activerecord(relation, *fields) ⇒ Object
Read a dataframe from AR::Relation.
-
.from_csv(path, opts = {}, &block) ⇒ Object
Load data from a CSV file.
-
.from_excel(path, opts = {}, &block) ⇒ Object
Read data from an Excel file into a DataFrame.
-
.from_plaintext(path, fields) ⇒ Object
Read the database from a plaintext file.
-
.from_sql(dbh, query) ⇒ Object
Read a database query and returns a Dataset.
-
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of Daru::Vector objects.
Instance Method Summary collapse
- #==(other) ⇒ Object
-
#[](*names) ⇒ Object
Access row or vector.
-
#[]=(*args) ⇒ Object
Insert a new row/vector of the specified name or modify a previous row.
- #_dump(_depth) ⇒ Object
- #add_row(row, index = nil) ⇒ Object
- #add_vector(n, vector) ⇒ Object
- #add_vectors_by_split(name, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
- #add_vectors_by_split_recode(nm, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
-
#all?(axis = :vector, &block) ⇒ Boolean
Works like Array#all?.
-
#any?(axis = :vector, &block) ⇒ Boolean
Works like Array#any?.
-
#at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive vectors by positions.
-
#bootstrap(n = nil) ⇒ Daru::DataFrame
Creates a DataFrame with the random data, of n size.
-
#clone(*vectors_to_clone) ⇒ Object
Returns a ‘view’ of the DataFrame, i.e the object ID’s of vectors are preserved.
-
#clone_only_valid ⇒ Object
Returns a ‘shallow’ copy of DataFrame if missing data is not present, or a full copy of only valid data if missing data is present.
-
#clone_structure ⇒ Object
Only clone the structure of the DataFrame.
-
#collect(axis = :vector, &block) ⇒ Object
Iterate over a row or vector and return results in a Daru::Vector.
-
#collect_matrix ⇒ ::Matrix
Generate a matrix, based on vector names of the DataFrame.
- #collect_row_with_index(&block) ⇒ Object
-
#collect_rows(&block) ⇒ Object
Retrieves a Daru::Vector, based on the result of calculation performed on each row.
- #collect_vector_with_index(&block) ⇒ Object
-
#collect_vectors(&block) ⇒ Object
Retrives a Daru::Vector, based on the result of calculation performed on each vector.
-
#compute(text, &block) ⇒ Object
Returns a vector, based on a string with a calculation based on vector.
-
#concat(other_df) ⇒ Object
Concatenate another DataFrame along corresponding columns.
-
#create_sql(table, charset = 'UTF8') ⇒ Object
Create a sql, basen on a given Dataset.
-
#delete_row(index) ⇒ Object
Delete a row.
-
#delete_vector(vector) ⇒ Object
Delete a vector.
-
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors.
-
#dup(vectors_to_dup = nil) ⇒ Object
Duplicate the DataFrame entirely.
-
#dup_only_valid(vecs = nil) ⇒ Object
Creates a new duplicate dataframe containing only rows without a single missing value.
-
#each(axis = :vector, &block) ⇒ Object
Iterate over each row or vector of the DataFrame.
-
#each_index(&block) ⇒ Object
Iterate over each index of the DataFrame.
-
#each_row ⇒ Object
Iterate over each row.
- #each_row_with_index ⇒ Object
-
#each_vector(&block) ⇒ Object
(also: #each_column)
Iterate over each vector.
-
#each_vector_with_index ⇒ Object
(also: #each_column_with_index)
Iterate over each vector alongwith the name of the vector.
-
#filter(axis = :vector, &block) ⇒ Object
Retain vectors or rows if the block returns a truthy value.
-
#filter_rows ⇒ Object
Iterates over each row and retains it in a new DataFrame if the block returns true for that row.
-
#filter_vector(vec, &block) ⇒ Object
creates a new vector with the data of a given field which the block returns true.
-
#filter_vectors(&block) ⇒ Object
Iterates over each vector and retains it in a new DataFrame if the block returns true for that vector.
- #get_vector_anyways(v) ⇒ Object
-
#group_by(*vectors) ⇒ Object
Group elements by vector to perform operations on them.
- #has_missing_data? ⇒ Boolean (also: #flawed?)
-
#has_vector?(vector) ⇒ Boolean
Check if a vector is present.
-
#head(quantity = 10) ⇒ Object
(also: #first)
The first ten elements of the DataFrame.
-
#include_values?(*values) ⇒ true, false
Check if any of given values occur in the data frame.
-
#initialize(source, opts = {}) ⇒ DataFrame
constructor
DataFrame basically consists of an Array of Vector objects.
-
#inspect(spacing = 10, threshold = 15) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby).
- #interact_code(vector_names, full) ⇒ Object
-
#join(other_df, opts = {}) ⇒ Daru::DataFrame
Join 2 DataFrames with SQL style joins.
- #keep_row_if ⇒ Object
- #keep_vector_if ⇒ Object
-
#map(axis = :vector, &block) ⇒ Object
Map over each vector or row of the data frame according to the argument specified.
-
#map!(axis = :vector, &block) ⇒ Object
Destructive map.
-
#map_rows(&block) ⇒ Object
Map each row.
- #map_rows! ⇒ Object
- #map_rows_with_index(&block) ⇒ Object
-
#map_vectors(&block) ⇒ Object
Map each vector and return an Array.
-
#map_vectors! ⇒ Object
Destructive form of #map_vectors.
-
#map_vectors_with_index(&block) ⇒ Object
Map vectors alongwith the index.
-
#merge(other_df) ⇒ Daru::DataFrame
Merge vectors from two DataFrames.
- #method_missing(name, *args, &block) ⇒ Object
-
#missing_values_rows(missing_values = [nil]) ⇒ Object
(also: #vector_missing_values)
Return a vector with the number of missing values in each row.
-
#ncols ⇒ Object
The number of vectors.
-
#nest(*tree_keys, &_block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values.
-
#nrows ⇒ Object
The number of rows.
- #numeric_vector_names ⇒ Object
-
#numeric_vectors ⇒ Object
Return the indexes of all the numeric vectors.
-
#one_to_many(parent_fields, pattern) ⇒ Object
Creates a new dataset for one to many relations on a dataset, based on pattern of field names.
-
#only_numerics(opts = {}) ⇒ Object
Return a DataFrame of only the numerical Vectors.
-
#order=(order_array) ⇒ Object
Reorder the vectors in a dataframe.
-
#pivot_table(opts = {}) ⇒ Object
Pivots a data frame on specified vectors and applies an aggregate function to quickly generate a summary.
- #plotting_library=(lib) ⇒ Object
-
#recast(opts = {}) ⇒ Object
Change dtypes of vectors by supplying a hash of :vector_name => :new_dtype.
-
#recode(axis = :vector, &block) ⇒ Object
Maps over the DataFrame and returns a DataFrame.
- #recode_rows ⇒ Object
- #recode_vectors ⇒ Object
-
#reindex(new_index) ⇒ Object
Change the index of the DataFrame and preserve the labels of the previous indexing.
- #reindex_vectors(new_vectors) ⇒ Object
-
#reject_values(*values) ⇒ Daru::DataFrame
Returns a dataframe in which rows with any of the mentioned values are ignored.
-
#rename(new_name) ⇒ Object
(also: #name=)
Rename the DataFrame.
-
#rename_vectors(name_map) ⇒ Object
Renames the vectors.
-
#replace_values(old_values, new_value) ⇒ Daru::DataFrame
Replace specified values with given value.
-
#report_building(b) ⇒ Object
:nodoc: #.
- #respond_to_missing?(name, include_private = false) ⇒ Boolean
-
#row ⇒ Object
Access a row or set/create a row.
-
#row_at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive rows by positions.
-
#save(filename) ⇒ Object
Use marshalling to save dataframe to a file.
-
#set_at(positions, vector) ⇒ Object
Set vectors by positions.
-
#set_index(new_index, opts = {}) ⇒ Object
Set a particular column as the new DF.
-
#set_row_at(positions, vector) ⇒ Object
Set rows by positions.
-
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
-
#sort(vector_order, opts = {}) ⇒ Object
Non-destructive version of #sort!.
-
#sort!(vector_order, opts = {}) ⇒ Object
Sorts a dataframe (ascending/descending) in the given pripority sequence of vectors, with or without a block.
-
#split_by_category(cat_name) ⇒ Array
Split the dataframe into many dataframes based on category vector.
-
#summary(method = :to_text) ⇒ Object
Generate a summary of this DataFrame with ReportBuilder.
