Class: Daru::DataFrame
- Extended by:
- Gem::Deprecate
- Includes:
- Maths::Arithmetic::DataFrame, Maths::Statistics::DataFrame, Plotting::DataFrame::NyaplotLibrary
- Defined in:
- lib/daru/dataframe.rb,
lib/daru/extensions/rserve.rb,
lib/daru/extensions/which_dsl.rb
Overview
rubocop:disable Metrics/ClassLength
Instance Attribute Summary collapse
-
#data ⇒ Object
readonly
TOREMOVE.
-
#index ⇒ Object
The index of the rows of the DataFrame.
-
#name ⇒ Object
readonly
The name of the DataFrame.
-
#size ⇒ Object
readonly
The number of rows present in the DataFrame.
-
#vectors ⇒ Object
The vectors (columns) index of the DataFrame.
Class Method Summary collapse
- ._load(data) ⇒ Object
-
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors - Rows - Columns - Values.
-
.from_activerecord(relation, *fields) ⇒ Object
Read a dataframe from AR::Relation.
-
.from_csv(path, opts = {}, &block) ⇒ Object
Load data from a CSV file.
-
.from_excel(path, opts = {}, &block) ⇒ Object
Read data from an Excel file into a DataFrame.
-
.from_html(path, fields = {}) ⇒ Object
Read the table data from a remote html file.
-
.from_plaintext(path, fields) ⇒ Object
Read the database from a plaintext file.
-
.from_sql(dbh, query) ⇒ Object
Read a database query and returns a Dataset.
-
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of Daru::Vector objects.
Instance Method Summary collapse
- #==(other) ⇒ Object
-
#[](*names) ⇒ Object
Access row or vector.
-
#[]=(*args) ⇒ Object
Insert a new row/vector of the specified name or modify a previous row.
- #_dump(_depth) ⇒ Object
- #add_row(row, index = nil) ⇒ Object
- #add_vector(n, vector) ⇒ Object
- #add_vectors_by_split(name, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
- #add_vectors_by_split_recode(nm, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
-
#aggregate(options = {}, multi_index_level = -1)) ⇒ Daru::DataFrame
Function to use for aggregating the data.
-
#all?(axis = :vector, &block) ⇒ Boolean
Works like Array#all?.
-
#any?(axis = :vector, &block) ⇒ Boolean
Works like Array#any?.
- #apply_method(method, keys: nil, by_position: true) ⇒ Object (also: #apply_method_on_sub_df)
-
#at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive vectors by positions.
-
#bootstrap(n = nil) ⇒ Daru::DataFrame
Creates a DataFrame with the random data, of n size.
-
#clone(*vectors_to_clone) ⇒ Object
Returns a ‘view’ of the DataFrame, i.e the object ID’s of vectors are preserved.
-
#clone_only_valid ⇒ Object
Returns a ‘shallow’ copy of DataFrame if missing data is not present, or a full copy of only valid data if missing data is present.
-
#clone_structure ⇒ Object
Only clone the structure of the DataFrame.
-
#collect(axis = :vector, &block) ⇒ Object
Iterate over a row or vector and return results in a Daru::Vector.
-
#collect_matrix ⇒ ::Matrix
Generate a matrix, based on vector names of the DataFrame.
- #collect_row_with_index(&block) ⇒ Object
-
#collect_rows(&block) ⇒ Object
Retrieves a Daru::Vector, based on the result of calculation performed on each row.
- #collect_vector_with_index(&block) ⇒ Object
-
#collect_vectors(&block) ⇒ Object
Retrives a Daru::Vector, based on the result of calculation performed on each vector.
-
#compute(text, &block) ⇒ Object
Returns a vector, based on a string with a calculation based on vector.
-
#concat(other_df) ⇒ Object
Concatenate another DataFrame along corresponding columns.
-
#create_sql(table, charset = 'UTF8') ⇒ Object
Create a sql, basen on a given Dataset.
-
#delete_row(index) ⇒ Object
Delete a row.
-
#delete_vector(vector) ⇒ Object
Delete a vector.
-
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors.
-
#dup(vectors_to_dup = nil) ⇒ Object
Duplicate the DataFrame entirely.
-
#dup_only_valid(vecs = nil) ⇒ Object
Creates a new duplicate dataframe containing only rows without a single missing value.
-
#each(axis = :vector, &block) ⇒ Object
Iterate over each row or vector of the DataFrame.
-
#each_index(&block) ⇒ Object
Iterate over each index of the DataFrame.
-
#each_row ⇒ Object
Iterate over each row.
- #each_row_with_index ⇒ Object
-
#each_vector(&block) ⇒ Object
(also: #each_column)
Iterate over each vector.
-
#each_vector_with_index ⇒ Object
(also: #each_column_with_index)
Iterate over each vector alongwith the name of the vector.
-
#filter(axis = :vector, &block) ⇒ Object
Retain vectors or rows if the block returns a truthy value.
-
#filter_rows ⇒ Object
Iterates over each row and retains it in a new DataFrame if the block returns true for that row.
-
#filter_vector(vec, &block) ⇒ Object
creates a new vector with the data of a given field which the block returns true.
-
#filter_vectors(&block) ⇒ Object
Iterates over each vector and retains it in a new DataFrame if the block returns true for that vector.
-
#get_sub_dataframe(keys, by_position: true) ⇒ Daru::Dataframe
Extract a dataframe given row indexes or positions.
- #get_vector_anyways(v) ⇒ Object
-
#group_by(*vectors) ⇒ Object
Group elements by vector to perform operations on them.
-
#group_by_and_aggregate(*group_by_keys, **aggregation_map) ⇒ Object
Is faster than using group_by followed by aggregate (because it doesn’t generate an intermediary dataframe).
- #has_missing_data? ⇒ Boolean (also: #flawed?)
-
#has_vector?(vector) ⇒ Boolean
Check if a vector is present.
-
#head(quantity = 10) ⇒ Object
(also: #first)
The first ten elements of the DataFrame.
-
#include_values?(*values) ⇒ true, false
Check if any of given values occur in the data frame.
-
#initialize(source = {}, opts = {}) ⇒ DataFrame
constructor
DataFrame basically consists of an Array of Vector objects.
-
#inspect(spacing = 10, threshold = 15) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby).
- #interact_code(vector_names, full) ⇒ Object
-
#join(other_df, opts = {}) ⇒ Daru::DataFrame
Join 2 DataFrames with SQL style joins.
- #keep_row_if ⇒ Object
- #keep_vector_if ⇒ Object
-
#map(axis = :vector, &block) ⇒ Object
Map over each vector or row of the data frame according to the argument specified.
-
#map!(axis = :vector, &block) ⇒ Object
Destructive map.
-
#map_rows(&block) ⇒ Object
Map each row.
- #map_rows! ⇒ Object
- #map_rows_with_index(&block) ⇒ Object
-
#map_vectors(&block) ⇒ Object
Map each vector and return an Array.
-
#map_vectors! ⇒ Object
Destructive form of #map_vectors.
-
#map_vectors_with_index(&block) ⇒ Object
Map vectors alongwith the index.
-
#merge(other_df) ⇒ Daru::DataFrame
Merge vectors from two DataFrames.
- #method_missing(name, *args, &block) ⇒ Object
-
#missing_values_rows(missing_values = [nil]) ⇒ Object
(also: #vector_missing_values)
Return a vector with the number of missing values in each row.
-
#ncols ⇒ Object
The number of vectors.
-
#nest(*tree_keys, &_block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values.
