Class: Daru::Vector
- Extended by:
- Gem::Deprecate
- Includes:
- Maths::Arithmetic::Vector, Maths::Statistics::Vector, Enumerable
- Defined in:
- lib/daru/vector.rb,
lib/daru/extensions/rserve.rb
Overview
rubocop:disable Metrics/ClassLength
Constant Summary collapse
- DEFAULT_SORTER =
lambda { |(lv, li), (rv, ri)| case when lv.nil? && rv.nil? li <=> ri when lv.nil? -1 when rv.nil? 1 else lv <=> rv end }
- DATE_REGEXP =
/^(\d{2}-\d{2}-\d{4}|\d{4}-\d{2}-\d{2})$/
Instance Attribute Summary collapse
-
#data ⇒ Object
readonly
Store vector data in an array.
-
#dtype ⇒ Object
readonly
The underlying dtype of the Vector.
-
#index ⇒ Object
The row index.
-
#labels ⇒ Object
Store a hash of labels for values.
-
#missing_positions ⇒ Object
readonly
An Array or the positions in the vector that are being treated as ‘missing’.
-
#name ⇒ Object
readonly
The name of the Daru::Vector.
-
#nm_dtype ⇒ Object
readonly
If the dtype is :nmatrix, this attribute represents the data type of the underlying NMatrix object.
-
#plotting_library ⇒ Object
Ploting library being used for this vector.
Class Method Summary collapse
-
.[](*indexes) ⇒ Object
Create a vector using (almost) any object * Array: flattened * Range: transformed using to_a * Daru::Vector * Numeric and string values.
-
._load(data) ⇒ Object
:nodoc:.
- .coerce(data, options = {}) ⇒ Object
-
.new_with_size(n, opts = {}, &block) ⇒ Object
Create a new vector by specifying the size and an optional value and block to generate values.
Instance Method Summary collapse
-
#==(other) ⇒ Object
Two vectors are equal if they have the exact same index values corresponding with the exact same elements.
-
#[](*input_indexes) ⇒ Object
Get one or more elements with specified index or a range.
-
#[]=(*indexes, val) ⇒ Object
Just like in Hashes, you can specify the index label of the Daru::Vector and assign an element an that place in the Daru::Vector.
-
#_dump ⇒ Object
:nodoc:.
- #all?(&block) ⇒ Boolean
- #any?(&block) ⇒ Boolean
-
#at(*positions) ⇒ object
Returns vector of values given positional values.
-
#bootstrap(estimators, nr, s = nil) ⇒ Object
Bootstrap Generate
nr
resamples (with replacement) of sizes
from vector, computing each estimate fromestimators
over each resample. -
#cast(opts = {}) ⇒ Object
Cast a vector to a new data type.
-
#category? ⇒ true, false
Tells if vector is categorical or not.
-
#clone_structure ⇒ Object
Copies the structure of the vector (i.e the index, size, etc.) and fills all all values with nils.
-
#concat(element, index) ⇒ Object
(also: #push, #<<)
Append an element to the vector by specifying the element and index.
-
#count_values(*values) ⇒ Integer
Count the number of values specified.
-
#cut(partitions, opts = {}) ⇒ Daru::Vector
Partition a numeric variable into categories.
-
#daru_vector ⇒ Object
(also: #dv)
:nocov:.
-
#db_type ⇒ Object
Returns the database type for the vector, according to its content.
-
#delete(element) ⇒ Object
Delete an element by value.
-
#delete_at(index) ⇒ Object
Delete element by index.
-
#delete_if ⇒ Object
Delete an element if block returns true.
- #detach_index ⇒ Object
-
#dup ⇒ Daru::Vector
Duplicated a vector.
- #each(&block) ⇒ Object
- #each_index(&block) ⇒ Object
- #each_with_index(&block) ⇒ Object
- #empty? ⇒ Boolean
- #group_by(*args) ⇒ Object
-
#has_index?(index) ⇒ Boolean
Returns true if an index exists.
-
#has_missing_data? ⇒ Boolean
(also: #flawed?)
Reports whether missing data is present in the Vector.
- #head(q = 10) ⇒ Object
-
#in(other) ⇒ Object
Comparator for checking if any of the elements in other exist in self.
-
#include_values?(*values) ⇒ true, false
Check if any one of mentioned values occur in the vector.
-
#index_of(element) ⇒ Object
Get index of element.
-
#indexes(*values) ⇒ Array
Return indexes of values specified.
-
#initialize(source, opts = {}) ⇒ Vector
constructor
Create a Vector object.
-
#inspect(spacing = 20, threshold = 15) ⇒ Object
Over rides original inspect for pretty printing in irb.
-
#is_nil? ⇒ Boolean
Returns a vector which has true in the position where the element in self is nil, and false otherwise.
-
#jackknife(estimators, k = 1) ⇒ Object
Jacknife Returns a dataset with jacknife delete-
k
estimators
estimators
could be: a) Hash with variable names as keys and lambdas as values a.jacknife(:log_s2=>lambda {|v| Math.log(v.variance)}) b) Array with method names to jacknife a.jacknife([:mean, :sd]) c) A single method to jacknife a.jacknife(:mean)k
represent the block size for block jacknife. -
#keep_if ⇒ Object
Keep an element if block returns true.
-
#lag(k = 1) ⇒ Object
Lags the series by k periods.
- #map!(&block) ⇒ Object
- #method_missing(name, *args, &block) ⇒ Object
-
#n_valid ⇒ Object
number of non-missing elements.
-
#not_nil? ⇒ Boolean
Opposite of #is_nil?.
- #numeric? ⇒ Boolean
- #object? ⇒ Boolean
-
#only_missing(as_a = :vector) ⇒ Object
Returns a Vector containing only missing data (preserves indexes).
-
#only_numerics ⇒ Object
Returns a Vector with only numerical data.