-
#tail(quantity = 10) ⇒ Object
(also: #last)
The last ten elements of the DataFrame.
-
#to_a ⇒ Object
Converts the DataFrame into an array of hashes where key is vector name and value is the corresponding element.
-
#to_category(*names) ⇒ Daru::DataFrame
Converts the specified non category type vectors to category type vectors.
-
#to_df ⇒ self
Returns the dataframe.
-
#to_gsl ⇒ Object
Convert all numeric vectors to GSL::Matrix.
-
#to_h ⇒ Object
Converts DataFrame to a hash (explicit) with keys as vector names and values as the corresponding vectors.
-
#to_html(threshold = 30) ⇒ Object
Convert to html for IRuby.
-
#to_json(no_index = true) ⇒ Object
Convert to json.
-
#to_matrix ⇒ Object
Convert all vectors of type :numeric into a Matrix.
-
#to_nmatrix ⇒ Object
Convert all vectors of type :numeric and not containing nils into an NMatrix.
-
#to_nyaplotdf ⇒ Object
Return a Nyaplot::DataFrame from the data of this DataFrame.
-
#to_REXP ⇒ Object
rubocop:disable Style/MethodName.
- #to_s ⇒ Object
-
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
-
#union(other_df) ⇒ Object
Concatenates another DataFrame as #concat.
-
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc.
-
#vector_by_calculation(&block) ⇒ Object
DSL for yielding each row and returning a Daru::Vector based on the value each run of the block returns.
- #vector_count_characters(vecs = nil) ⇒ Object
-
#vector_mean(max_missing = 0) ⇒ Object
Calculate mean of the rows of the dataframe.
-
#vector_sum(vecs = nil) ⇒ Object
Returns a vector with sum of all vectors specified in the argument.
-
#verify(*tests) ⇒ Object
Test each row with one or more tests.
-
#where(bool_array) ⇒ Object
Query a DataFrame by passing a Daru::Core::Query::BoolArray object.
-
#write_csv(filename, opts = {}) ⇒ Object
Write this DataFrame to a CSV file.
-
#write_excel(filename, opts = {}) ⇒ Object
Write this dataframe to an Excel Spreadsheet.
-
#write_sql(dbh, table) ⇒ Object
Insert each case of the Dataset on the selected table.
Methods included from Plotting::DataFrame::NyaplotLibrary
Methods included from Maths::Statistics::DataFrame
#acf, #correlation, #count, #covariance, #cumsum, #describe, #ema, #max, #mean, #median, #min, #mode, #percent_change, #product, #range, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_variance, #standardize, #std, #sum, #variance_sample
Methods included from Maths::Arithmetic::DataFrame
#%, #*, #**, #+, #-, #/, #exp, #round, #sqrt
Constructor Details
#initialize(source, opts = {}) ⇒ DataFrame
DataFrame basically consists of an Array of Vector objects. These objects are indexed by row and column by vectors and index Index objects.
Arguments
-
source - Source from the DataFrame is to be initialized. Can be a Hash
of names and vectors (array or Daru::Vector), an array of arrays or array of Daru::Vectors.
Options
:order
- An Array/Daru::Index/Daru::MultiIndex containing the order in which Vectors should appear in the DataFrame.
:index
- An Array/Daru::Index/Daru::MultiIndex containing the order in which rows of the DataFrame will be named.
:name
- A name for the DataFrame.
:clone
- Specify as true or false. When set to false, and Vector objects are passed for the source, the Vector objects will not duplicated when creating the DataFrame. Will have no effect if Array is passed in the source, or if the passed Daru::Vectors have different indexes. Default to true.
Usage
df = Daru::DataFrame.new({a: [1,2,3,4], b: [6,7,8,9]}, order: [:b, :a],
index: [:a, :b, :c, :d], name: :spider_man)
# =>
# <Daru::DataFrame:80766980 @name = spider_man @size = 4>
# b a
# a 6 1
# b 7 2
# c 8 3
# d 9 4
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# File 'lib/daru/dataframe.rb', line 242 def initialize source, opts={} # rubocop:disable Metrics/MethodLength vectors, index = opts[:order], opts[:index] # FIXME: just keyword arges after Ruby 2.1 @data = [] @name = opts[:name] case source when ->(s) { s.empty? } @vectors = Index.coerce vectors @index = Index.coerce index create_empty_vectors when Array initialize_from_array source, vectors, index, opts when Hash initialize_from_hash source, vectors, index, opts end set_size validate update self.plotting_library = Daru.plotting_library end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(name, *args, &block) ⇒ Object
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 |
# File 'lib/daru/dataframe.rb', line 1946 def method_missing(name, *args, &block) case when name =~ /(.+)\=/ name = name[/(.+)\=/].delete('=') name = name.to_sym unless has_vector?(name) insert_or_modify_vector [name], args[0] when has_vector?(name) self[name] when has_vector?(name.to_s) self[name.to_s] else super end end |
Instance Attribute Details
#data ⇒ Object (readonly)
TOREMOVE
195 196 197 |
# File 'lib/daru/dataframe.rb', line 195 def data @data end |
#index ⇒ Object
The index of the rows of the DataFrame
198 199 200 |
# File 'lib/daru/dataframe.rb', line 198 def index @index end |
#name ⇒ Object (readonly)
The name of the DataFrame
201 202 203 |
# File 'lib/daru/dataframe.rb', line 201 def name @name end |
#size ⇒ Object (readonly)
The number of rows present in the DataFrame
204 205 206 |
# File 'lib/daru/dataframe.rb', line 204 def size @size end |
#vectors ⇒ Object
The vectors (columns) index of the DataFrame
193 194 195 |
# File 'lib/daru/dataframe.rb', line 193 def vectors @vectors end |
Class Method Details
._load(data) ⇒ Object
1871 1872 1873 1874 1875 1876 1877 |
# File 'lib/daru/dataframe.rb', line 1871 def self._load data h = Marshal.load data Daru::DataFrame.new(h[:data], index: h[:index], order: h[:order], name: h[:name]) end |
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors
-
Rows
-
Columns
-
Values
For example, you have these values
x y v
a a 0
a b 1
b a 1
b b 0
You obtain
id a b
a 0 1
b 1 0
Useful to process outputs from databases
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# File 'lib/daru/dataframe.rb', line 151 def crosstab_by_assignation rows, columns, values raise 'Three vectors should be equal size' if rows.size != columns.size || rows.size!=values.size data = Hash.new { |h, col| h[col] = rows.factors.map { |r| [r, nil] }.to_h } columns.zip(rows, values).each { |c, r, v| data[c][r] = v } # FIXME: in fact, WITHOUT this line you'll obtain more "right" # data: with vectors having "rows" as an index... data = data.map { |c, r| [c, r.values] }.to_h data[:_id] = rows.factors DataFrame.new(data) end |
.from_activerecord(relation, *fields) ⇒ Object
95 96 97 |
# File 'lib/daru/dataframe.rb', line 95 def from_activerecord relation, *fields Daru::IO.from_activerecord relation, *fields end |
.from_csv(path, opts = {}, &block) ⇒ Object
Load data from a CSV file. Specify an optional block to grab the CSV object and pre-condition it (for example use the ‘convert` or `header_convert` methods).
Arguments
-
path - Path of the file to load specified as a String.
Options
Accepts the same options as the Daru::DataFrame constructor and CSV.open() and uses those to eventually construct the resulting DataFrame.
Verbose Description
You can specify all the options to the ‘.from_csv` function that you do to the Ruby `CSV.read()` function, since this is what is used internally.
For example, if the columns in your CSV file are separated by something other that commas, you can use the ‘:col_sep` option. If you want to convert numeric values to numbers and not keep them as strings, you can use the `:converters` option and set it to `:numeric`.
The ‘.from_csv` function uses the following defaults for reading CSV files (that are passed into the `CSV.read()` function):
{
:col_sep => ',',
:converters => :numeric
}
47 48 49 |
# File 'lib/daru/dataframe.rb', line 47 def from_csv path, opts={}, &block Daru::IO.from_csv path, opts, &block end |
.from_excel(path, opts = {}, &block) ⇒ Object
Read data from an Excel file into a DataFrame.
Arguments
-
path - Path of the file to be read.
Options
*:worksheet_id - ID of the worksheet that is to be read.
60 61 62 |
# File 'lib/daru/dataframe.rb', line 60 def from_excel path, opts={}, &block Daru::IO.from_excel path, opts, &block end |
.from_plaintext(path, fields) ⇒ Object
Read the database from a plaintext file. For this method to work, the data should be present in a plain text file in columns. See spec/fixtures/bank2.dat for an example.