-
#nrows ⇒ Object
The number of rows.
- #numeric_vector_names ⇒ Object
-
#numeric_vectors ⇒ Object
Return the indexes of all the numeric vectors.
-
#one_to_many(parent_fields, pattern) ⇒ Object
Creates a new dataset for one to many relations on a dataset, based on pattern of field names.
-
#only_numerics(opts = {}) ⇒ Object
Return a DataFrame of only the numerical Vectors.
-
#order=(order_array) ⇒ Object
Reorder the vectors in a dataframe.
-
#pivot_table(opts = {}) ⇒ Object
Pivots a data frame on specified vectors and applies an aggregate function to quickly generate a summary.
- #plotting_library=(lib) ⇒ Object
-
#recast(opts = {}) ⇒ Object
Change dtypes of vectors by supplying a hash of :vector_name => :new_dtype.
-
#recode(axis = :vector, &block) ⇒ Object
Maps over the DataFrame and returns a DataFrame.
- #recode_rows ⇒ Object
- #recode_vectors ⇒ Object
-
#reindex(new_index) ⇒ Object
Change the index of the DataFrame and preserve the labels of the previous indexing.
- #reindex_vectors(new_vectors) ⇒ Object
-
#reject_values(*values) ⇒ Daru::DataFrame
Returns a dataframe in which rows with any of the mentioned values are ignored.
-
#rename(new_name) ⇒ Object
(also: #name=)
Rename the DataFrame.
-
#rename_vectors(name_map) ⇒ Object
Renames the vectors.
-
#replace_values(old_values, new_value) ⇒ Daru::DataFrame
Replace specified values with given value.
- #respond_to_missing?(name, include_private = false) ⇒ Boolean
- #rolling_fillna(direction = :forward) ⇒ Object
-
#rolling_fillna!(direction = :forward) ⇒ Object
Rolling fillna replace all Float::NAN and NIL values with the preceeding or following value.
-
#row ⇒ Object
Access a row or set/create a row.
-
#row_at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive rows by positions.
-
#save(filename) ⇒ Object
Use marshalling to save dataframe to a file.
-
#set_at(positions, vector) ⇒ Object
Set vectors by positions.
-
#set_index(new_index, opts = {}) ⇒ Object
Set a particular column as the new DF.
-
#set_row_at(positions, vector) ⇒ Object
Set rows by positions.
-
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
-
#sort(vector_order, opts = {}) ⇒ Object
Non-destructive version of #sort!.
-
#sort!(vector_order, opts = {}) ⇒ Object
Sorts a dataframe (ascending/descending) in the given pripority sequence of vectors, with or without a block.
-
#split_by_category(cat_name) ⇒ Array
Split the dataframe into many dataframes based on category vector.
-
#summary ⇒ String
Generate a summary of this DataFrame based on individual vectors in the DataFrame.
-
#tail(quantity = 10) ⇒ Object
(also: #last)
The last ten elements of the DataFrame.
-
#to_a ⇒ Object
Converts the DataFrame into an array of hashes where key is vector name and value is the corresponding element.
-
#to_category(*names) ⇒ Daru::DataFrame
Converts the specified non category type vectors to category type vectors.
-
#to_df ⇒ self
Returns the dataframe.
-
#to_gsl ⇒ Object
Convert all numeric vectors to GSL::Matrix.
-
#to_h ⇒ Object
Converts DataFrame to a hash (explicit) with keys as vector names and values as the corresponding vectors.
-
#to_html(threshold = 30) ⇒ Object
Convert to html for IRuby.
- #to_html_tbody(threshold = 30) ⇒ Object
- #to_html_thead ⇒ Object
-
#to_json(no_index = true) ⇒ Object
Convert to json.
-
#to_matrix ⇒ Object
Convert all vectors of type :numeric into a Matrix.
-
#to_nmatrix ⇒ Object
Convert all vectors of type :numeric and not containing nils into an NMatrix.
-
#to_nyaplotdf ⇒ Object
Return a Nyaplot::DataFrame from the data of this DataFrame.
-
#to_REXP ⇒ Object
rubocop:disable Style/MethodName.
- #to_s ⇒ Object
-
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
-
#union(other_df) ⇒ Object
Concatenates another DataFrame as #concat.
-
#uniq(*vtrs) ⇒ Object
Return unique rows by vector specified or all vectors.
-
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc.
-
#vector_by_calculation(&block) ⇒ Object
DSL for yielding each row and returning a Daru::Vector based on the value each run of the block returns.
- #vector_count_characters(vecs = nil) ⇒ Object
-
#vector_mean(max_missing = 0) ⇒ Object
Calculate mean of the rows of the dataframe.
-
#vector_sum(*args) ⇒ Object
Sum all numeric/specified vectors in the DataFrame.
-
#verify(*tests) ⇒ Object
Test each row with one or more tests.
-
#where(bool_array) ⇒ Object
Query a DataFrame by passing a Daru::Core::Query::BoolArray object.
- #which(&block) ⇒ Object
-
#write_csv(filename, opts = {}) ⇒ Object
Write this DataFrame to a CSV file.
-
#write_excel(filename, opts = {}) ⇒ Object
Write this dataframe to an Excel Spreadsheet.
-
#write_sql(dbh, table) ⇒ Object
Insert each case of the Dataset on the selected table.
Methods included from Plotting::DataFrame::NyaplotLibrary
Methods included from Maths::Statistics::DataFrame
#acf, #correlation, #count, #covariance, #cumsum, #describe, #ema, #max, #mean, #median, #min, #mode, #percent_change, #product, #range, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_variance, #standardize, #std, #sum, #variance_sample
Methods included from Maths::Arithmetic::DataFrame
#%, #*, #**, #+, #-, #/, #exp, #round, #sqrt
Constructor Details
#initialize(source = {}, opts = {}) ⇒ DataFrame
DataFrame basically consists of an Array of Vector objects. These objects are indexed by row and column by vectors and index Index objects.
Arguments
-
source - Source from the DataFrame is to be initialized. Can be a Hash
of names and vectors (array or Daru::Vector), an array of arrays or array of Daru::Vectors.
Options
:order
- An Array/Daru::Index/Daru::MultiIndex containing the order in which Vectors should appear in the DataFrame.
:index
- An Array/Daru::Index/Daru::MultiIndex containing the order in which rows of the DataFrame will be named.
:name
- A name for the DataFrame.
:clone
- Specify as true or false. When set to false, and Vector objects are passed for the source, the Vector objects will not duplicated when creating the DataFrame. Will have no effect if Array is passed in the source, or if the passed Daru::Vectors have different indexes. Default to true.