-
#only_valid(as_a = :vector, _duplicate = true) ⇒ Object
Creates a new vector consisting only of non-nil data.
- #positions(*values) ⇒ Object
-
#recode(dt = nil, &block) ⇒ Object
Like map, but returns a Daru::Vector with the returned values.
-
#recode!(dt = nil, &block) ⇒ Object
Destructive version of recode!.
-
#reindex(new_index) ⇒ Object
Create a new vector with a different index, and preserve the indexing of current elements.
-
#reindex!(new_index) ⇒ Daru::Vector
Sets new index for vector.
-
#reject_values(*values) ⇒ Daru::Vector
Return a vector with specified values removed.
-
#rename(new_name) ⇒ Object
(also: #name=)
Give the vector a new name.
-
#reorder(order) ⇒ Object
Non-destructive version of #reorder!.
-
#reorder!(order) ⇒ Object
Reorder the vector with given positions.
-
#replace_nils(replacement) ⇒ Object
Non-destructive version of #replace_nils!.
-
#replace_nils!(replacement) ⇒ Object
Replace all nils in the vector with the value passed as an argument.
-
#replace_values(old_values, new_value) ⇒ Daru::Vector
Replaces specified values with a new value.
-
#report_building(b) ⇒ Object
:nocov:.
- #reset_index! ⇒ Object
- #respond_to_missing?(name, include_private = false) ⇒ Boolean
-
#save(filename) ⇒ Object
Save the vector to a file.
-
#set_at(positions, val) ⇒ Object
Change value at given positions.
- #size ⇒ Object
-
#sort(opts = {}, &block) ⇒ Object
Sorts a vector according to its values.
-
#sorted_data(&block) ⇒ Object
Just sort the data and get an Array in return using Enumerable#sort.
-
#split_by_separator(sep = ',') ⇒ Object
Returns a hash of Vectors, defined by the different values defined on the fields Example:.
- #split_by_separator_freq(sep = ',') ⇒ Object
-
#splitted(sep = ',') ⇒ Object
Return an Array with the data splitted by a separator.
-
#summary(method = :to_text) ⇒ Object
Create a summary of the Vector using Report Builder.
- #tail(q = 10) ⇒ Object
-
#to_a ⇒ Object
Return an array.
-
#to_category(opts = {}) ⇒ Daru::Vector
Converts a non category type vector to category type vector.
-
#to_df ⇒ Daru::DataFrame
The vector as a single-vector dataframe.
-
#to_gsl ⇒ Object
If dtype != gsl, will convert data to GSL::Vector with to_a.
-
#to_h ⇒ Object
Convert to hash (explicit).
-
#to_html(threshold = 30) ⇒ Object
Convert to html for iruby.
-
#to_json ⇒ Object
Convert the hash from to_h to json.
-
#to_matrix(axis = :horizontal) ⇒ Object
Convert Vector to a horizontal or vertical Ruby Matrix.
-
#to_nmatrix(axis = :horizontal) ⇒ NMatrix
Convert vector to nmatrix object.
-
#to_REXP ⇒ Object
rubocop:disable Style/MethodName.
- #to_s ⇒ Object
-
#type ⇒ Object
The type of data contained in the vector.
-
#uniq ⇒ Object
Keep only unique elements of the vector alongwith their indexes.
-
#verify ⇒ Object
Reports all values that doesn’t comply with a condition.
-
#where(bool_array) ⇒ Object
Return a new vector based on the contents of a boolean array.
Methods included from Maths::Statistics::Vector
#acf, #acvf, #average_deviation_population, #box_cox_transformation, #center, #coefficient_of_variation, #count, #covariance_population, #covariance_sample, #cumsum, #describe, #dichotomize, #diff, #ema, #emsd, #emv, #factors, #frequencies, #kurtosis, #macd, #max, #max_index, #mean, #median, #median_absolute_deviation, #min, #mode, #percent_change, #percentile, #product, #proportion, #proportions, #range, #ranked, #rolling, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_sum, #rolling_variance, #sample_with_replacement, #sample_without_replacement, #skew, #standard_deviation_population, #standard_deviation_sample, #standard_error, #standardize, #sum, #sum_of_squared_deviation, #sum_of_squares, #value_counts, #variance_population, #variance_sample, #vector_centered_compute, #vector_percentile, #vector_standardized_compute
Methods included from Maths::Arithmetic::Vector
#%, #*, #**, #+, #-, #/, #abs, #exp, #round, #sqrt
Constructor Details
#initialize(source, opts = {}) ⇒ Vector
Create a Vector object.
Arguments
Hash. If Array, a numeric index will be created if not supplied in the options. Specifying more index elements than actual values in source will insert nil into the surplus index elements. When a Hash is specified, the keys of the Hash are taken as the index elements and the corresponding values as the values that populate the vector.
Options
-
:name
- Name of the vector -
:index
- Index of the vector -
:dtype
- The underlying data type. Can be :array, :nmatrix or :gsl.
Default :array.
-
:nm_dtype
- For NMatrix, the data type of the numbers. See the NMatrix docs for
further information on supported data type.
-
:missing_values
- An Array of the values that are to be treated as ‘missing’.
nil is the default missing value.
Usage
vecarr = Daru::Vector.new [1,2,3,4], index: [:a, :e, :i, :o]
vechsh = Daru::Vector.new({a: 1, e: 2, i: 3, o: 4})
178 179 180 181 182 183 184 185 186 187 |
# File 'lib/daru/vector.rb', line 178 def initialize source, opts={} if opts[:type] == :category # Initialize category type vector extend Daru::Category initialize_category source, opts else # Initialize non-category type vector initialize_vector source, opts end end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(name, *args, &block) ⇒ Object
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 |
# File 'lib/daru/vector.rb', line 1267 def method_missing(name, *args, &block) # FIXME: it is shamefully fragile. Should be either made stronger # (string/symbol dychotomy, informative errors) or removed totally. - zverok if name =~ /(.+)\=/ self[$1.to_sym] = args[0] elsif has_index?(name) self[name] else super end end |
Instance Attribute Details
#data ⇒ Object (readonly)
Store vector data in an array
142 143 144 |
# File 'lib/daru/vector.rb', line 142 def data @data end |
#dtype ⇒ Object (readonly)
The underlying dtype of the Vector. Can be either :array, :nmatrix or :gsl.