Arguments
-
path - Path of the file to be read.
-
fields - Vector names of the resulting database.
Usage
df = Daru::DataFrame.from_plaintext 'spec/fixtures/bank2.dat', [:v1,:v2,:v3,:v4,:v5,:v6]
111 112 113 |
# File 'lib/daru/dataframe.rb', line 111 def from_plaintext path, fields Daru::IO.from_plaintext path, fields end |
.from_sql(dbh, query) ⇒ Object
75 76 77 |
# File 'lib/daru/dataframe.rb', line 75 def from_sql dbh, query Daru::IO.from_sql dbh, query end |
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of Daru::Vector objects.
117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# File 'lib/daru/dataframe.rb', line 117 def rows source, opts={} raise SizeError, 'All vectors must have same length' \ unless source.all? { |v| v.size == source.first.size } opts[:order] ||= guess_order(source) if ArrayHelper.array_of?(source, Array) || source.empty? DataFrame.new(source.transpose, opts) elsif ArrayHelper.array_of?(source, Vector) from_vector_rows(source, opts) else raise ArgumentError, "Can't create DataFrame from #{source}" end end |
Instance Method Details
#==(other) ⇒ Object
1921 1922 1923 1924 1925 1926 1927 |
# File 'lib/daru/dataframe.rb', line 1921 def == other self.class == other.class && @size == other.size && @index == other.index && @vectors == other.vectors && @vectors.to_a.all? { |v| self[v] == other[v] } end |
#[](*names) ⇒ Object
Access row or vector. Specify name of row/vector followed by axis(:row, :vector). Defaults to :vector. Use of this method is not recommended for accessing rows. Use df.row for accessing row with index ‘:a’.
282 283 284 285 |
# File 'lib/daru/dataframe.rb', line 282 def [](*names) axis = extract_axis(names, :vector) dispatch_to_axis axis, :access, *names end |
#[]=(*args) ⇒ Object
Insert a new row/vector of the specified name or modify a previous row. Instead of using this method directly, use df.row = [1,2,3] to set/create a row ‘:a’ to [1,2,3], or df.vector = [1,2,3] for vectors.
In case a Daru::Vector is specified after the equality the sign, the indexes of the vector will be matched against the row/vector indexes of the DataFrame before an insertion is performed. Unmatched indexes will be set to nil.
426 427 428 429 430 431 432 |
# File 'lib/daru/dataframe.rb', line 426 def []=(*args) vector = args.pop axis = extract_axis(args) names = args dispatch_to_axis axis, :insert_or_modify, names, vector end |
#_dump(_depth) ⇒ Object
1862 1863 1864 1865 1866 1867 1868 1869 |
# File 'lib/daru/dataframe.rb', line 1862 def _dump(_depth) Marshal.dump( data: @data, index: @index.to_a, order: @vectors.to_a, name: @name ) end |
#add_row(row, index = nil) ⇒ Object
434 435 436 |
# File 'lib/daru/dataframe.rb', line 434 def add_row row, index=nil self.row[index || @size] = row end |
#add_vector(n, vector) ⇒ Object
438 439 440 |
# File 'lib/daru/dataframe.rb', line 438 def add_vector n, vector self[n] = vector end |
#add_vectors_by_split(name, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
1086 1087 1088 1089 1090 |
# File 'lib/daru/dataframe.rb', line 1086 def add_vectors_by_split(name,join='-',sep=Daru::SPLIT_TOKEN) self[name] .split_by_separator(sep) .each { |k,v| self["#{name}#{join}#{k}".to_sym] = v } end |
#add_vectors_by_split_recode(nm, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
1690 1691 1692 1693 1694 1695 1696 1697 |
# File 'lib/daru/dataframe.rb', line 1690 def add_vectors_by_split_recode(nm, join='-', sep=Daru::SPLIT_TOKEN) self[nm] .split_by_separator(sep) .each_with_index do |(k, v), i| v.rename "#{nm}:#{k}" self["#{nm}#{join}#{i + 1}".to_sym] = v end end |
#all?(axis = :vector, &block) ⇒ Boolean
Works like Array#all?
1143 1144 1145 1146 1147 1148 1149 1150 1151 |
# File 'lib/daru/dataframe.rb', line 1143 def all? axis=:vector, &block if axis == :vector || axis == :column @data.all?(&block) elsif axis == :row each_row.all?(&block) else raise ArgumentError, "Unidentified axis #{axis}" end end |
#any?(axis = :vector, &block) ⇒ Boolean
Works like Array#any?.
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 |
# File 'lib/daru/dataframe.rb', line 1121 def any? axis=:vector, &block if axis == :vector || axis == :column @data.any?(&block) elsif axis == :row each_row do |row| return true if yield(row) end false else raise ArgumentError, "Unidentified axis #{axis}" end end |
#at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive vectors by positions
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# File 'lib/daru/dataframe.rb', line 364 def at *positions if AXES.include? positions.last axis = positions.pop return row_at(*positions) if axis == :row end original_positions = positions positions = coerce_positions(*positions, ncols) validate_positions(*positions, ncols) if positions.is_a? Integer @data[positions].dup else Daru::DataFrame.new positions.map { |pos| @data[pos].dup }, index: @index, order: @vectors.at(*original_positions), name: @name end end |
#bootstrap(n = nil) ⇒ Daru::DataFrame
Creates a DataFrame with the random data, of n size. If n not given, uses original number of rows.
892 893 894 895 896 897 898 899 900 |
# File 'lib/daru/dataframe.rb', line 892 def bootstrap(n=nil) n ||= nrows Daru::DataFrame.new({}, order: @vectors).tap do |df_boot| n.times do df_boot.add_row(row[rand(n)]) end df_boot.update end end |
#clone(*vectors_to_clone) ⇒ Object
Returns a ‘view’ of the DataFrame, i.e the object ID’s of vectors are preserved.
Arguments
vectors_to_clone
- Names of vectors to clone. Optional. Will return a view of the whole data frame otherwise.
478 479 480 481 482 483 484 |
# File 'lib/daru/dataframe.rb', line 478 def clone *vectors_to_clone vectors_to_clone.flatten! if ArrayHelper.array_of?(vectors_to_clone, Array) vectors_to_clone = @vectors.to_a if vectors_to_clone.empty? h = vectors_to_clone.map { |vec| [vec, self[vec]] }.to_h Daru::DataFrame.new(h, clone: false, order: vectors_to_clone, name: @name) end |
#clone_only_valid ⇒ Object
Returns a ‘shallow’ copy of DataFrame if missing data is not present, or a full copy of only valid data if missing data is present.
488 489 490 491 492 493 494 |
# File 'lib/daru/dataframe.rb', line 488 def clone_only_valid if include_values?(*Daru::MISSING_VALUES) reject_values(*Daru::MISSING_VALUES) else clone end end |
#clone_structure ⇒ Object
Only clone the structure of the DataFrame.
467 468 469 |
# File 'lib/daru/dataframe.rb', line 467 def clone_structure Daru::DataFrame.new([], order: @vectors.dup, index: @index.dup, name: @name) end |
#collect(axis = :vector, &block) ⇒ Object
Iterate over a row or vector and return results in a Daru::Vector. Specify axis with :vector or :row. Default to :vector.
Description
The #collect iterator works similar to #map, the only difference being that it returns a Daru::Vector comprising of the results of each block run. The resultant Vector has the same index as that of the axis over which collect has iterated. It also accepts the optional axis argument.
Arguments
-
axis
- The axis to iterate over. Can be :vector (or :column)
or :row. Default to :vector.
649 650 651 |
# File 'lib/daru/dataframe.rb', line 649 def collect axis=:vector, &block dispatch_to_axis_pl axis, :collect, &block end |
#collect_matrix ⇒ ::Matrix
Generate a matrix, based on vector names of the DataFrame.
:nocov: FIXME: Even not trying to cover this: I can’t get, how it is expected to work.… – zverok
844 845 846 847 848 849 850 851 852 853 854 855 |
# File 'lib/daru/dataframe.rb', line 844 def collect_matrix return to_enum(:collect_matrix) unless block_given? vecs = vectors.to_a rows = vecs.collect { |row| vecs.collect { |col| yield row,col } } Matrix.rows(rows) end |
#collect_row_with_index(&block) ⇒ Object
818 819 820 821 822 |
# File 'lib/daru/dataframe.rb', line 818 def collect_row_with_index &block return to_enum(:collect_row_with_index) unless block_given? Daru::Vector.new(each_row_with_index.map(&block), index: @index) end |
#collect_rows(&block) ⇒ Object
Retrieves a Daru::Vector, based on the result of calculation performed on each row.