Usage
df = Daru::DataFrame.new
# =>
# <Daru::DataFrame(0x0)>
# Creates an empty DataFrame with no rows or columns.
df = Daru::DataFrame.new({}, order: [:a, :b])
#<Daru::DataFrame(0x2)>
a b
# Creates a DataFrame with no rows and columns :a and :b
df = Daru::DataFrame.new({a: [1,2,3,4], b: [6,7,8,9]}, order: [:b, :a],
index: [:a, :b, :c, :d], name: :spider_man)
# =>
# <Daru::DataFrame:80766980 @name = spider_man @size = 4>
# b a
# a 6 1
# b 7 2
# c 8 3
# d 9 4
df = Daru::DataFrame.new([[1,2,3,4],[6,7,8,9]], name: :bat_man)
# =>
# #<Daru::DataFrame: bat_man (4x2)>
# 0 1
# 0 1 6
# 1 2 7
# 2 3 8
# 3 4 9
# Dataframe having Index name
df = Daru::DataFrame.new({a: [1,2,3,4], b: [6,7,8,9]}, order: [:b, :a],
index: Daru::Index.new([:a, :b, :c, :d], name: 'idx_name'),
name: :spider_man)
# =>
# <Daru::DataFrame:80766980 @name = spider_man @size = 4>
# idx_name b a
# a 6 1
# b 7 2
# c 8 3
# d 9 4
idx = Daru::Index.new [100, 99, 101, 1, 2], name: "s1"
=> #<Daru::Index(5): s1 {100, 99, 101, 1, 2}>
df = Daru::DataFrame.new({b: [11,12,13,14,15], a: [1,2,3,4,5],
c: [11,22,33,44,55]},
order: [:a, :b, :c],
index: idx)
# =>
#<Daru::DataFrame(5x3)>
# s1 a b c
# 100 1 11 11
# 99 2 12 22
# 101 3 13 33
# 1 4 14 44
# 2 5 15 55
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# File 'lib/daru/dataframe.rb', line 343 def initialize source={}, opts={} # rubocop:disable Metrics/MethodLength vectors, index = opts[:order], opts[:index] # FIXME: just keyword arges after Ruby 2.1 @data = [] @name = opts[:name] case source when ->(s) { s.empty? } @vectors = Index.coerce vectors @index = Index.coerce index create_empty_vectors when Array initialize_from_array source, vectors, index, opts when Hash initialize_from_hash source, vectors, index, opts end set_size validate update self.plotting_library = Daru.plotting_library end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(name, *args, &block) ⇒ Object
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 |
# File 'lib/daru/dataframe.rb', line 2218 def method_missing(name, *args, &block) case when name =~ /(.+)\=/ name = name[/(.+)\=/].delete('=') name = name.to_sym unless has_vector?(name) insert_or_modify_vector [name], args[0] when has_vector?(name) self[name] when has_vector?(name.to_s) self[name.to_s] else super end end |
Instance Attribute Details
#data ⇒ Object (readonly)
TOREMOVE
243 244 245 |
# File 'lib/daru/dataframe.rb', line 243 def data @data end |
#index ⇒ Object
The index of the rows of the DataFrame
246 247 248 |
# File 'lib/daru/dataframe.rb', line 246 def index @index end |
#name ⇒ Object (readonly)
The name of the DataFrame
249 250 251 |
# File 'lib/daru/dataframe.rb', line 249 def name @name end |
#size ⇒ Object (readonly)
The number of rows present in the DataFrame
252 253 254 |
# File 'lib/daru/dataframe.rb', line 252 def size @size end |
#vectors ⇒ Object
The vectors (columns) index of the DataFrame
241 242 243 |
# File 'lib/daru/dataframe.rb', line 241 def vectors @vectors end |
Class Method Details
._load(data) ⇒ Object
2144 2145 2146 2147 2148 2149 2150 |
# File 'lib/daru/dataframe.rb', line 2144 def self._load data h = Marshal.load data Daru::DataFrame.new(h[:data], index: h[:index], order: h[:order], name: h[:name]) end |
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors
-
Rows
-
Columns
-
Values
For example, you have these values
x y v
a a 0
a b 1
b a 1
b b 0
You obtain
id a b
a 0 1
b 1 0
Useful to process outputs from databases
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/daru/dataframe.rb', line 199 def crosstab_by_assignation rows, columns, values raise 'Three vectors should be equal size' if rows.size != columns.size || rows.size!=values.size data = Hash.new { |h, col| h[col] = rows.factors.map { |r| [r, nil] }.to_h } columns.zip(rows, values).each { |c, r, v| data[c][r] = v } # FIXME: in fact, WITHOUT this line you'll obtain more "right" # data: with vectors having "rows" as an index... data = data.map { |c, r| [c, r.values] }.to_h data[:_id] = rows.factors DataFrame.new(data) end |
.from_activerecord(relation, *fields) ⇒ Object
100 101 102 |
# File 'lib/daru/dataframe.rb', line 100 def from_activerecord relation, *fields Daru::IO.from_activerecord relation, *fields end |
.from_csv(path, opts = {}, &block) ⇒ Object
Load data from a CSV file. Specify an optional block to grab the CSV object and pre-condition it (for example use the ‘convert` or `header_convert` methods).
Arguments
-
path - Local path / Remote URL of the file to load specified as a String.
Options
Accepts the same options as the Daru::DataFrame constructor and CSV.open() and uses those to eventually construct the resulting DataFrame.
Verbose Description
You can specify all the options to the ‘.from_csv` function that you do to the Ruby `CSV.read()` function, since this is what is used internally.
For example, if the columns in your CSV file are separated by something other that commas, you can use the ‘:col_sep` option. If you want to convert numeric values to numbers and not keep them as strings, you can use the `:converters` option and set it to `:numeric`.
The ‘.from_csv` function uses the following defaults for reading CSV files (that are passed into the `CSV.read()` function):
{
:col_sep => ',',
:converters => :numeric
}
47 48 49 |
# File 'lib/daru/dataframe.rb', line 47 def from_csv path, opts={}, &block Daru::IO.from_csv path, opts, &block end |
.from_excel(path, opts = {}, &block) ⇒ Object
Read data from an Excel file into a DataFrame.
Arguments
-
path - Path of the file to be read.
Options
*:worksheet_id - ID of the worksheet that is to be read.
60 61 62 |
# File 'lib/daru/dataframe.rb', line 60 def from_excel path, opts={}, &block Daru::IO.from_excel path, opts, &block end |
.from_html(path, fields = {}) ⇒ Object
Read the table data from a remote html file. Please note that this module works only for static table elements on a HTML page, and won’t work in cases where the data is being loaded into the HTML table by Javascript.
By default - all <th> tag elements in the first proper row are considered as the order, and all the <th> tag elements in the first column are considered as the index.
Arguments
-
path [String] - URL of the target HTML file.
-
fields [Hash] -
:match
- A String to match and choose a particular table(s) from multiple tables of a HTML page.:order
- An Array which would act as the user-defined order, to override the parsed Daru::DataFrame.:index
- An Array which would act as the user-defined index, to override the parsed Daru::DataFrame.:name
- A String that manually assigns a name to the scraped Daru::DataFrame, for user’s preference.
Returns
An Array of Daru::DataFrames, with each dataframe corresponding to a HTML table on that webpage.
Usage
dfs = Daru::DataFrame.from_html("http://www.moneycontrol.com/", match: "Sun Pharma")
dfs.count
# => 4
dfs.first
#
# => <Daru::DataFrame(5x4)>
# Company Price Change Value (Rs
# 0 Sun Pharma 502.60 -65.05 2,117.87
# 1 Reliance 1356.90 19.60 745.10
# 2 Tech Mahin 379.45 -49.70 650.22
# 3 ITC 315.85 6.75 621.12
# 4 HDFC 1598.85 50.95 553.91
159 160 161 |
# File 'lib/daru/dataframe.rb', line 159 def from_html path, fields={} Daru::IO.from_html path, fields end |
.from_plaintext(path, fields) ⇒ Object
Read the database from a plaintext file. For this method to work, the data should be present in a plain text file in columns. See spec/fixtures/bank2.dat for an example.
Arguments
-
path - Path of the file to be read.
-
fields - Vector names of the resulting database.