130 131 132 |
# File 'lib/daru/vector.rb', line 130 def dtype @dtype end |
#index ⇒ Object
The row index. Can be either Daru::Index or Daru::MultiIndex.
128 129 130 |
# File 'lib/daru/vector.rb', line 128 def index @index end |
#labels ⇒ Object
Store a hash of labels for values. Supplementary only. Recommend using index for proper usage.
140 141 142 |
# File 'lib/daru/vector.rb', line 140 def labels @labels end |
#missing_positions ⇒ Object (readonly)
An Array or the positions in the vector that are being treated as ‘missing’.
136 137 138 |
# File 'lib/daru/vector.rb', line 136 def missing_positions @missing_positions end |
#name ⇒ Object (readonly)
The name of the Daru::Vector. String.
126 127 128 |
# File 'lib/daru/vector.rb', line 126 def name @name end |
#nm_dtype ⇒ Object (readonly)
If the dtype is :nmatrix, this attribute represents the data type of the underlying NMatrix object. See NMatrix docs for more details on NMatrix data types.
134 135 136 |
# File 'lib/daru/vector.rb', line 134 def nm_dtype @nm_dtype end |
#plotting_library ⇒ Object
Ploting library being used for this vector
144 145 146 |
# File 'lib/daru/vector.rb', line 144 def plotting_library @plotting_library end |
Class Method Details
.[](*indexes) ⇒ Object
Create a vector using (almost) any object
-
Array: flattened
-
Range: transformed using to_a
-
Daru::Vector
-
Numeric and string values
Description
The ‘Vector.[]` class method creates a vector from almost any object that has a `#to_a` method defined on it. It is similar to R’s ‘c` method.
Usage
a = Daru::Vector[1,2,3,4,6..10]
#=>
# <Daru::Vector:99448510 @name = nil @size = 9 >
# nil
# 0 1
# 1 2
# 2 3
# 3 4
# 4 6
# 5 7
# 6 8
# 7 9
# 8 10
66 67 68 69 70 71 |
# File 'lib/daru/vector.rb', line 66 def [](*indexes) values = indexes.map do |a| a.respond_to?(:to_a) ? a.to_a : a end.flatten Daru::Vector.new(values) end |
._load(data) ⇒ Object
:nodoc:
73 74 75 76 77 78 79 |
# File 'lib/daru/vector.rb', line 73 def _load(data) # :nodoc: h = Marshal.load(data) Daru::Vector.new(h[:data], index: h[:index], name: h[:name], dtype: h[:dtype], missing_values: h[:missing_values]) end |
.coerce(data, options = {}) ⇒ Object
81 82 83 84 85 86 87 88 89 90 |
# File 'lib/daru/vector.rb', line 81 def coerce(data, ={}) case data when Daru::Vector data when Array, Hash new(data, ) else raise ArgumentError, "Can't coerce #{data.class} to #{self}" end end |
.new_with_size(n, opts = {}, &block) ⇒ Object
Create a new vector by specifying the size and an optional value and block to generate values.
Description
The new_with_size class method lets you create a Daru::Vector by specifying the size as the argument. The optional block, if supplied, is run once for populating each element in the Vector.
The result of each run of the block is the value that is ultimately assigned to that position in the Vector.
Options
:value All the rest like .new
33 34 35 36 37 |
# File 'lib/daru/vector.rb', line 33 def new_with_size n, opts={}, &block value = opts.delete :value block ||= ->(_) { value } Daru::Vector.new Array.new(n, &block), opts end |
Instance Method Details
#==(other) ⇒ Object
Two vectors are equal if they have the exact same index values corresponding with the exact same elements. Name is ignored.
298 299 300 301 302 303 304 305 306 |
# File 'lib/daru/vector.rb', line 298 def == other case other when Daru::Vector @index == other.index && size == other.size && @index.all? { |index| self[index] == other[index] } else super end end |
#[](*input_indexes) ⇒ Object
Get one or more elements with specified index or a range.
Usage
# For vectors employing single layer Index
v[:one, :two] # => Daru::Vector with indexes :one and :two
v[:one] # => Single element
v[:one..:three] # => Daru::Vector with indexes :one, :two and :three
# For vectors employing hierarchial multi index
215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# File 'lib/daru/vector.rb', line 215 def [](*input_indexes) # Get array of positions indexes positions = @index.pos(*input_indexes) # If one object is asked return it return @data[positions] if positions.is_a? Numeric # Form a new Vector using positional indexes Daru::Vector.new( positions.map { |loc| @data[loc] }, name: @name, index: @index.subset(*input_indexes), dtype: @dtype ) end |
#[]=(*indexes, val) ⇒ Object
286 287 288 289 290 291 292 293 294 |
# File 'lib/daru/vector.rb', line 286 def []=(*indexes, val) cast(dtype: :array) if val.nil? && dtype != :array guard_type_check(val) modify_vector(indexes, val) update_position_cache end |
#_dump ⇒ Object
:nodoc:
1237 1238 1239 1240 1241 1242 1243 1244 |
# File 'lib/daru/vector.rb', line 1237 def _dump(*) # :nodoc: Marshal.dump( data: @data.to_a, dtype: @dtype, name: @name, index: @index ) end |
#all?(&block) ⇒ Boolean
555 556 557 |
# File 'lib/daru/vector.rb', line 555 def all? &block @data.data.all?(&block) end |
#any?(&block) ⇒ Boolean
551 552 553 |
# File 'lib/daru/vector.rb', line 551 def any? &block @data.data.any?(&block) end |
#at(*positions) ⇒ object
Returns vector of values given positional values
240 241 242 243 244 245 246 247 248 249 250 251 252 |
# File 'lib/daru/vector.rb', line 240 def at *positions # to be used to form index original_positions = positions positions = coerce_positions(*positions) validate_positions(*positions) if positions.is_a? Integer @data[positions] else values = positions.map { |pos| @data[pos] } Daru::Vector.new values, index: @index.at(*original_positions), dtype: dtype end end |
#bootstrap(estimators, nr, s = nil) ⇒ Object
Bootstrap
Generate nr
resamples (with replacement) of size s
from vector, computing each estimate from estimators
over each resample. estimators
could be a) Hash with variable names as keys and lambdas as values
a.bootstrap(:log_s2=>lambda {|v| Math.log(v.variance)},1000)
b) Array with names of method to bootstrap
a.bootstrap([:mean, :sd],1000)
c) A single method to bootstrap
a.jacknife(:mean, 1000)
If s is nil, is set to vector size by default.