812 813 814 815 816 |
# File 'lib/daru/dataframe.rb', line 812 def collect_rows &block return to_enum(:collect_rows) unless block_given? Daru::Vector.new(each_row.map(&block), index: @index) end |
#collect_vector_with_index(&block) ⇒ Object
832 833 834 835 836 |
# File 'lib/daru/dataframe.rb', line 832 def collect_vector_with_index &block return to_enum(:collect_vector_with_index) unless block_given? Daru::Vector.new(each_vector_with_index.map(&block), index: @vectors) end |
#collect_vectors(&block) ⇒ Object
Retrives a Daru::Vector, based on the result of calculation performed on each vector.
826 827 828 829 830 |
# File 'lib/daru/dataframe.rb', line 826 def collect_vectors &block return to_enum(:collect_vectors) unless block_given? Daru::Vector.new(each_vector.map(&block), index: @vectors) end |
#compute(text, &block) ⇒ Object
Returns a vector, based on a string with a calculation based on vector.
The calculation will be eval’ed, so you can put any variable or expression valid on ruby.
For example:
a = Daru::Vector.new [1,2]
b = Daru::Vector.new [3,4]
ds = Daru::DataFrame.new({:a => a,:b => b})
ds.compute("a+b")
=> Vector [4,6]
1011 1012 1013 1014 |
# File 'lib/daru/dataframe.rb', line 1011 def compute text, &block return instance_eval(&block) if block_given? instance_eval(text) end |
#concat(other_df) ⇒ Object
Concatenate another DataFrame along corresponding columns. If columns do not exist in both dataframes, they are filled with nils
1252 1253 1254 1255 1256 1257 1258 1259 1260 |
# File 'lib/daru/dataframe.rb', line 1252 def concat other_df vectors = (@vectors.to_a + other_df.vectors.to_a).uniq data = vectors.map do |v| get_vector_anyways(v).dup.concat(other_df.get_vector_anyways(v)) end Daru::DataFrame.new(data, order: vectors) end |
#create_sql(table, charset = 'UTF8') ⇒ Object
Create a sql, basen on a given Dataset
Arguments
-
table - String specifying name of the table that will created in SQL.
-
charset - Character set. Default is “UTF8”.
1715 1716 1717 1718 1719 1720 1721 1722 1723 |
# File 'lib/daru/dataframe.rb', line 1715 def create_sql(table,charset='UTF8') sql = "CREATE TABLE #{table} (" fields = vectors.to_a.collect do |f| v = self[f] f.to_s + ' ' + v.db_type end sql + fields.join(",\n ")+") CHARACTER SET=#{charset};" end |
#delete_row(index) ⇒ Object
Delete a row
876 877 878 879 880 881 882 883 884 885 886 |
# File 'lib/daru/dataframe.rb', line 876 def delete_row index idx = named_index_for index raise IndexError, "Index #{index} does not exist." unless @index.include? idx @index = Daru::Index.new(@index.to_a - [idx]) each_vector do |vector| vector.delete_at idx end set_size end |
#delete_vector(vector) ⇒ Object
Delete a vector
859 860 861 862 863 864 865 866 |
# File 'lib/daru/dataframe.rb', line 859 def delete_vector vector raise IndexError, "Vector #{vector} does not exist." unless @vectors.include?(vector) @data.delete_at @vectors[vector] @vectors = Daru::Index.new @vectors.to_a - [vector] self end |
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors
869 870 871 872 873 |
# File 'lib/daru/dataframe.rb', line 869 def delete_vectors *vectors Array(vectors).each { |vec| delete_vector vec } self end |
#dup(vectors_to_dup = nil) ⇒ Object
Duplicate the DataFrame entirely.
Arguments
-
vectors_to_dup
- An Array specifying the names of Vectors to
be duplicated. Will duplicate the entire DataFrame if not specified.
457 458 459 460 461 462 463 464 |
# File 'lib/daru/dataframe.rb', line 457 def dup vectors_to_dup=nil vectors_to_dup = @vectors.to_a unless vectors_to_dup src = vectors_to_dup.map { |vec| @data[@vectors[vec]].dup } new_order = Daru::Index.new(vectors_to_dup) Daru::DataFrame.new src, order: new_order, index: @index.dup, name: @name, clone: true end |
#dup_only_valid(vecs = nil) ⇒ Object
Creates a new duplicate dataframe containing only rows without a single missing value.
498 499 500 501 502 503 504 505 |
# File 'lib/daru/dataframe.rb', line 498 def dup_only_valid vecs=nil rows_with_nil = @data.map { |vec| vec.indexes(*Daru::MISSING_VALUES) } .inject(&:concat) .uniq row_indexes = @index.to_a (vecs.nil? ? self : dup(vecs)).row[*(row_indexes - rows_with_nil)] end |
#each(axis = :vector, &block) ⇒ Object
Iterate over each row or vector of the DataFrame. Specify axis by passing :vector or :row as the argument. Default to :vector.
Description
‘#each` works exactly like Array#each. The default mode for `each` is to iterate over the columns of the DataFrame. To iterate over rows you must pass the axis, i.e `:row` as an argument.
Arguments
-
axis
- The axis to iterate over. Can be :vector (or :column)
or :row. Default to :vector.
630 631 632 |
# File 'lib/daru/dataframe.rb', line 630 def each axis=:vector, &block dispatch_to_axis axis, :each, &block end |
#each_index(&block) ⇒ Object
Iterate over each index of the DataFrame.
564 565 566 567 568 569 570 |
# File 'lib/daru/dataframe.rb', line 564 def each_index &block return to_enum(:each_index) unless block_given? @index.each(&block) self end |
#each_row ⇒ Object
Iterate over each row
597 598 599 600 601 602 603 604 605 |
# File 'lib/daru/dataframe.rb', line 597 def each_row return to_enum(:each_row) unless block_given? @index.size.times do |pos| yield row_at(pos) end self end |
#each_row_with_index ⇒ Object
607 608 609 610 611 612 613 614 615 |
# File 'lib/daru/dataframe.rb', line 607 def each_row_with_index return to_enum(:each_row_with_index) unless block_given? @index.each do |index| yield access_row(index), index end self end |
#each_vector(&block) ⇒ Object Also known as: each_column
Iterate over each vector
573 574 575 576 577 578 579 |
# File 'lib/daru/dataframe.rb', line 573 def each_vector(&block) return to_enum(:each_vector) unless block_given? @data.each(&block) self end |
#each_vector_with_index ⇒ Object Also known as: each_column_with_index
Iterate over each vector alongwith the name of the vector
584 585 586 587 588 589 590 591 592 |
# File 'lib/daru/dataframe.rb', line 584 def each_vector_with_index return to_enum(:each_vector_with_index) unless block_given? @vectors.each do |vector| yield @data[@vectors[vector]], vector end self end |
#filter(axis = :vector, &block) ⇒ Object
Retain vectors or rows if the block returns a truthy value.
Description
For filtering out certain rows/vectors based on their values, use the #filter method. By default it iterates over vectors and keeps those vectors for which the block returns true. It accepts an optional axis argument which lets you specify whether you want to iterate over vectors or rows.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
Usage
# Filter vectors
df.filter do |vector|
vector.type == :numeric and vector.median < 50
end
# Filter rows
df.filter(:row) do |row|
row[:a] + row[:d] < 100
end
738 739 740 |
# File 'lib/daru/dataframe.rb', line 738 def filter axis=:vector, &block dispatch_to_axis_pl axis, :filter, &block end |
#filter_rows ⇒ Object
Iterates over each row and retains it in a new DataFrame if the block returns true for that row.
921 922 923 924 925 926 927 |
# File 'lib/daru/dataframe.rb', line 921 def filter_rows return to_enum(:filter_rows) unless block_given? keep_rows = @index.map { |index| yield access_row(index) } where keep_rows end |
#filter_vector(vec, &block) ⇒ Object
creates a new vector with the data of a given field which the block returns true
915 916 917 |
# File 'lib/daru/dataframe.rb', line 915 def filter_vector vec, &block Daru::Vector.new each_row.select(&block).map { |row| row[vec] } end |
#filter_vectors(&block) ⇒ Object
Iterates over each vector and retains it in a new DataFrame if the block returns true for that vector.