Usage
df = Daru::DataFrame.from_plaintext 'spec/fixtures/bank2.dat', [:v1,:v2,:v3,:v4,:v5,:v6]
116 117 118 |
# File 'lib/daru/dataframe.rb', line 116 def from_plaintext path, fields Daru::IO.from_plaintext path, fields end |
.from_sql(dbh, query) ⇒ Object
80 81 82 |
# File 'lib/daru/dataframe.rb', line 80 def from_sql dbh, query Daru::IO.from_sql dbh, query end |
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of Daru::Vector objects.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# File 'lib/daru/dataframe.rb', line 165 def rows source, opts={} raise SizeError, 'All vectors must have same length' \ unless source.all? { |v| v.size == source.first.size } opts[:order] ||= guess_order(source) if ArrayHelper.array_of?(source, Array) || source.empty? DataFrame.new(source.transpose, opts) elsif ArrayHelper.array_of?(source, Vector) from_vector_rows(source, opts) else raise ArgumentError, "Can't create DataFrame from #{source}" end end |
Instance Method Details
#==(other) ⇒ Object
2193 2194 2195 2196 2197 2198 2199 |
# File 'lib/daru/dataframe.rb', line 2193 def == other self.class == other.class && @size == other.size && @index == other.index && @vectors == other.vectors && @vectors.to_a.all? { |v| self[v] == other[v] } end |
#[](*names) ⇒ Object
Access row or vector. Specify name of row/vector followed by axis(:row, :vector). Defaults to :vector. Use of this method is not recommended for accessing rows. Use df.row for accessing row with index ‘:a’.
383 384 385 386 |
# File 'lib/daru/dataframe.rb', line 383 def [](*names) axis = extract_axis(names, :vector) dispatch_to_axis axis, :access, *names end |
#[]=(*args) ⇒ Object
Insert a new row/vector of the specified name or modify a previous row. Instead of using this method directly, use df.row = [1,2,3] to set/create a row ‘:a’ to [1,2,3], or df.vector = [1,2,3] for vectors.
In case a Daru::Vector is specified after the equality the sign, the indexes of the vector will be matched against the row/vector indexes of the DataFrame before an insertion is performed. Unmatched indexes will be set to nil.
527 528 529 530 531 532 533 |
# File 'lib/daru/dataframe.rb', line 527 def []=(*args) vector = args.pop axis = extract_axis(args) names = args dispatch_to_axis axis, :insert_or_modify, names, vector end |
#_dump(_depth) ⇒ Object
2135 2136 2137 2138 2139 2140 2141 2142 |
# File 'lib/daru/dataframe.rb', line 2135 def _dump(_depth) Marshal.dump( data: @data, index: @index.to_a, order: @vectors.to_a, name: @name ) end |
#add_row(row, index = nil) ⇒ Object
535 536 537 |
# File 'lib/daru/dataframe.rb', line 535 def add_row row, index=nil self.row[*(index || @size)] = row end |
#add_vector(n, vector) ⇒ Object
539 540 541 |
# File 'lib/daru/dataframe.rb', line 539 def add_vector n, vector self[n] = vector end |
#add_vectors_by_split(name, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
1295 1296 1297 1298 1299 |
# File 'lib/daru/dataframe.rb', line 1295 def add_vectors_by_split(name,join='-',sep=Daru::SPLIT_TOKEN) self[name] .split_by_separator(sep) .each { |k,v| self["#{name}#{join}#{k}".to_sym] = v } end |
#add_vectors_by_split_recode(nm, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
1941 1942 1943 1944 1945 1946 1947 1948 |
# File 'lib/daru/dataframe.rb', line 1941 def add_vectors_by_split_recode(nm, join='-', sep=Daru::SPLIT_TOKEN) self[nm] .split_by_separator(sep) .each_with_index do |(k, v), i| v.rename "#{nm}:#{k}" self["#{nm}#{join}#{i + 1}".to_sym] = v end end |
#aggregate(options = {}, multi_index_level = -1)) ⇒ Daru::DataFrame
Function to use for aggregating the data.
Note: ‘GroupBy` class `aggregate` method uses this `aggregate` method internally.
2324 2325 2326 2327 2328 2329 2330 |
# File 'lib/daru/dataframe.rb', line 2324 def aggregate(={}, multi_index_level=-1) positions_tuples, new_index = group_index_for_aggregation(@index, multi_index_level) colmn_value = aggregate_by_positions_tuples(, positions_tuples) Daru::DataFrame.new(colmn_value, index: new_index, order: .keys) end |
#all?(axis = :vector, &block) ⇒ Boolean
Works like Array#all?
1352 1353 1354 1355 1356 1357 1358 1359 1360 |
# File 'lib/daru/dataframe.rb', line 1352 def all? axis=:vector, &block if %i[vector column].include?(axis) @data.all?(&block) elsif axis == :row each_row.all?(&block) else raise ArgumentError, "Unidentified axis #{axis}" end end |
#any?(axis = :vector, &block) ⇒ Boolean
Works like Array#any?.
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 |
# File 'lib/daru/dataframe.rb', line 1330 def any? axis=:vector, &block if %i[vector column].include?(axis) @data.any?(&block) elsif axis == :row each_row do |row| return true if yield(row) end false else raise ArgumentError, "Unidentified axis #{axis}" end end |
#apply_method(method, keys: nil, by_position: true) ⇒ Object Also known as: apply_method_on_sub_df
1008 1009 1010 1011 1012 1013 1014 1015 1016 |
# File 'lib/daru/dataframe.rb', line 1008 def apply_method(method, keys: nil, by_position: true) df = keys ? get_sub_dataframe(keys, by_position: by_position) : self case method when Symbol then df.send(method) when Proc then method.call(df) else raise end end |
#at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive vectors by positions
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# File 'lib/daru/dataframe.rb', line 465 def at *positions if AXES.include? positions.last axis = positions.pop return row_at(*positions) if axis == :row end original_positions = positions positions = coerce_positions(*positions, ncols) validate_positions(*positions, ncols) if positions.is_a? Integer @data[positions].dup else Daru::DataFrame.new positions.map { |pos| @data[pos].dup }, index: @index, order: @vectors.at(*original_positions), name: @name end end |
#bootstrap(n = nil) ⇒ Daru::DataFrame
Creates a DataFrame with the random data, of n size. If n not given, uses original number of rows.
1101 1102 1103 1104 1105 1106 1107 1108 1109 |
# File 'lib/daru/dataframe.rb', line 1101 def bootstrap(n=nil) n ||= nrows Daru::DataFrame.new({}, order: @vectors).tap do |df_boot| n.times do df_boot.add_row(row[rand(n)]) end df_boot.update end end |
#clone(*vectors_to_clone) ⇒ Object
Returns a ‘view’ of the DataFrame, i.e the object ID’s of vectors are preserved.
Arguments
vectors_to_clone
- Names of vectors to clone. Optional. Will return a view of the whole data frame otherwise.
593 594 595 596 597 598 599 |
# File 'lib/daru/dataframe.rb', line 593 def clone *vectors_to_clone vectors_to_clone.flatten! if ArrayHelper.array_of?(vectors_to_clone, Array) vectors_to_clone = @vectors.to_a if vectors_to_clone.empty? h = vectors_to_clone.map { |vec| [vec, self[vec]] }.to_h Daru::DataFrame.new(h, clone: false, order: vectors_to_clone, name: @name) end |
#clone_only_valid ⇒ Object
Returns a ‘shallow’ copy of DataFrame if missing data is not present, or a full copy of only valid data if missing data is present.
603 604 605 606 607 608 609 |
# File 'lib/daru/dataframe.rb', line 603 def clone_only_valid if include_values?(*Daru::MISSING_VALUES) reject_values(*Daru::MISSING_VALUES) else clone end end |
#clone_structure ⇒ Object
Only clone the structure of the DataFrame.