Returns a DataFrame where each vector is a vector of length nr
containing the computed resample estimates.
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 |
# File 'lib/daru/vector.rb', line 1036 def bootstrap(estimators, nr, s=nil) s ||= size h_est, es, bss = prepare_bootstrap(estimators) nr.times do bs = sample_with_replacement(s) es.each do |estimator| bss[estimator].push(h_est[estimator].call(bs)) end end es.each do |est| bss[est] = Daru::Vector.new bss[est] end Daru::DataFrame.new bss end |
#cast(opts = {}) ⇒ Object
Cast a vector to a new data type.
Options
-
:dtype
- :array for Ruby Array. :nmatrix for NMatrix.
482 483 484 485 486 487 488 |
# File 'lib/daru/vector.rb', line 482 def cast opts={} dt = opts[:dtype] raise ArgumentError, "Unsupported dtype #{opts[:dtype]}" unless dt == :array || dt == :nmatrix || dt == :gsl @data = cast_vector_to dt unless @dtype == dt end |
#category? ⇒ true, false
Tells if vector is categorical or not.
531 532 533 |
# File 'lib/daru/vector.rb', line 531 def category? type == :category end |
#clone_structure ⇒ Object
Copies the structure of the vector (i.e the index, size, etc.) and fills all all values with nils.
1224 1225 1226 |
# File 'lib/daru/vector.rb', line 1224 def clone_structure Daru::Vector.new(([nil]*size), name: @name, index: @index.dup) end |
#concat(element, index) ⇒ Object Also known as: push, <<
Append an element to the vector by specifying the element and index
466 467 468 469 470 471 472 473 |
# File 'lib/daru/vector.rb', line 466 def concat element, index raise IndexError, 'Expected new unique index' if @index.include? index @index |= [index] @data[@index[index]] = element update_position_cache end |
#count_values(*values) ⇒ Integer
Count the number of values specified
792 793 794 |
# File 'lib/daru/vector.rb', line 792 def count_values(*values) positions(*values).size end |
#cut(partitions, opts = {}) ⇒ Daru::Vector
Partition a numeric variable into categories.
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 |
# File 'lib/daru/vector.rb', line 1301 def cut partitions, opts={} close_at, labels = opts[:close_at] || :right, opts[:labels] partitions = partitions.to_a values = to_a.map { |val| cut_find_category partitions, val, close_at } cats = cut_categories(partitions, close_at) dv = Daru::Vector.new values, index: @index, type: :category, categories: cats # Rename categories if new labels provided if labels dv.rename_categories Hash[cats.zip(labels)] else dv end end |
#daru_vector ⇒ Object Also known as: dv
:nocov:
1247 1248 1249 |
# File 'lib/daru/vector.rb', line 1247 def daru_vector(*) self end |
#db_type ⇒ Object
Returns the database type for the vector, according to its content
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 |
# File 'lib/daru/vector.rb', line 1208 def db_type # first, detect any character not number case when @data.any? { |v| v.to_s =~ DATE_REGEXP } 'DATE' when @data.any? { |v| v.to_s =~ /[^0-9e.-]/ } 'VARCHAR (255)' when @data.any? { |v| v.to_s =~ /\./ } 'DOUBLE' else 'INTEGER' end end |
#delete(element) ⇒ Object
Delete an element by value
491 492 493 |
# File 'lib/daru/vector.rb', line 491 def delete element delete_at index_of(element) end |
#delete_at(index) ⇒ Object
Delete element by index
496 497 498 499 500 501 |
# File 'lib/daru/vector.rb', line 496 def delete_at index @data.delete_at @index[index] @index = Daru::Index.new(@index.to_a - [index]) update_position_cache end |
#delete_if ⇒ Object
Delete an element if block returns true. Destructive.