931 932 933 934 935 |
# File 'lib/daru/dataframe.rb', line 931 def filter_vectors &block return to_enum(:filter_vectors) unless block_given? dup.tap { |df| df.keep_vector_if(&block) } end |
#get_vector_anyways(v) ⇒ Object
1246 1247 1248 |
# File 'lib/daru/dataframe.rb', line 1246 def get_vector_anyways(v) @vectors.include?(v) ? self[v].to_a : [nil] * size end |
#group_by(*vectors) ⇒ Object
Group elements by vector to perform operations on them. Returns a Daru::Core::GroupBy object.See the Daru::Core::GroupBy docs for a detailed list of possible operations.
Arguments
-
vectors - An Array contatining names of vectors to group by.
Usage
df = Daru::DataFrame.new({
a: %w{foo bar foo bar foo bar foo foo},
b: %w{one one two three two two one three},
c: [1 ,2 ,3 ,1 ,3 ,6 ,3 ,8],
d: [11 ,22 ,33 ,44 ,55 ,66 ,77 ,88]
})
df.group_by([:a,:b,:c]).groups
#=> {["bar", "one", 2]=>[1],
# ["bar", "three", 1]=>[3],
# ["bar", "two", 6]=>[5],
# ["foo", "one", 1]=>[0],
# ["foo", "one", 3]=>[6],
# ["foo", "three", 8]=>[7],
# ["foo", "two", 3]=>[2, 4]}
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 |
# File 'lib/daru/dataframe.rb', line 1221 def group_by *vectors vectors.flatten! # FIXME: wouldn't it better to do vectors - @vectors here and # raise one error with all non-existent vector names?.. - zverok, 2016-05-18 vectors.each { |v| raise(ArgumentError, "Vector #{v} does not exist") unless has_vector?(v) } vectors = [@vectors.first] if vectors.empty? Daru::Core::GroupBy.new(self, vectors) end |
#has_missing_data? ⇒ Boolean Also known as: flawed?
1033 1034 1035 |
# File 'lib/daru/dataframe.rb', line 1033 def has_missing_data? !!@data.any? { |vec| vec.include_values?(*Daru::MISSING_VALUES) } end |
#has_vector?(vector) ⇒ Boolean
Check if a vector is present
1108 1109 1110 |
# File 'lib/daru/dataframe.rb', line 1108 def has_vector? vector @vectors.include? vector end |
#head(quantity = 10) ⇒ Object Also known as: first
The first ten elements of the DataFrame
1156 1157 1158 |
# File 'lib/daru/dataframe.rb', line 1156 def head quantity=10 row.at 0..(quantity-1) end |
#include_values?(*values) ⇒ true, false
Check if any of given values occur in the data frame
1052 1053 1054 |
# File 'lib/daru/dataframe.rb', line 1052 def include_values?(*values) @data.any? { |vec| vec.include_values?(*values) } end |
#inspect(spacing = 10, threshold = 15) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby)
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 |
# File 'lib/daru/dataframe.rb', line 1902 def inspect spacing=10, threshold=15 row_headers = index.is_a?(MultiIndex) ? index.sparse_tuples : index.to_a name_part = @name ? ": #{@name} " : '' "#<#{self.class}#{name_part}(#{nrows}x#{ncols})>\n" + Formatters::Table.format( each_row.lazy, row_headers: row_headers, headers: vectors, threshold: threshold, spacing: spacing ) end |
#interact_code(vector_names, full) ⇒ Object
1965 1966 1967 1968 1969 1970 1971 1972 1973 |
# File 'lib/daru/dataframe.rb', line 1965 def interact_code vector_names, full dfs = vector_names.zip(full).map do |vec_name, f| self[vec_name].contrast_code(full: f).each.to_a end all_vectors = recursive_product(dfs) Daru::DataFrame.new all_vectors, order: all_vectors.map(&:name) end |
#join(other_df, opts = {}) ⇒ Daru::DataFrame
Join 2 DataFrames with SQL style joins. Currently supports inner, left outer, right outer and full outer joins.
1638 1639 1640 |
# File 'lib/daru/dataframe.rb', line 1638 def join(other_df,opts={}) Daru::Core::Merge.join(self, other_df, opts) end |
#keep_row_if ⇒ Object
902 903 904 905 906 |
# File 'lib/daru/dataframe.rb', line 902 def keep_row_if @index .reject { |idx| yield access_row(idx) } .each { |idx| delete_row idx } end |
#keep_vector_if ⇒ Object
908 909 910 911 912 |
# File 'lib/daru/dataframe.rb', line 908 def keep_vector_if @vectors.each do |vector| delete_vector(vector) unless yield(@data[@vectors[vector]], vector) end end |
#map(axis = :vector, &block) ⇒ Object
Map over each vector or row of the data frame according to the argument specified. Will return an Array of the resulting elements. To map over each row/vector and get a DataFrame, see #recode.
Description
The #map iterator works like Array#map. The value returned by each run of the block is added to an Array and the Array is returned. This method also accepts an axis argument, like #each. The default is :vector.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
669 670 671 |
# File 'lib/daru/dataframe.rb', line 669 def map axis=:vector, &block dispatch_to_axis_pl axis, :map, &block end |
#map!(axis = :vector, &block) ⇒ Object
Destructive map. Modifies the DataFrame. Each run of the block must return a Daru::Vector. You can specify the axis to map over as the argument. Default to :vector.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
681 682 683 684 685 686 687 |
# File 'lib/daru/dataframe.rb', line 681 def map! axis=:vector, &block if axis == :vector || axis == :column map_vectors!(&block) elsif axis == :row map_rows!(&block) end end |
#map_rows(&block) ⇒ Object
Map each row
788 789 790 791 792 |
# File 'lib/daru/dataframe.rb', line 788 def map_rows &block return to_enum(:map_rows) unless block_given? each_row.map(&block) end |
#map_rows! ⇒ Object
800 801 802 803 804 805 806 807 808 |
# File 'lib/daru/dataframe.rb', line 800 def map_rows! return to_enum(:map_rows!) unless block_given? index.dup.each do |i| row[i] = should_be_vector!(yield(row[i])) end self end |
#map_rows_with_index(&block) ⇒ Object
794 795 796 797 798 |
# File 'lib/daru/dataframe.rb', line 794 def map_rows_with_index &block return to_enum(:map_rows_with_index) unless block_given? each_row_with_index.map(&block) end |
#map_vectors(&block) ⇒ Object
Map each vector and return an Array.
763 764 765 766 767 |
# File 'lib/daru/dataframe.rb', line 763 def map_vectors &block return to_enum(:map_vectors) unless block_given? @data.map(&block) end |
#map_vectors! ⇒ Object
Destructive form of #map_vectors
770 771 772 773 774 775 776 777 778 |
# File 'lib/daru/dataframe.rb', line 770 def map_vectors! return to_enum(:map_vectors!) unless block_given? vectors.dup.each do |n| self[n] = should_be_vector!(yield(self[n])) end self end |
#map_vectors_with_index(&block) ⇒ Object
Map vectors alongwith the index.
781 782 783 784 785 |
# File 'lib/daru/dataframe.rb', line 781 def map_vectors_with_index &block return to_enum(:map_vectors_with_index) unless block_given? each_vector_with_index.map(&block) end |
#merge(other_df) ⇒ Daru::DataFrame
Merge vectors from two DataFrames. In case of name collision, the vectors names are changed to x_1, x_2 .…
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 |
# File 'lib/daru/dataframe.rb', line 1592 def merge other_df # rubocop:disable Metrics/AbcSize unless nrows == other_df.nrows raise ArgumentError, "Number of rows must be equal in this: #{nrows} and other: #{other_df.nrows}" end new_fields = (@vectors.to_a + other_df.vectors.to_a) new_fields = ArrayHelper.recode_repeated(new_fields) DataFrame.new({}, order: new_fields).tap do |df_new| (0...nrows).each do |i| df_new.add_row row[i].to_a + other_df.row[i].to_a end df_new.update end end |
#missing_values_rows(missing_values = [nil]) ⇒ Object Also known as: vector_missing_values
Return a vector with the number of missing values in each row.
Arguments
-
missing_values
- An Array of the values that should be
treated as ‘missing’. The default missing value is nil.