582 583 584 |
# File 'lib/daru/dataframe.rb', line 582 def clone_structure Daru::DataFrame.new([], order: @vectors.dup, index: @index.dup, name: @name) end |
#collect(axis = :vector, &block) ⇒ Object
Iterate over a row or vector and return results in a Daru::Vector. Specify axis with :vector or :row. Default to :vector.
Description
The #collect iterator works similar to #map, the only difference being that it returns a Daru::Vector comprising of the results of each block run. The resultant Vector has the same index as that of the axis over which collect has iterated. It also accepts the optional axis argument.
Arguments
-
axis
- The axis to iterate over. Can be :vector (or :column)
or :row. Default to :vector.
847 848 849 |
# File 'lib/daru/dataframe.rb', line 847 def collect axis=:vector, &block dispatch_to_axis_pl axis, :collect, &block end |
#collect_matrix ⇒ ::Matrix
Generate a matrix, based on vector names of the DataFrame.
:nocov: FIXME: Even not trying to cover this: I can’t get, how it is expected to work.… – zverok
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 |
# File 'lib/daru/dataframe.rb', line 1053 def collect_matrix return to_enum(:collect_matrix) unless block_given? vecs = vectors.to_a rows = vecs.collect { |row| vecs.collect { |col| yield row,col } } Matrix.rows(rows) end |
#collect_row_with_index(&block) ⇒ Object
1027 1028 1029 1030 1031 |
# File 'lib/daru/dataframe.rb', line 1027 def collect_row_with_index &block return to_enum(:collect_row_with_index) unless block_given? Daru::Vector.new(each_row_with_index.map(&block), index: @index) end |
#collect_rows(&block) ⇒ Object
Retrieves a Daru::Vector, based on the result of calculation performed on each row.
1021 1022 1023 1024 1025 |
# File 'lib/daru/dataframe.rb', line 1021 def collect_rows &block return to_enum(:collect_rows) unless block_given? Daru::Vector.new(each_row.map(&block), index: @index) end |
#collect_vector_with_index(&block) ⇒ Object
1041 1042 1043 1044 1045 |
# File 'lib/daru/dataframe.rb', line 1041 def collect_vector_with_index &block return to_enum(:collect_vector_with_index) unless block_given? Daru::Vector.new(each_vector_with_index.map(&block), index: @vectors) end |
#collect_vectors(&block) ⇒ Object
Retrives a Daru::Vector, based on the result of calculation performed on each vector.
1035 1036 1037 1038 1039 |
# File 'lib/daru/dataframe.rb', line 1035 def collect_vectors &block return to_enum(:collect_vectors) unless block_given? Daru::Vector.new(each_vector.map(&block), index: @vectors) end |
#compute(text, &block) ⇒ Object
Returns a vector, based on a string with a calculation based on vector.
The calculation will be eval’ed, so you can put any variable or expression valid on ruby.
For example:
a = Daru::Vector.new [1,2]
b = Daru::Vector.new [3,4]
ds = Daru::DataFrame.new({:a => a,:b => b})
ds.compute("a+b")
=> Vector [4,6]
1220 1221 1222 1223 |
# File 'lib/daru/dataframe.rb', line 1220 def compute text, &block return instance_eval(&block) if block_given? instance_eval(text) end |
#concat(other_df) ⇒ Object
Concatenate another DataFrame along corresponding columns. If columns do not exist in both dataframes, they are filled with nils
1507 1508 1509 1510 1511 1512 1513 1514 1515 |
# File 'lib/daru/dataframe.rb', line 1507 def concat other_df vectors = (@vectors.to_a + other_df.vectors.to_a).uniq data = vectors.map do |v| get_vector_anyways(v).dup.concat(other_df.get_vector_anyways(v)) end Daru::DataFrame.new(data, order: vectors) end |
#create_sql(table, charset = 'UTF8') ⇒ Object
Create a sql, basen on a given Dataset
Arguments
-
table - String specifying name of the table that will created in SQL.
-
charset - Character set. Default is “UTF8”.
1966 1967 1968 1969 1970 1971 1972 1973 1974 |
# File 'lib/daru/dataframe.rb', line 1966 def create_sql(table,charset='UTF8') sql = "CREATE TABLE #{table} (" fields = vectors.to_a.collect do |f| v = self[f] f.to_s + ' ' + v.db_type end sql + fields.join(",\n ")+") CHARACTER SET=#{charset};" end |
#delete_row(index) ⇒ Object
Delete a row
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 |
# File 'lib/daru/dataframe.rb', line 1085 def delete_row index idx = named_index_for index raise IndexError, "Index #{index} does not exist." unless @index.include? idx @index = Daru::Index.new(@index.to_a - [idx]) each_vector do |vector| vector.delete_at idx end set_size end |
#delete_vector(vector) ⇒ Object
Delete a vector
1068 1069 1070 1071 1072 1073 1074 1075 |
# File 'lib/daru/dataframe.rb', line 1068 def delete_vector vector raise IndexError, "Vector #{vector} does not exist." unless @vectors.include?(vector) @data.delete_at @vectors[vector] @vectors = Daru::Index.new @vectors.to_a - [vector] self end |
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors
1078 1079 1080 1081 1082 |
# File 'lib/daru/dataframe.rb', line 1078 def delete_vectors *vectors Array(vectors).each { |vec| delete_vector vec } self end |
#dup(vectors_to_dup = nil) ⇒ Object
Duplicate the DataFrame entirely.
Arguments
-
vectors_to_dup
- An Array specifying the names of Vectors to
be duplicated. Will duplicate the entire DataFrame if not specified.
572 573 574 575 576 577 578 579 |
# File 'lib/daru/dataframe.rb', line 572 def dup vectors_to_dup=nil vectors_to_dup = @vectors.to_a unless vectors_to_dup src = vectors_to_dup.map { |vec| @data[@vectors.pos(vec)].dup } new_order = Daru::Index.new(vectors_to_dup) Daru::DataFrame.new src, order: new_order, index: @index.dup, name: @name, clone: true end |
#dup_only_valid(vecs = nil) ⇒ Object
Creates a new duplicate dataframe containing only rows without a single missing value.
613 614 615 616 617 618 619 620 |
# File 'lib/daru/dataframe.rb', line 613 def dup_only_valid vecs=nil rows_with_nil = @data.map { |vec| vec.indexes(*Daru::MISSING_VALUES) } .inject(&:concat) .uniq row_indexes = @index.to_a (vecs.nil? ? self : dup(vecs)).row[*(row_indexes - rows_with_nil)] end |
#each(axis = :vector, &block) ⇒ Object
Iterate over each row or vector of the DataFrame. Specify axis by passing :vector or :row as the argument. Default to :vector.
Description
‘#each` works exactly like Array#each. The default mode for `each` is to iterate over the columns of the DataFrame. To iterate over rows you must pass the axis, i.e `:row` as an argument.
Arguments
-
axis
- The axis to iterate over. Can be :vector (or :column)
or :row. Default to :vector.
828 829 830 |
# File 'lib/daru/dataframe.rb', line 828 def each axis=:vector, &block dispatch_to_axis axis, :each, &block end |
#each_index(&block) ⇒ Object
Iterate over each index of the DataFrame.