624 625 626 627 628 629 630 631 632 633 634 635 |
# File 'lib/daru/vector.rb', line 624 def delete_if return to_enum(:delete_if) unless block_given? keep_e, keep_i = each_with_index.select { |n, _i| !yield(n) }.transpose @data = cast_vector_to @dtype, keep_e @index = Daru::Index.new(keep_i) update_position_cache self end |
#detach_index ⇒ Object
767 768 769 770 771 772 |
# File 'lib/daru/vector.rb', line 767 def detach_index Daru::DataFrame.new( index: @index.to_a, values: @data.to_a ) end |
#dup ⇒ Daru::Vector
Duplicated a vector
1017 1018 1019 |
# File 'lib/daru/vector.rb', line 1017 def dup Daru::Vector.new @data.dup, name: @name, index: @index.dup end |
#each(&block) ⇒ Object
97 98 99 100 101 102 |
# File 'lib/daru/vector.rb', line 97 def each(&block) return to_enum(:each) unless block_given? @data.each(&block) self end |
#each_index(&block) ⇒ Object
104 105 106 107 108 109 |
# File 'lib/daru/vector.rb', line 104 def each_index(&block) return to_enum(:each_index) unless block_given? @index.each(&block) self end |
#each_with_index(&block) ⇒ Object
111 112 113 114 115 116 117 |
# File 'lib/daru/vector.rb', line 111 def each_with_index &block return to_enum(:each_with_index) unless block_given? @data.to_a.zip(@index.to_a).each(&block) self end |
#empty? ⇒ Boolean
433 434 435 |
# File 'lib/daru/vector.rb', line 433 def empty? @index.empty? end |
#group_by(*args) ⇒ Object
1333 1334 1335 |
# File 'lib/daru/vector.rb', line 1333 def group_by(*args) to_df.group_by(*args) end |
#has_index?(index) ⇒ Boolean
Returns true if an index exists
797 798 799 |
# File 'lib/daru/vector.rb', line 797 def has_index? index @index.include? index end |
#has_missing_data? ⇒ Boolean Also known as: flawed?
Reports whether missing data is present in the Vector.
446 447 448 |
# File 'lib/daru/vector.rb', line 446 def has_missing_data? !indexes(*Daru::MISSING_VALUES).empty? end |
#head(q = 10) ⇒ Object
424 425 426 |
# File 'lib/daru/vector.rb', line 424 def head q=10 self[0..(q-1)] end |
#in(other) ⇒ Object
Comparator for checking if any of the elements in other exist in self.
375 376 377 378 379 380 381 382 |
# File 'lib/daru/vector.rb', line 375 def in other other = Hash[other.zip(Array.new(other.size, 0))] Daru::Core::Query::BoolArray.new( @data.each_with_object([]) do |d, memo| memo << (other.key?(d) ? true : false) end ) end |
#include_values?(*values) ⇒ true, false
Check if any one of mentioned values occur in the vector
461 462 463 |
# File 'lib/daru/vector.rb', line 461 def include_values?(*values) values.any? { |v| include_with_nan? @data, v } end |
#index_of(element) ⇒ Object
Get index of element
536 537 538 539 540 541 |
# File 'lib/daru/vector.rb', line 536 def index_of element case dtype when :array then @index.key @data.index { |x| x.eql? element } else @index.key @data.index(element) end end |
#indexes(*values) ⇒ Array
Return indexes of values specified
1155 1156 1157 |
# File 'lib/daru/vector.rb', line 1155 def indexes(*values) index.to_a.values_at(*positions(*values)) end |
#inspect(spacing = 20, threshold = 15) ⇒ Object
Over rides original inspect for pretty printing in irb
924 925 926 927 928 929 930 931 932 933 934 935 |
# File 'lib/daru/vector.rb', line 924 def inspect spacing=20, threshold=15 row_headers = index.is_a?(MultiIndex) ? index.sparse_tuples : index.to_a "#<#{self.class}(#{size})#{':cataegory' if category?}>\n" + Formatters::Table.format( to_a.lazy.map { |v| [v] }, headers: @name && [@name], row_headers: row_headers, threshold: threshold, spacing: spacing ) end |
#is_nil? ⇒ Boolean
720 721 722 723 |
# File 'lib/daru/vector.rb', line 720 def is_nil? # FIXME: EXTREMELY bad name for method not returning boolean - zverok, 2016-05-18 recode(&:nil?) end |
#jackknife(estimators, k = 1) ⇒ Object
Jacknife
Returns a dataset with jacknife delete-k
estimators
estimators
could be: a) Hash with variable names as keys and lambdas as values
a.jacknife(:log_s2=>lambda {|v| Math.log(v.variance)})
b) Array with method names to jacknife
a.jacknife([:mean, :sd])
c) A single method to jacknife
a.jacknife(:mean)
k
represent the block size for block jacknife. By default is set to 1, for classic delete-one jacknife.
Returns a dataset where each vector is an vector of length cases
/k
containing the computed jacknife estimates.
Reference:
-
Sawyer, S. (2005). Resampling Data: Using a Statistical Jacknife.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 |
# File 'lib/daru/vector.rb', line 1071 def jackknife(estimators, k=1) # rubocop:disable Metrics/AbcSize,Metrics/MethodLength raise "n should be divisible by k:#{k}" unless (size % k).zero? nb = (size / k).to_i h_est, es, ps = prepare_bootstrap(estimators) est_n = es.map { |v| [v, h_est[v].call(self)] }.to_h nb.times do |i| other = @data.dup other.slice!(i*k, k) other = Daru::Vector.new other es.each do |estimator| # Add pseudovalue ps[estimator].push( nb * est_n[estimator] - (nb-1) * h_est[estimator].call(other) ) end end es.each do |est| ps[est] = Daru::Vector.new ps[est] end Daru::DataFrame.new ps end |
#keep_if ⇒ Object
Keep an element if block returns true. Destructive.
638 639 640 641 642 |
# File 'lib/daru/vector.rb', line 638 def keep_if return to_enum(:keep_if) unless block_given? delete_if { |val| !yield(val) } end |
#lag(k = 1) ⇒ Object
Lags the series by k periods.
The convention is to set the oldest observations (the first ones in the series) to nil so that the size of the lagged series is the same as the original.
Usage:
ts = Daru::Vector.new((1..10).map { rand })
# => [0.69, 0.23, 0.44, 0.71, ...]
ts.lag # => [nil, 0.69, 0.23, 0.44, ...]
ts.lag(2) # => [nil, nil, 0.69, 0.23, ...]