1022 1023 1024 1025 1026 1027 1028 |
# File 'lib/daru/dataframe.rb', line 1022 def missing_values_rows missing_values=[nil] number_of_missing = each_row.map do |row| row.indexes(*missing_values).size end Daru::Vector.new number_of_missing, index: @index, name: "#{@name}_missing_rows" end |
#ncols ⇒ Object
The number of vectors
1103 1104 1105 |
# File 'lib/daru/dataframe.rb', line 1103 def ncols @vectors.size end |
#nest(*tree_keys, &_block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values. If block provided, is used to provide the values, with parameters row
of dataset, current
last hash on hierarchy and name
of the key to include
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 |
# File 'lib/daru/dataframe.rb', line 1060 def nest *tree_keys, &_block tree_keys = tree_keys[0] if tree_keys[0].is_a? Array each_row.each_with_object({}) do |row, current| # Create tree *keys, last = tree_keys current = keys.inject(current) { |c, f| c[row[f]] ||= {} } name = row[last] if block_given? current[name] = yield(row, current, name) else current[name] ||= [] current[name].push(row.to_h.delete_if { |key,_value| tree_keys.include? key }) end end end |
#nrows ⇒ Object
The number of rows
1098 1099 1100 |
# File 'lib/daru/dataframe.rb', line 1098 def nrows @index.size end |
#numeric_vector_names ⇒ Object
1396 1397 1398 |
# File 'lib/daru/dataframe.rb', line 1396 def numeric_vector_names @vectors.select { |v| self[v].numeric? } end |
#numeric_vectors ⇒ Object
Return the indexes of all the numeric vectors. Will include vectors with nils alongwith numbers.
1389 1390 1391 1392 1393 1394 |
# File 'lib/daru/dataframe.rb', line 1389 def numeric_vectors # FIXME: Why _with_index ?.. each_vector_with_index .select { |vec, _i| vec.numeric? } .map(&:last) end |
#one_to_many(parent_fields, pattern) ⇒ Object
Creates a new dataset for one to many relations on a dataset, based on pattern of field names.
for example, you have a survey for number of children with this structure:
id, name, child_name_1, child_age_1, child_name_2, child_age_2
with
ds.one_to_many([:id], "child_%v_%n"
the field of first parameters will be copied verbatim to new dataset, and fields which responds to second pattern will be added one case for each different %n.
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 |
# File 'lib/daru/dataframe.rb', line 1673 def one_to_many(parent_fields, pattern) vars, numbers = one_to_many_components(pattern) DataFrame.new([], order: [*parent_fields, '_col_id', *vars]).tap do |ds| each_row do |row| verbatim = parent_fields.map { |f| [f, row[f]] }.to_h numbers.each do |n| generated = one_to_many_row row, n, vars, pattern next if generated.values.all?(&:nil?) ds.add_row(verbatim.merge(generated).merge('_col_id' => n)) end end ds.update end end |
#only_numerics(opts = {}) ⇒ Object
Return a DataFrame of only the numerical Vectors. If clone: false is specified as option, only a view of the Vectors will be returned. Defaults to clone: true.
1403 1404 1405 1406 1407 1408 1409 |
# File 'lib/daru/dataframe.rb', line 1403 def only_numerics opts={} cln = opts[:clone] == false ? false : true arry = numeric_vectors.map { |v| self[v] } order = Index.new(numeric_vectors) Daru::DataFrame.new(arry, clone: cln, order: order, index: @index) end |
#order=(order_array) ⇒ Object
Reorder the vectors in a dataframe
993 994 995 996 997 |
# File 'lib/daru/dataframe.rb', line 993 def order=(order_array) raise ArgumentError, 'Invalid order' unless order_array.sort == vectors.to_a.sort initialize(to_h, order: order_array) end |
#pivot_table(opts = {}) ⇒ Object
Pivots a data frame on specified vectors and applies an aggregate function to quickly generate a summary.
Options
:index
- Keys to group by on the pivot table row index. Pass vector names contained in an Array.
:vectors
- Keys to group by on the pivot table column index. Pass vector names contained in an Array.
:agg
- Function to aggregate the grouped values. Default to :mean. Can use any of the statistics functions applicable on Vectors that can be found in the Daru::Statistics::Vector module.
:values
- Columns to aggregate. Will consider all numeric columns not specified in :index or :vectors. Optional.
Usage
df = Daru::DataFrame.new({
a: ['foo' , 'foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar'],
b: ['one' , 'one', 'one', 'two', 'two', 'one', 'one', 'two', 'two'],
c: ['small','large','large','small','small','large','small','large','small'],
d: [1,2,2,3,3,4,5,6,7],
e: [2,4,4,6,6,8,10,12,14]
})
df.pivot_table(index: [:a], vectors: [:b], agg: :sum, values: :e)
#=>
# #<Daru::DataFrame:88342020 @name = 08cdaf4e-b154-4186-9084-e76dd191b2c9 @size = 2>
# [:e, :one] [:e, :two]
# [:bar] 18 26
# [:foo] 10 12
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 |
# File 'lib/daru/dataframe.rb', line 1571 def pivot_table opts={} raise ArgumentError, 'Specify grouping index' if Array(opts[:index]).empty? index = opts[:index] vectors = opts[:vectors] || [] aggregate_function = opts[:agg] || :mean values = prepare_pivot_values index, vectors, opts raise IndexError, 'No numeric vectors to aggregate' if values.empty? grouped = group_by(index) return grouped.send(aggregate_function) if vectors.empty? super_hash = make_pivot_hash grouped, vectors, values, aggregate_function pivot_dataframe super_hash end |
#plotting_library=(lib) ⇒ Object
264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# File 'lib/daru/dataframe.rb', line 264 def plotting_library= lib case lib when :gruff, :nyaplot @plotting_library = lib if Daru.send("has_#{lib}?".to_sym) extend Module.const_get( "Daru::Plotting::DataFrame::#{lib.to_s.capitalize}Library" ) end else raise ArguementError, "Plotting library #{lib} not supported. "\ 'Supported libraries are :nyaplot and :gruff' end end |
#recast(opts = {}) ⇒ Object
1884 1885 1886 1887 1888 |
# File 'lib/daru/dataframe.rb', line 1884 def recast opts={} opts.each do |vector_name, dtype| self[vector_name].cast(dtype: dtype) end end |
#recode(axis = :vector, &block) ⇒ Object
Maps over the DataFrame and returns a DataFrame. Each run of the block must return a Daru::Vector object. You can specify the axis to map over. Default to :vector.
Description
Recode works similarly to #map, but an important difference between the two is that recode returns a modified Daru::DataFrame instead of an Array. For this reason, #recode expects that every run of the block to return a Daru::Vector.
Just like map and each, recode also accepts an optional axis argument.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
706 707 708 |
# File 'lib/daru/dataframe.rb', line 706 def recode axis=:vector, &block dispatch_to_axis_pl axis, :recode, &block end |
#recode_rows ⇒ Object
752 753 754 755 756 757 758 759 760 |
# File 'lib/daru/dataframe.rb', line 752 def recode_rows block_given? or return to_enum(:recode_rows) dup.tap do |df| df.each_row_with_index do |r, i| df.row[i] = should_be_vector!(yield(r)) end end end |
#recode_vectors ⇒ Object
742 743 744 745 746 747 748 749 750 |
# File 'lib/daru/dataframe.rb', line 742 def recode_vectors block_given? or return to_enum(:recode_vectors) dup.tap do |df| df.each_vector_with_index do |v, i| df[*i] = should_be_vector!(yield(v)) end end end |
#reindex(new_index) ⇒ Object
Change the index of the DataFrame and preserve the labels of the previous indexing. New index can be Daru::Index or any of its subclasses.
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 |
# File 'lib/daru/dataframe.rb', line 1308 def reindex new_index unless new_index.is_a?(Daru::Index) raise ArgumentError, 'Must pass the new index of type Index or its '\ "subclasses, not #{new_index.class}" end cl = Daru::DataFrame.new({}, order: @vectors, index: new_index, name: @name) new_index.each_with_object(cl) do |idx, memo| memo.row[idx] = @index.include?(idx) ? row[idx] : [nil]*ncols end end |
#reindex_vectors(new_vectors) ⇒ Object
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 |
# File 'lib/daru/dataframe.rb', line 1234 def reindex_vectors new_vectors unless new_vectors.is_a?(Daru::Index) raise ArgumentError, 'Must pass the new index of type Index or its '\ "subclasses, not #{new_index.class}" end cl = Daru::DataFrame.new({}, order: new_vectors, index: @index, name: @name) new_vectors.each_with_object(cl) do |vec, memo| memo[vec] = @vectors.include?(vec) ? self[vec] : [nil]*nrows end end |
#reject_values(*values) ⇒ Daru::DataFrame
Returns a dataframe in which rows with any of the mentioned values
are ignored.