762 763 764 765 766 767 768 |
# File 'lib/daru/dataframe.rb', line 762 def each_index &block return to_enum(:each_index) unless block_given? @index.each(&block) self end |
#each_row ⇒ Object
Iterate over each row
795 796 797 798 799 800 801 802 803 |
# File 'lib/daru/dataframe.rb', line 795 def each_row return to_enum(:each_row) unless block_given? @index.size.times do |pos| yield row_at(pos) end self end |
#each_row_with_index ⇒ Object
805 806 807 808 809 810 811 812 813 |
# File 'lib/daru/dataframe.rb', line 805 def each_row_with_index return to_enum(:each_row_with_index) unless block_given? @index.each do |index| yield access_row(index), index end self end |
#each_vector(&block) ⇒ Object Also known as: each_column
Iterate over each vector
771 772 773 774 775 776 777 |
# File 'lib/daru/dataframe.rb', line 771 def each_vector(&block) return to_enum(:each_vector) unless block_given? @data.each(&block) self end |
#each_vector_with_index ⇒ Object Also known as: each_column_with_index
Iterate over each vector alongwith the name of the vector
782 783 784 785 786 787 788 789 790 |
# File 'lib/daru/dataframe.rb', line 782 def each_vector_with_index return to_enum(:each_vector_with_index) unless block_given? @vectors.each do |vector| yield @data[@vectors[vector]], vector end self end |
#filter(axis = :vector, &block) ⇒ Object
Retain vectors or rows if the block returns a truthy value.
Description
For filtering out certain rows/vectors based on their values, use the #filter method. By default it iterates over vectors and keeps those vectors for which the block returns true. It accepts an optional axis argument which lets you specify whether you want to iterate over vectors or rows.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
Usage
# Filter vectors
df.filter do |vector|
vector.type == :numeric and vector.median < 50
end
# Filter rows
df.filter(:row) do |row|
row[:a] + row[:d] < 100
end
936 937 938 |
# File 'lib/daru/dataframe.rb', line 936 def filter axis=:vector, &block dispatch_to_axis_pl axis, :filter, &block end |
#filter_rows ⇒ Object
Iterates over each row and retains it in a new DataFrame if the block returns true for that row.
1130 1131 1132 1133 1134 1135 1136 |
# File 'lib/daru/dataframe.rb', line 1130 def filter_rows return to_enum(:filter_rows) unless block_given? keep_rows = @index.map { |index| yield access_row(index) } where keep_rows end |
#filter_vector(vec, &block) ⇒ Object
creates a new vector with the data of a given field which the block returns true
1124 1125 1126 |
# File 'lib/daru/dataframe.rb', line 1124 def filter_vector vec, &block Daru::Vector.new(each_row.select(&block).map { |row| row[vec] }) end |
#filter_vectors(&block) ⇒ Object
Iterates over each vector and retains it in a new DataFrame if the block returns true for that vector.
1140 1141 1142 1143 1144 |
# File 'lib/daru/dataframe.rb', line 1140 def filter_vectors &block return to_enum(:filter_vectors) unless block_given? dup.tap { |df| df.keep_vector_if(&block) } end |
#get_sub_dataframe(keys, by_position: true) ⇒ Daru::Dataframe
Extract a dataframe given row indexes or positions
555 556 557 558 559 560 561 562 563 564 |
# File 'lib/daru/dataframe.rb', line 555 def get_sub_dataframe(keys, by_position: true) return Daru::DataFrame.new({}) if keys == [] keys = @index.pos(*keys) unless by_position sub_df = row_at(*keys) sub_df = sub_df.to_df.transpose if sub_df.is_a?(Daru::Vector) sub_df end |
#get_vector_anyways(v) ⇒ Object
1501 1502 1503 |
# File 'lib/daru/dataframe.rb', line 1501 def get_vector_anyways(v) @vectors.include?(v) ? self[v].to_a : [nil] * size end |
#group_by(*vectors) ⇒ Object
Group elements by vector to perform operations on them. Returns a Daru::Core::GroupBy object.See the Daru::Core::GroupBy docs for a detailed list of possible operations.
Arguments
-
vectors - An Array contatining names of vectors to group by.
Usage
df = Daru::DataFrame.new({
a: %w{foo bar foo bar foo bar foo foo},
b: %w{one one two three two two one three},
c: [1 ,2 ,3 ,1 ,3 ,6 ,3 ,8],
d: [11 ,22 ,33 ,44 ,55 ,66 ,77 ,88]
})
df.group_by([:a,:b,:c]).groups
#=> {["bar", "one", 2]=>[1],
# ["bar", "three", 1]=>[3],
# ["bar", "two", 6]=>[5],
# ["foo", "one", 1]=>[0],
# ["foo", "one", 3]=>[6],
# ["foo", "three", 8]=>[7],
# ["foo", "two", 3]=>[2, 4]}
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 |
# File 'lib/daru/dataframe.rb', line 1477 def group_by *vectors vectors.flatten! missing = vectors - @vectors.to_a unless missing.empty? raise(ArgumentError, "Vector(s) missing: #{missing.join(', ')}") end vectors = [@vectors.first] if vectors.empty? Daru::Core::GroupBy.new(self, vectors) end |
#group_by_and_aggregate(*group_by_keys, **aggregation_map) ⇒ Object
Is faster than using group_by followed by aggregate (because it doesn’t generate an intermediary dataframe)
2333 2334 2335 2336 2337 2338 2339 2340 |
# File 'lib/daru/dataframe.rb', line 2333 def group_by_and_aggregate(*group_by_keys, **aggregation_map) positions_groups = Daru::Core::GroupBy.get_positions_group_map_for_df(self, group_by_keys.flatten, sort: true) new_index = Daru::MultiIndex.from_tuples(positions_groups.keys).coerce_index colmn_value = aggregate_by_positions_tuples(aggregation_map, positions_groups.values) Daru::DataFrame.new(colmn_value, index: new_index, order: aggregation_map.keys) end |
#has_missing_data? ⇒ Boolean Also known as: flawed?
1242 1243 1244 |
# File 'lib/daru/dataframe.rb', line 1242 def has_missing_data? @data.any? { |vec| vec.include_values?(*Daru::MISSING_VALUES) } end |
#has_vector?(vector) ⇒ Boolean
Check if a vector is present
1317 1318 1319 |
# File 'lib/daru/dataframe.rb', line 1317 def has_vector? vector @vectors.include? vector end |
#head(quantity = 10) ⇒ Object Also known as: first
The first ten elements of the DataFrame
1365 1366 1367 |
# File 'lib/daru/dataframe.rb', line 1365 def head quantity=10 row.at 0..(quantity-1) end |
#include_values?(*values) ⇒ true, false
Check if any of given values occur in the data frame
1261 1262 1263 |
# File 'lib/daru/dataframe.rb', line 1261 def include_values?(*values) @data.any? { |vec| vec.include_values?(*values) } end |
#inspect(spacing = 10, threshold = 15) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby)
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 |
# File 'lib/daru/dataframe.rb', line 2175 def inspect spacing=10, threshold=15 name_part = @name ? ": #{@name} " : '' "#<#{self.class}#{name_part}(#{nrows}x#{ncols})>\n" + Formatters::Table.format( each_row.lazy, row_headers: row_headers, headers: headers, threshold: threshold, spacing: spacing ) end |
#interact_code(vector_names, full) ⇒ Object
2237 2238 2239 2240 2241 2242 2243 2244 2245 |
# File 'lib/daru/dataframe.rb', line 2237 def interact_code vector_names, full dfs = vector_names.zip(full).map do |vec_name, f| self[vec_name].contrast_code(full: f).each.to_a end all_vectors = recursive_product(dfs) Daru::DataFrame.new all_vectors, order: all_vectors.map(&:name) end |
#join(other_df, opts = {}) ⇒ Daru::DataFrame
Join 2 DataFrames with SQL style joins. Currently supports inner, left outer, right outer and full outer joins.