757 758 759 760 761 762 763 764 765 |
# File 'lib/daru/vector.rb', line 757 def lag k=1 return dup if k.zero? dat = @data.to_a.dup (dat.size - 1).downto(k) { |i| dat[i] = dat[i - k] } (0...k).each { |i| dat[i] = nil } Daru::Vector.new(dat, index: @index, name: @name) end |
#map!(&block) ⇒ Object
119 120 121 122 123 |
# File 'lib/daru/vector.rb', line 119 def map!(&block) return to_enum(:map!) unless block_given? @data.map!(&block) self end |
#n_valid ⇒ Object
number of non-missing elements
780 781 782 |
# File 'lib/daru/vector.rb', line 780 def n_valid size - indexes(*Daru::MISSING_VALUES).size end |
#not_nil? ⇒ Boolean
Opposite of #is_nil?
726 727 728 |
# File 'lib/daru/vector.rb', line 726 def not_nil? recode { |v| !v.nil? } end |
#numeric? ⇒ Boolean
437 438 439 |
# File 'lib/daru/vector.rb', line 437 def numeric? type == :numeric end |
#object? ⇒ Boolean
441 442 443 |
# File 'lib/daru/vector.rb', line 441 def object? type == :object end |
#only_missing(as_a = :vector) ⇒ Object
Returns a Vector containing only missing data (preserves indexes).
1185 1186 1187 1188 1189 1190 1191 |
# File 'lib/daru/vector.rb', line 1185 def only_missing as_a=:vector if as_a == :vector self[*indexes(*Daru::MISSING_VALUES)] elsif as_a == :array self[*indexes(*Daru::MISSING_VALUES)].to_a end end |
#only_numerics ⇒ Object
Returns a Vector with only numerical data. Missing data is included but non-Numeric objects are excluded. Preserves index.
1196 1197 1198 1199 1200 1201 1202 1203 |
# File 'lib/daru/vector.rb', line 1196 def only_numerics numeric_indexes = each_with_index .select { |v, _i| v.is_a?(Numeric) || v.nil? } .map(&:last) self[*numeric_indexes] end |
#only_valid(as_a = :vector, _duplicate = true) ⇒ Object
Creates a new vector consisting only of non-nil data
Arguments
as an Array. Otherwise will return a Daru::Vector.
vector, setting this to false will return the same vector. Otherwise, a duplicate will be returned irrespective of presence of missing data.
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 |
# File 'lib/daru/vector.rb', line 1110 def only_valid as_a=:vector, _duplicate=true # FIXME: Now duplicate is just ignored. # There are no spec that fail on this case, so I'll leave it # this way for now - zverok, 2016-05-07 new_index = @index.to_a - indexes(*Daru::MISSING_VALUES) new_vector = new_index.map { |idx| self[idx] } if as_a == :vector Daru::Vector.new new_vector, index: new_index, name: @name, dtype: dtype else new_vector end end |
#positions(*values) ⇒ Object
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 |
# File 'lib/daru/vector.rb', line 1320 def positions(*values) case values when [nil] nil_positions when [Float::NAN] nan_positions when [nil, Float::NAN], [Float::NAN, nil] nil_positions + nan_positions else size.times.select { |i| include_with_nan? values, @data[i] } end end |
#recode(dt = nil, &block) ⇒ Object
Like map, but returns a Daru::Vector with the returned values.
608 609 610 611 612 |
# File 'lib/daru/vector.rb', line 608 def recode dt=nil, &block return to_enum(:recode) unless block_given? dup.recode! dt, &block end |
#recode!(dt = nil, &block) ⇒ Object
Destructive version of recode!
615 616 617 618 619 620 621 |
# File 'lib/daru/vector.rb', line 615 def recode! dt=nil, &block return to_enum(:recode!) unless block_given? @data.map!(&block).data @data = cast_vector_to(dt || @dtype) self end |
#reindex(new_index) ⇒ Object
Create a new vector with a different index, and preserve the indexing of current elements.
985 986 987 |
# File 'lib/daru/vector.rb', line 985 def reindex new_index dup.reindex!(new_index) end |
#reindex!(new_index) ⇒ Daru::Vector
Unlike #reorder! which takes positions as input it takes index as an input to reorder the vector
Sets new index for vector. Preserves index->value correspondence. Sets nil for new index keys absent from original index.
943 944 945 946 947 948 949 950 951 952 953 954 955 956 |
# File 'lib/daru/vector.rb', line 943 def reindex! new_index values = [] each_with_index do |val, i| values[new_index[i]] = val if new_index.include?(i) end values.fill(nil, values.size, new_index.size - values.size) @data = cast_vector_to @dtype, values @index = new_index update_position_cache self end |
#reject_values(*values) ⇒ Daru::Vector
Return a vector with specified values removed
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 |
# File 'lib/daru/vector.rb', line 1135 def reject_values(*values) resultant_pos = size.times.to_a - positions(*values) dv = at(*resultant_pos) # Handle the case when number of positions is 1 # and hence #at doesn't return a vector if dv.is_a?(Daru::Vector) dv else pos = resultant_pos.first at(pos..pos) end end |
#rename(new_name) ⇒ Object Also known as: name=
Give the vector a new name
1008 1009 1010 1011 |
# File 'lib/daru/vector.rb', line 1008 def rename new_name @name = new_name self end |
#reorder(order) ⇒ Object
Non-destructive version of #reorder!
979 980 981 |
# File 'lib/daru/vector.rb', line 979 def reorder order dup.reorder! order end |
#reorder!(order) ⇒ Object
Unlike #reindex! which takes index as input, it takes positions as an input to reorder the vector
Reorder the vector with given positions
970 971 972 973 974 975 976 |
# File 'lib/daru/vector.rb', line 970 def reorder! order @index = @index.reorder order data_array = order.map { |i| @data[i] } @data = cast_vector_to @dtype, data_array, @nm_dtype update_position_cache self end |
#replace_nils(replacement) ⇒ Object
Non-destructive version of #replace_nils!