524 525 526 527 528 529 530 531 532 533 534 |
# File 'lib/daru/dataframe.rb', line 524 def reject_values(*values) positions = size.times.to_a - @data.flat_map { |vec| vec.positions(*values) } # Handle the case when positions size is 1 and #row_at wouldn't return a df if positions.size == 1 pos = positions.first row_at(pos..pos) else row_at(*positions) end end |
#rename(new_name) ⇒ Object Also known as: name=
Rename the DataFrame.
1809 1810 1811 1812 |
# File 'lib/daru/dataframe.rb', line 1809 def rename new_name @name = new_name self end |
#rename_vectors(name_map) ⇒ Object
Renames the vectors
Arguments
-
name_map - A hash where the keys are the exising vector names and
the values are the new names. If a vector is renamed to a vector name that is already in use, the existing one is overwritten.
Usage
df = Daru::DataFrame.new({ a: [1,2,3,4], b: [:a,:b,:c,:d], c: [11,22,33,44] })
df.rename_vectors :a => :alpha, :c => :gamma
df.vectors.to_a #=> [:alpha, :b, :gamma]
1379 1380 1381 1382 1383 1384 1385 |
# File 'lib/daru/dataframe.rb', line 1379 def rename_vectors name_map existing_targets = name_map.select { |k,v| k != v }.values & vectors.to_a delete_vectors(*existing_targets) new_names = vectors.to_a.map { |v| name_map[v] ? name_map[v] : v } self.vectors = Daru::Index.new new_names end |
#replace_values(old_values, new_value) ⇒ Daru::DataFrame
Replace specified values with given value
558 559 560 561 |
# File 'lib/daru/dataframe.rb', line 558 def replace_values old_values, new_value @data.each { |vec| vec.replace_values old_values, new_value } self end |
#report_building(b) ⇒ Object
:nodoc: #
1416 1417 1418 1419 1420 1421 1422 1423 1424 |
# File 'lib/daru/dataframe.rb', line 1416 def report_building(b) # :nodoc: # b.section(name: @name) do |g| g.text "Number of rows: #{nrows}" @vectors.each do |v| g.text "Element:[#{v}]" g.parse_element(self[v]) end end end |
#respond_to_missing?(name, include_private = false) ⇒ Boolean
1961 1962 1963 |
# File 'lib/daru/dataframe.rb', line 1961 def respond_to_missing?(name, include_private=false) name.to_s.end_with?('=') || has_vector?(name) || super end |
#row ⇒ Object
Access a row or set/create a row. Refer #[] and #[]= docs for details.
Usage
df.row[:a] # access row named ':a'
df.row[:b] = [1,2,3] # set row ':b' to [1,2,3]
447 448 449 |
# File 'lib/daru/dataframe.rb', line 447 def row Daru::Accessors::DataFrameByRow.new(self) end |
#row_at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive rows by positions
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# File 'lib/daru/dataframe.rb', line 300 def row_at *positions original_positions = positions positions = coerce_positions(*positions, nrows) validate_positions(*positions, nrows) if positions.is_a? Integer return Daru::Vector.new @data.map { |vec| vec.at(*positions) }, index: @vectors else new_rows = @data.map { |vec| vec.at(*original_positions) } return Daru::DataFrame.new new_rows, index: @index.at(*original_positions), order: @vectors end end |
#save(filename) ⇒ Object
Use marshalling to save dataframe to a file.
1858 1859 1860 |
# File 'lib/daru/dataframe.rb', line 1858 def save filename Daru::IO.save self, filename end |
#set_at(positions, vector) ⇒ Object
Set vectors by positions
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# File 'lib/daru/dataframe.rb', line 399 def set_at positions, vector if positions.last == :row positions.pop return set_row_at(positions, vector) end validate_positions(*positions, ncols) vector = if vector.is_a? Daru::Vector vector.reindex @index else Daru::Vector.new vector end raise SizeError, 'Vector length should match index length' if vector.size != @index.size positions.each { |pos| @data[pos] = vector } end |
#set_index(new_index, opts = {}) ⇒ Object
Set a particular column as the new DF
1276 1277 1278 1279 1280 1281 1282 1283 1284 |
# File 'lib/daru/dataframe.rb', line 1276 def set_index new_index, opts={} raise ArgumentError, 'All elements in new index must be unique.' if @size != self[new_index].uniq.size self.index = Daru::Index.new(self[new_index].to_a) delete_vector(new_index) unless opts[:keep] self end |
#set_row_at(positions, vector) ⇒ Object
Set rows by positions
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# File 'lib/daru/dataframe.rb', line 331 def set_row_at positions, vector validate_positions(*positions, nrows) vector = if vector.is_a? Daru::Vector vector.reindex @vectors else Daru::Vector.new vector end raise SizeError, 'Vector length should match row length' if vector.size != @vectors.size @data.each_with_index do |vec, pos| vec.set_at(positions, vector.at(pos)) end @index = @data[0].index set_size end |
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
1093 1094 1095 |
# File 'lib/daru/dataframe.rb', line 1093 def shape [nrows, ncols] end |
#sort(vector_order, opts = {}) ⇒ Object
Non-destructive version of #sort!
1533 1534 1535 |
# File 'lib/daru/dataframe.rb', line 1533 def sort vector_order, opts={} dup.sort! vector_order, opts end |
#sort!(vector_order, opts = {}) ⇒ Object
Sorts a dataframe (ascending/descending) in the given pripority sequence of vectors, with or without a block.
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 |
# File 'lib/daru/dataframe.rb', line 1509 def sort! vector_order, opts={} raise ArgumentError, 'Required atleast one vector name' if vector_order.empty? # To enable sorting with categorical data, # map categories to integers preserving their order old = convert_categorical_vectors vector_order block = sort_prepare_block vector_order, opts order = @index.size.times.sort(&block) new_index = @index.reorder order # To reverse map mapping of categorical data to integers restore_categorical_vectors old @data.each do |vector| vector.reorder! order end self.index = new_index self end |
#split_by_category(cat_name) ⇒ Array
Split the dataframe into many dataframes based on category vector
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 |
# File 'lib/daru/dataframe.rb', line 1993 def split_by_category cat_name cat_dv = self[cat_name] raise ArguementError, "#{cat_name} is not a category vector" unless cat_dv.category? cat_dv.categories.map do |cat| where(cat_dv.eq cat) .rename(cat) .delete_vector cat_name end end |
#summary(method = :to_text) ⇒ Object
Generate a summary of this DataFrame with ReportBuilder.
1412 1413 1414 |
# File 'lib/daru/dataframe.rb', line 1412 def summary(method=:to_text) ReportBuilder.new(no_title: true).add(self).send(method) end |
#tail(quantity = 10) ⇒ Object Also known as: last
The last ten elements of the DataFrame
1165 1166 1167 1168 |
# File 'lib/daru/dataframe.rb', line 1165 def tail quantity=10 start = [-quantity, -size].max row.at start..-1 end |
#to_a ⇒ Object
Converts the DataFrame into an array of hashes where key is vector name and value is the corresponding element. The 0th index of the array contains the array of hashes while the 1th index contains the indexes of each row of the dataframe. Each element in the index array corresponds to its row in the array of hashes, which has the same index.
1763 1764 1765 |
# File 'lib/daru/dataframe.rb', line 1763 def to_a [each_row.map(&:to_h), @index.to_a] end |
#to_category(*names) ⇒ Daru::DataFrame
Converts the specified non category type vectors to category type vectors
1941 1942 1943 1944 |
# File 'lib/daru/dataframe.rb', line 1941 def to_category *names names.each { |n| self[n] = self[n].to_category } self end |
#to_df ⇒ self
Returns the dataframe. This can be convenient when the user does not know whether the object is a vector or a dataframe.
1728 1729 1730 |
# File 'lib/daru/dataframe.rb', line 1728 def to_df self end |
#to_gsl ⇒ Object
Convert all numeric vectors to GSL::Matrix
1733 1734 1735 1736 1737 |
# File 'lib/daru/dataframe.rb', line 1733 def to_gsl numerics_as_arrays = numeric_vectors.map { |n| self[n].to_a } GSL::Matrix.alloc(*numerics_as_arrays.transpose) end |
#to_h ⇒ Object
Converts DataFrame to a hash (explicit) with keys as vector names and values as the corresponding vectors.