1889 1890 1891 |
# File 'lib/daru/dataframe.rb', line 1889 def join(other_df,opts={}) Daru::Core::Merge.join(self, other_df, opts) end |
#keep_row_if ⇒ Object
1111 1112 1113 1114 1115 |
# File 'lib/daru/dataframe.rb', line 1111 def keep_row_if @index .reject { |idx| yield access_row(idx) } .each { |idx| delete_row idx } end |
#keep_vector_if ⇒ Object
1117 1118 1119 1120 1121 |
# File 'lib/daru/dataframe.rb', line 1117 def keep_vector_if @vectors.each do |vector| delete_vector(vector) unless yield(@data[@vectors[vector]], vector) end end |
#map(axis = :vector, &block) ⇒ Object
Map over each vector or row of the data frame according to the argument specified. Will return an Array of the resulting elements. To map over each row/vector and get a DataFrame, see #recode.
Description
The #map iterator works like Array#map. The value returned by each run of the block is added to an Array and the Array is returned. This method also accepts an axis argument, like #each. The default is :vector.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
867 868 869 |
# File 'lib/daru/dataframe.rb', line 867 def map axis=:vector, &block dispatch_to_axis_pl axis, :map, &block end |
#map!(axis = :vector, &block) ⇒ Object
Destructive map. Modifies the DataFrame. Each run of the block must return a Daru::Vector. You can specify the axis to map over as the argument. Default to :vector.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
879 880 881 882 883 884 885 |
# File 'lib/daru/dataframe.rb', line 879 def map! axis=:vector, &block if %i[vector column].include?(axis) map_vectors!(&block) elsif axis == :row map_rows!(&block) end end |
#map_rows(&block) ⇒ Object
Map each row
986 987 988 989 990 |
# File 'lib/daru/dataframe.rb', line 986 def map_rows &block return to_enum(:map_rows) unless block_given? each_row.map(&block) end |
#map_rows! ⇒ Object
998 999 1000 1001 1002 1003 1004 1005 1006 |
# File 'lib/daru/dataframe.rb', line 998 def map_rows! return to_enum(:map_rows!) unless block_given? index.dup.each do |i| row[i] = should_be_vector!(yield(row[i])) end self end |
#map_rows_with_index(&block) ⇒ Object
992 993 994 995 996 |
# File 'lib/daru/dataframe.rb', line 992 def map_rows_with_index &block return to_enum(:map_rows_with_index) unless block_given? each_row_with_index.map(&block) end |
#map_vectors(&block) ⇒ Object
Map each vector and return an Array.
961 962 963 964 965 |
# File 'lib/daru/dataframe.rb', line 961 def map_vectors &block return to_enum(:map_vectors) unless block_given? @data.map(&block) end |
#map_vectors! ⇒ Object
Destructive form of #map_vectors
968 969 970 971 972 973 974 975 976 |
# File 'lib/daru/dataframe.rb', line 968 def map_vectors! return to_enum(:map_vectors!) unless block_given? vectors.dup.each do |n| self[n] = should_be_vector!(yield(self[n])) end self end |
#map_vectors_with_index(&block) ⇒ Object
Map vectors alongwith the index.
979 980 981 982 983 |
# File 'lib/daru/dataframe.rb', line 979 def map_vectors_with_index &block return to_enum(:map_vectors_with_index) unless block_given? each_vector_with_index.map(&block) end |
#merge(other_df) ⇒ Daru::DataFrame
Merge vectors from two DataFrames. In case of name collision, the vectors names are changed to x_1, x_2 .…
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 |
# File 'lib/daru/dataframe.rb', line 1844 def merge other_df # rubocop:disable Metrics/AbcSize unless nrows == other_df.nrows raise ArgumentError, "Number of rows must be equal in this: #{nrows} and other: #{other_df.nrows}" end new_fields = (@vectors.to_a + other_df.vectors.to_a) new_fields = ArrayHelper.recode_repeated(new_fields) DataFrame.new({}, order: new_fields).tap do |df_new| (0...nrows).each do |i| df_new.add_row row[i].to_a + other_df.row[i].to_a end df_new.index = @index if @index == other_df.index df_new.update end end |
#missing_values_rows(missing_values = [nil]) ⇒ Object Also known as: vector_missing_values
Return a vector with the number of missing values in each row.
Arguments
-
missing_values
- An Array of the values that should be
treated as ‘missing’. The default missing value is nil.
1231 1232 1233 1234 1235 1236 1237 |
# File 'lib/daru/dataframe.rb', line 1231 def missing_values_rows missing_values=[nil] number_of_missing = each_row.map do |row| row.indexes(*missing_values).size end Daru::Vector.new number_of_missing, index: @index, name: "#{@name}_missing_rows" end |
#ncols ⇒ Object
The number of vectors
1312 1313 1314 |
# File 'lib/daru/dataframe.rb', line 1312 def ncols @vectors.size end |
#nest(*tree_keys, &_block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values. If block provided, is used to provide the values, with parameters row
of dataset, current
last hash on hierarchy and name
of the key to include
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 |
# File 'lib/daru/dataframe.rb', line 1269 def nest *tree_keys, &_block tree_keys = tree_keys[0] if tree_keys[0].is_a? Array each_row.each_with_object({}) do |row, current| # Create tree *keys, last = tree_keys current = keys.inject(current) { |c, f| c[row[f]] ||= {} } name = row[last] if block_given? current[name] = yield(row, current, name) else current[name] ||= [] current[name].push(row.to_h.delete_if { |key,_value| tree_keys.include? key }) end end end |
#nrows ⇒ Object
The number of rows
1307 1308 1309 |
# File 'lib/daru/dataframe.rb', line 1307 def nrows @index.size end |
#numeric_vector_names ⇒ Object
1651 1652 1653 |
# File 'lib/daru/dataframe.rb', line 1651 def numeric_vector_names @vectors.select { |v| self[v].numeric? } end |
#numeric_vectors ⇒ Object
Return the indexes of all the numeric vectors. Will include vectors with nils alongwith numbers.
1644 1645 1646 1647 1648 1649 |
# File 'lib/daru/dataframe.rb', line 1644 def numeric_vectors # FIXME: Why _with_index ?.. each_vector_with_index .select { |vec, _i| vec.numeric? } .map(&:last) end |
#one_to_many(parent_fields, pattern) ⇒ Object
Creates a new dataset for one to many relations on a dataset, based on pattern of field names.
for example, you have a survey for number of children with this structure:
id, name, child_name_1, child_age_1, child_name_2, child_age_2
with
ds.one_to_many([:id], "child_%v_%n"
the field of first parameters will be copied verbatim to new dataset, and fields which responds to second pattern will be added one case for each different %n.
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 |
# File 'lib/daru/dataframe.rb', line 1924 def one_to_many(parent_fields, pattern) vars, numbers = one_to_many_components(pattern) DataFrame.new([], order: [*parent_fields, '_col_id', *vars]).tap do |ds| each_row do |row| verbatim = parent_fields.map { |f| [f, row[f]] }.to_h numbers.each do |n| generated = one_to_many_row row, n, vars, pattern next if generated.values.all?(&:nil?) ds.add_row(verbatim.merge(generated).merge('_col_id' => n)) end end ds.update end end |
#only_numerics(opts = {}) ⇒ Object
Return a DataFrame of only the numerical Vectors. If clone: false is specified as option, only a view of the Vectors will be returned. Defaults to clone: true.