775 776 777 |
# File 'lib/daru/vector.rb', line 775 def replace_nils replacement dup.replace_nils!(replacement) end |
#replace_nils!(replacement) ⇒ Object
Replace all nils in the vector with the value passed as an argument. Destructive. See #replace_nils for non-destructive version
Arguments
-
replacement
- The value which should replace all nils
736 737 738 739 740 741 742 |
# File 'lib/daru/vector.rb', line 736 def replace_nils! replacement indexes(*Daru::MISSING_VALUES).each do |idx| self[idx] = replacement end self end |
#replace_values(old_values, new_value) ⇒ Daru::Vector
It performs the replace in place.
Replaces specified values with a new value
1176 1177 1178 1179 1180 1181 1182 |
# File 'lib/daru/vector.rb', line 1176 def replace_values(old_values, new_value) old_values = [old_values] unless old_values.is_a? Array size.times do |pos| set_at([pos], new_value) if include_with_nan? old_values, at(pos) end self end |
#report_building(b) ⇒ Object
:nocov:
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 |
# File 'lib/daru/vector.rb', line 893 def report_building b # rubocop:disable Metrics/AbcSize,Metrics/MethodLength b.section(name: name) do |s| s.text "n :#{size}" s.text "n valid:#{count_values(*Daru::MISSING_VALUES)}" if @type == :object s.text "factors: #{factors.to_a.join(',')}" s.text "mode: #{mode}" s.table(name: 'Distribution') do |t| frequencies.sort_by(&:to_s).each do |k,v| key = @index.include?(k) ? @index[k] : k t.row [key, v, ('%0.2f%%' % (v.quo(count_values(*Daru::MISSING_VALUES))*100))] end end end s.text "median: #{median}" if @type==:numeric || @type==:numeric if @type==:numeric s.text 'mean: %0.4f' % mean if sd s.text 'std.dev.: %0.4f' % sd s.text 'std.err.: %0.4f' % se s.text 'skew: %0.4f' % skew s.text 'kurtosis: %0.4f' % kurtosis end end end end |
#reset_index! ⇒ Object
700 701 702 703 |
# File 'lib/daru/vector.rb', line 700 def reset_index! @index = Daru::Index.new(Array.new(size) { |i| i }) self end |
#respond_to_missing?(name, include_private = false) ⇒ Boolean
1279 1280 1281 |
# File 'lib/daru/vector.rb', line 1279 def respond_to_missing?(name, include_private=false) name.to_s.end_with?('=') || has_index?(name) || super end |
#save(filename) ⇒ Object
Save the vector to a file
Arguments
-
filename - Path of file where the vector is to be saved
1233 1234 1235 |
# File 'lib/daru/vector.rb', line 1233 def save filename Daru::IO.save self, filename end |
#set_at(positions, val) ⇒ Object
Change value at given positions
267 268 269 270 271 |
# File 'lib/daru/vector.rb', line 267 def set_at positions, val validate_positions(*positions) positions.map { |pos| @data[pos] = val } update_position_cache end |
#size ⇒ Object
93 94 95 |
# File 'lib/daru/vector.rb', line 93 def size @data.size end |
#sort(opts = {}, &block) ⇒ Object
Sorts a vector according to its values. If a block is specified, the contents will be evaluated and data will be swapped whenever the block evaluates to true. Defaults to ascending order sorting. Any missing values will be put at the end of the vector. Preserves indexing. Default sort algorithm is quick sort.
Options
-
:ascending
- if false, will sort in descending order. Defaults to true. -
:type
- Specify the sorting algorithm. Only supports quick_sort for now.
Usage
v = Daru::Vector.new ["My first guitar", "jazz", "guitar"]
# Say you want to sort these strings by length.
v.sort(ascending: false) { |a,b| a.length <=> b.length }
575 576 577 578 579 580 581 582 583 584 |
# File 'lib/daru/vector.rb', line 575 def sort opts={}, &block opts = {ascending: true}.merge(opts) vector_index = resort_index(@data.each_with_index, opts, &block) vector, index = vector_index.transpose index = @index.reorder index Daru::Vector.new(vector, index: index, name: @name, dtype: @dtype) end |
#sorted_data(&block) ⇒ Object
Just sort the data and get an Array in return using Enumerable#sort. Non-destructive. :nocov:
602 603 604 |
# File 'lib/daru/vector.rb', line 602 def sorted_data &block @data.to_a.sort(&block) end |
#split_by_separator(sep = ',') ⇒ Object
Returns a hash of Vectors, defined by the different values defined on the fields Example:
a=Daru::Vector.new(["a,b","c,d","a,b"])
a.split_by_separator
=> {"a"=>#<Daru::Vector:0x7f2dbcc09d88
@data=[1, 0, 1]>,
"b"=>#<Daru::Vector:0x7f2dbcc09c48
@data=[1, 1, 0]>,
"c"=>#<Daru::Vector:0x7f2dbcc09b08
@data=[0, 1, 1]>}
683 684 685 686 687 688 689 690 691 692 |
# File 'lib/daru/vector.rb', line 683 def split_by_separator sep=',' split_data = splitted sep split_data .flatten.uniq.compact.map do |key| [ key, Daru::Vector.new(split_data.map { |v| split_value(key, v) }) ] end.to_h end |
#split_by_separator_freq(sep = ',') ⇒ Object
694 695 696 697 698 |
# File 'lib/daru/vector.rb', line 694 def split_by_separator_freq(sep=',') split_by_separator(sep).map { |k, v| [k, v.map(&:to_i).inject(:+)] }.to_h end |
#splitted(sep = ',') ⇒ Object
Return an Array with the data splitted by a separator.
a=Daru::Vector.new(["a,b","c,d","a,b","d"])
a.splitted
=>
[["a","b"],["c","d"],["a","b"],["d"]]
658 659 660 661 662 663 664 665 666 667 668 |
# File 'lib/daru/vector.rb', line 658 def splitted sep=',' @data.map do |s| if s.nil? nil elsif s.respond_to? :split s.split sep else [s] end end end |
#summary(method = :to_text) ⇒ Object
Create a summary of the Vector using Report Builder.