1779 1780 1781 1782 1783 |
# File 'lib/daru/dataframe.rb', line 1779 def to_h @vectors .each_with_index .map { |vec_name, idx| [vec_name, @data[idx]] }.to_h end |
#to_html(threshold = 30) ⇒ Object
Convert to html for IRuby.
1786 1787 1788 1789 1790 1791 1792 1793 |
# File 'lib/daru/dataframe.rb', line 1786 def to_html threshold=30 path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi.html.erb', __FILE__) else File.('../iruby/templates/dataframe.html.erb', __FILE__) end ERB.new(File.read(path).strip).result(binding) end |
#to_json(no_index = true) ⇒ Object
Convert to json. If no_index is false then the index will NOT be included in the JSON thus created.
1769 1770 1771 1772 1773 1774 1775 |
# File 'lib/daru/dataframe.rb', line 1769 def to_json no_index=true if no_index to_a[0].to_json else to_a.to_json end end |
#to_matrix ⇒ Object
Convert all vectors of type :numeric into a Matrix.
1740 1741 1742 |
# File 'lib/daru/dataframe.rb', line 1740 def to_matrix Matrix.columns each_vector.select(&:numeric?).map(&:to_a) end |
#to_nmatrix ⇒ Object
Convert all vectors of type :numeric and not containing nils into an NMatrix.
1752 1753 1754 1755 1756 |
# File 'lib/daru/dataframe.rb', line 1752 def to_nmatrix each_vector.select do |vector| vector.numeric? && !vector.include_values?(*Daru::MISSING_VALUES) end.map(&:to_a).transpose.to_nm end |
#to_nyaplotdf ⇒ Object
Return a Nyaplot::DataFrame from the data of this DataFrame. :nocov:
1746 1747 1748 |
# File 'lib/daru/dataframe.rb', line 1746 def to_nyaplotdf Nyaplot::DataFrame.new(to_a[0]) end |
#to_REXP ⇒ Object
rubocop:disable Style/MethodName
5 6 7 8 9 10 11 12 13 |
# File 'lib/daru/extensions/rserve.rb', line 5 def to_REXP # rubocop:disable Style/MethodName names = @vectors.to_a data = names.map do |f| Rserve::REXP::Wrapper.wrap(self[f].to_a) end l = Rserve::Rlist.new(data, names.map(&:to_s)) Rserve::REXP.create_data_frame(l) end |
#to_s ⇒ Object
1795 1796 1797 |
# File 'lib/daru/dataframe.rb', line 1795 def to_s to_html end |
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
1891 1892 1893 1894 1895 1896 1897 1898 1899 |
# File 'lib/daru/dataframe.rb', line 1891 def transpose Daru::DataFrame.new( each_vector.map(&:to_a).transpose, index: @vectors, order: @index, dtype: @dtype, name: @name ) end |
#union(other_df) ⇒ Object
Concatenates another DataFrame as #concat. Additionally it tries to preserve the index. If the indices contain common elements, #union will overwrite the according rows in the first dataframe.
1266 1267 1268 1269 1270 1271 1272 1273 |
# File 'lib/daru/dataframe.rb', line 1266 def union other_df index = (@index.to_a + other_df.index.to_a).uniq df = row[*(@index.to_a - other_df.index.to_a)] df = df.concat(other_df) df.index = Daru::Index.new(index) df end |
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc. are complete. This is provided so that time is not wasted in creating the metadata for the vector each time assignment/deletion of elements is done. Updating data this way is called lazy loading. To set or unset lazy loading, see the .lazy_update= method.
1804 1805 1806 |
# File 'lib/daru/dataframe.rb', line 1804 def update @data.each(&:update) if Daru.lazy_update end |
#vector_by_calculation(&block) ⇒ Object
DSL for yielding each row and returning a Daru::Vector based on the value each run of the block returns.
Usage
a1 = Daru::Vector.new([1, 2, 3, 4, 5, 6, 7])
a2 = Daru::Vector.new([10, 20, 30, 40, 50, 60, 70])
a3 = Daru::Vector.new([100, 200, 300, 400, 500, 600, 700])
ds = Daru::DataFrame.new({ :a => a1, :b => a2, :c => a3 })
total = ds.vector_by_calculation { a + b + c }
# <Daru::Vector:82314050 @name = nil @size = 7 >
# nil
# 0 111
# 1 222
# 2 333
# 3 444
# 4 555
# 5 666
# 6 777
973 974 975 976 977 |
# File 'lib/daru/dataframe.rb', line 973 def vector_by_calculation &block a = each_row.map { |r| r.instance_eval(&block) } Daru::Vector.new a, index: @index end |
#vector_count_characters(vecs = nil) ⇒ Object
1078 1079 1080 1081 1082 1083 1084 |
# File 'lib/daru/dataframe.rb', line 1078 def vector_count_characters vecs=nil vecs ||= @vectors.to_a collect_rows do |row| vecs.map { |v| row[v].to_s.size }.inject(:+) end end |
#vector_mean(max_missing = 0) ⇒ Object
Calculate mean of the rows of the dataframe.
Arguments
-
max_missing
- The maximum number of elements in the row that can be
zero for the mean calculation to happen. Default to 0.
1187 1188 1189 1190 1191 1192 1193 1194 1195 |
# File 'lib/daru/dataframe.rb', line 1187 def vector_mean max_missing=0 # FIXME: in vector_sum we preserve created vector dtype, but # here we are not. Is this by design or ...? - zverok, 2016-05-18 mean_vec = Daru::Vector.new [0]*@size, index: @index, name: "mean_#{@name}" each_row_with_index.each_with_object(mean_vec) do |(row, i), memo| memo[i] = row.indexes(*Daru::MISSING_VALUES).size > max_missing ? nil : row.mean end end |
#vector_sum(vecs = nil) ⇒ Object
Returns a vector with sum of all vectors specified in the argument. If vecs parameter is empty, sum all numeric vector.
1174 1175 1176 1177 1178 1179 |
# File 'lib/daru/dataframe.rb', line 1174 def vector_sum vecs=nil vecs ||= numeric_vectors sum = Daru::Vector.new [0]*@size, index: @index, name: @name, dtype: @dtype vecs.inject(sum) { |memo, n| memo + self[n] } end |
#verify(*tests) ⇒ Object
Test each row with one or more tests. Each test is a Proc with the form *Proc.new {|row| row > 0}*
The function returns an array with all errors.
FIXME: description here is too sparse. As far as I can get, it should tell something about that each test is [descr, fields, block], and that first value may be column name to output. - zverok, 2016-05-18
945 946 947 948 949 950 951 952 |
# File 'lib/daru/dataframe.rb', line 945 def verify(*tests) id = tests.first.is_a?(Symbol) ? tests.shift : @vectors.first each_row_with_index.map do |row, i| tests.reject { |*_, block| block.call(row) } .map { |test| row, test, id, i } end.flatten end |
#where(bool_array) ⇒ Object
Query a DataFrame by passing a Daru::Core::Query::BoolArray object.
1917 1918 1919 |
# File 'lib/daru/dataframe.rb', line 1917 def where bool_array Daru::Core::Query.df_where self, bool_array end |
#write_csv(filename, opts = {}) ⇒ Object
Write this DataFrame to a CSV file.
Arguements
-
filename - Path of CSV file where the DataFrame is to be saved.
Options
-
convert_comma - If set to true, will convert any commas in any
of the data to full stops (‘.’). All the options accepted by CSV.read() can also be passed into this function.
1828 1829 1830 |
# File 'lib/daru/dataframe.rb', line 1828 def write_csv filename, opts={} Daru::IO.dataframe_write_csv self, filename, opts end |
#write_excel(filename, opts = {}) ⇒ Object
Write this dataframe to an Excel Spreadsheet
Arguments
-
filename - The path of the file where the DataFrame should be written.
1837 1838 1839 |
# File 'lib/daru/dataframe.rb', line 1837 def write_excel filename, opts={} Daru::IO.dataframe_write_excel self, filename, opts end |
#write_sql(dbh, table) ⇒ Object
Insert each case of the Dataset on the selected table
Arguments
-
dbh - DBI database connection object.
-
query - Query string.
Usage
ds = Daru::DataFrame.new({:id=>Daru::Vector.new([1,2,3]), :name=>Daru::Vector.new(["a","b","c"])})
dbh = DBI.connect("DBI:Mysql:database:localhost", "user", "password")
ds.write_sql(dbh,"test")
1853 1854 1855 |
# File 'lib/daru/dataframe.rb', line 1853 def write_sql dbh, table Daru::IO.dataframe_write_sql self, dbh, table end |