888 889 890 |
# File 'lib/daru/vector.rb', line 888 def summary(method=:to_text) ReportBuilder.new(no_title: true).add(self).send(method) end |
#tail(q = 10) ⇒ Object
428 429 430 431 |
# File 'lib/daru/vector.rb', line 428 def tail q=10 start = [size - q, 0].max self[start..(size-1)] end |
#to_a ⇒ Object
Return an array
864 865 866 |
# File 'lib/daru/vector.rb', line 864 def to_a @data.to_a end |
#to_category(opts = {}) ⇒ Daru::Vector
Converts a non category type vector to category type vector.
1260 1261 1262 1263 1264 1265 |
# File 'lib/daru/vector.rb', line 1260 def to_category opts={} dv = Daru::Vector.new to_a, type: :category, name: @name, index: @index dv.ordered = opts[:ordered] || false dv.categories = opts[:categories] if opts[:categories] dv end |
#to_df ⇒ Daru::DataFrame
Returns the vector as a single-vector dataframe.
802 803 804 |
# File 'lib/daru/vector.rb', line 802 def to_df Daru::DataFrame.new({@name => @data}, name: @name, index: @index) end |
#to_gsl ⇒ Object
If dtype != gsl, will convert data to GSL::Vector with to_a. Otherwise returns the stored GSL::Vector object.
849 850 851 852 853 854 855 856 |
# File 'lib/daru/vector.rb', line 849 def to_gsl raise NoMethodError, 'Install gsl-nmatrix for access to this functionality.' unless Daru.has_gsl? if dtype == :gsl @data.data else GSL::Vector.alloc(reject_values(*Daru::MISSING_VALUES).to_a) end end |
#to_h ⇒ Object
Convert to hash (explicit). Hash keys are indexes and values are the correspoding elements
859 860 861 |
# File 'lib/daru/vector.rb', line 859 def to_h @index.map { |index| [index, self[index]] }.to_h end |
#to_html(threshold = 30) ⇒ Object
Convert to html for iruby
874 875 876 877 878 879 880 881 |
# File 'lib/daru/vector.rb', line 874 def to_html threshold=30 path = if index.is_a?(MultiIndex) File.('../iruby/templates/vector_mi.html.erb', __FILE__) else File.('../iruby/templates/vector.html.erb', __FILE__) end ERB.new(File.read(path).strip).result(binding) end |
#to_json ⇒ Object
Convert the hash from to_h to json
869 870 871 |
# File 'lib/daru/vector.rb', line 869 def to_json(*) to_h.to_json end |
#to_matrix(axis = :horizontal) ⇒ Object
Convert Vector to a horizontal or vertical Ruby Matrix.
Arguments
-
axis
- Specify whether you want a :horizontal or a :vertical matrix.
811 812 813 814 815 816 817 818 819 |
# File 'lib/daru/vector.rb', line 811 def to_matrix axis=:horizontal if axis == :horizontal Matrix[to_a] elsif axis == :vertical Matrix.columns([to_a]) else raise ArgumentError, "axis should be either :horizontal or :vertical, not #{axis}" end end |
#to_nmatrix(axis = :horizontal) ⇒ NMatrix
Convert vector to nmatrix object
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 |
# File 'lib/daru/vector.rb', line 830 def to_nmatrix axis=:horizontal unless numeric? && !include?(nil) raise ArgumentError, 'Can not convert to nmatrix'\ 'because the vector is numeric' end case axis when :horizontal NMatrix.new [1, size], to_a when :vertical NMatrix.new [size, 1], to_a else raise ArgumentError, 'Invalid axis specified. '\ 'Valid axis are :horizontal and :vertical' end end |
#to_REXP ⇒ Object
rubocop:disable Style/MethodName
17 18 19 |
# File 'lib/daru/extensions/rserve.rb', line 17 def to_REXP # rubocop:disable Style/MethodName Rserve::REXP::Wrapper.wrap(to_a) end |
#to_s ⇒ Object
883 884 885 |
# File 'lib/daru/vector.rb', line 883 def to_s to_html end |
#type ⇒ Object
The type of data contained in the vector. Can be :object or :numeric. If the underlying dtype is an NMatrix, this method will return the data type of the NMatrix object.
Running through the data to figure out the kind of data is delayed to the last possible moment.
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
# File 'lib/daru/vector.rb', line 509 def type return @data.nm_dtype if dtype == :nmatrix if @type.nil? || @possibly_changed_type @type = :numeric each do |e| next if e.nil? || e.is_a?(Numeric) @type = :object break end @possibly_changed_type = false end @type end |
#uniq ⇒ Object
Keep only unique elements of the vector alongwith their indexes.
544 545 546 547 548 549 |
# File 'lib/daru/vector.rb', line 544 def uniq uniq_vector = @data.uniq new_index = uniq_vector.map { |element| index_of(element) } Daru::Vector.new uniq_vector, name: @name, index: new_index, dtype: @dtype end |
#verify ⇒ Object
Reports all values that doesn’t comply with a condition. Returns a hash with the index of data and the invalid data.
646 647 648 649 650 651 |
# File 'lib/daru/vector.rb', line 646 def verify (0...size) .map { |i| [i, @data[i]] } .reject { |_i, val| yield(val) } .to_h end |
#where(bool_array) ⇒ Object
Return a new vector based on the contents of a boolean array. Use with the comparator methods to obtain meaningful results. See this notebook for a good overview of using #where.
420 421 422 |
# File 'lib/daru/vector.rb', line 420 def where bool_array Daru::Core::Query.vector_where self, bool_array end |