1658 1659 1660 1661 1662 1663 1664 |
# File 'lib/daru/dataframe.rb', line 1658 def only_numerics opts={} cln = opts[:clone] == false ? false : true arry = numeric_vectors.map { |v| self[v] } order = Index.new(numeric_vectors) Daru::DataFrame.new(arry, clone: cln, order: order, index: @index) end |
#order=(order_array) ⇒ Object
Reorder the vectors in a dataframe
1202 1203 1204 1205 1206 |
# File 'lib/daru/dataframe.rb', line 1202 def order=(order_array) raise ArgumentError, 'Invalid order' unless order_array.sort == vectors.to_a.sort initialize(to_h, order: order_array) end |
#pivot_table(opts = {}) ⇒ Object
Pivots a data frame on specified vectors and applies an aggregate function to quickly generate a summary.
Options
:index
- Keys to group by on the pivot table row index. Pass vector names contained in an Array.
:vectors
- Keys to group by on the pivot table column index. Pass vector names contained in an Array.
:agg
- Function to aggregate the grouped values. Default to :mean. Can use any of the statistics functions applicable on Vectors that can be found in the Daru::Statistics::Vector module.
:values
- Columns to aggregate. Will consider all numeric columns not specified in :index or :vectors. Optional.
Usage
df = Daru::DataFrame.new({
a: ['foo' , 'foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar'],
b: ['one' , 'one', 'one', 'two', 'two', 'one', 'one', 'two', 'two'],
c: ['small','large','large','small','small','large','small','large','small'],
d: [1,2,2,3,3,4,5,6,7],
e: [2,4,4,6,6,8,10,12,14]
})
df.pivot_table(index: [:a], vectors: [:b], agg: :sum, values: :e)
#=>
# #<Daru::DataFrame:88342020 @name = 08cdaf4e-b154-4186-9084-e76dd191b2c9 @size = 2>
# [:e, :one] [:e, :two]
# [:bar] 18 26
# [:foo] 10 12
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 |
# File 'lib/daru/dataframe.rb', line 1823 def pivot_table opts={} raise ArgumentError, 'Specify grouping index' if Array(opts[:index]).empty? index = opts[:index] vectors = opts[:vectors] || [] aggregate_function = opts[:agg] || :mean values = prepare_pivot_values index, vectors, opts raise IndexError, 'No numeric vectors to aggregate' if values.empty? grouped = group_by(index) return grouped.send(aggregate_function) if vectors.empty? super_hash = make_pivot_hash grouped, vectors, values, aggregate_function pivot_dataframe super_hash end |
#plotting_library=(lib) ⇒ Object
365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
# File 'lib/daru/dataframe.rb', line 365 def plotting_library= lib case lib when :gruff, :nyaplot @plotting_library = lib if Daru.send("has_#{lib}?".to_sym) extend Module.const_get( "Daru::Plotting::DataFrame::#{lib.to_s.capitalize}Library" ) end else raise ArguementError, "Plotting library #{lib} not supported. "\ 'Supported libraries are :nyaplot and :gruff' end end |
#recast(opts = {}) ⇒ Object
2157 2158 2159 2160 2161 |
# File 'lib/daru/dataframe.rb', line 2157 def recast opts={} opts.each do |vector_name, dtype| self[vector_name].cast(dtype: dtype) end end |
#recode(axis = :vector, &block) ⇒ Object
Maps over the DataFrame and returns a DataFrame. Each run of the block must return a Daru::Vector object. You can specify the axis to map over. Default to :vector.
Description
Recode works similarly to #map, but an important difference between the two is that recode returns a modified Daru::DataFrame instead of an Array. For this reason, #recode expects that every run of the block to return a Daru::Vector.
Just like map and each, recode also accepts an optional axis argument.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
904 905 906 |
# File 'lib/daru/dataframe.rb', line 904 def recode axis=:vector, &block dispatch_to_axis_pl axis, :recode, &block end |
#recode_rows ⇒ Object
950 951 952 953 954 955 956 957 958 |
# File 'lib/daru/dataframe.rb', line 950 def recode_rows block_given? or return to_enum(:recode_rows) dup.tap do |df| df.each_row_with_index do |r, i| df.row[i] = should_be_vector!(yield(r)) end end end |
#recode_vectors ⇒ Object
940 941 942 943 944 945 946 947 948 |
# File 'lib/daru/dataframe.rb', line 940 def recode_vectors block_given? or return to_enum(:recode_vectors) dup.tap do |df| df.each_vector_with_index do |v, i| df[*i] = should_be_vector!(yield(v)) end end end |
#reindex(new_index) ⇒ Object
Change the index of the DataFrame and preserve the labels of the previous indexing. New index can be Daru::Index or any of its subclasses.
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 |
# File 'lib/daru/dataframe.rb', line 1563 def reindex new_index unless new_index.is_a?(Daru::Index) raise ArgumentError, 'Must pass the new index of type Index or its '\ "subclasses, not #{new_index.class}" end cl = Daru::DataFrame.new({}, order: @vectors, index: new_index, name: @name) new_index.each_with_object(cl) do |idx, memo| memo.row[idx] = @index.include?(idx) ? row[idx] : [nil]*ncols end end |
#reindex_vectors(new_vectors) ⇒ Object
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 |
# File 'lib/daru/dataframe.rb', line 1489 def reindex_vectors new_vectors unless new_vectors.is_a?(Daru::Index) raise ArgumentError, 'Must pass the new index of type Index or its '\ "subclasses, not #{new_index.class}" end cl = Daru::DataFrame.new({}, order: new_vectors, index: @index, name: @name) new_vectors.each_with_object(cl) do |vec, memo| memo[vec] = @vectors.include?(vec) ? self[vec] : [nil]*nrows end end |
#reject_values(*values) ⇒ Daru::DataFrame
Returns a dataframe in which rows with any of the mentioned values
are ignored.
639 640 641 642 643 644 645 646 647 648 649 |
# File 'lib/daru/dataframe.rb', line 639 def reject_values(*values) positions = size.times.to_a - @data.flat_map { |vec| vec.positions(*values) } # Handle the case when positions size is 1 and #row_at wouldn't return a df if positions.size == 1 pos = positions.first row_at(pos..pos) else row_at(*positions) end end |
#rename(new_name) ⇒ Object Also known as: name=
Rename the DataFrame.
2082 2083 2084 2085 |
# File 'lib/daru/dataframe.rb', line 2082 def rename new_name @name = new_name self end |
#rename_vectors(name_map) ⇒ Object
Renames the vectors
Arguments
-
name_map - A hash where the keys are the exising vector names and
the values are the new names. If a vector is renamed to a vector name that is already in use, the existing one is overwritten.
Usage
df = Daru::DataFrame.new({ a: [1,2,3,4], b: [:a,:b,:c,:d], c: [11,22,33,44] })
df.rename_vectors :a => :alpha, :c => :gamma
df.vectors.to_a #=> [:alpha, :b, :gamma]
1634 1635 1636 1637 1638 1639 1640 |
# File 'lib/daru/dataframe.rb', line 1634 def rename_vectors name_map existing_targets = name_map.reject { |k,v| k == v }.values & vectors.to_a delete_vectors(*existing_targets) new_names = vectors.to_a.map { |v| name_map[v] ? name_map[v] : v } self.vectors = Daru::Index.new new_names end |
#replace_values(old_values, new_value) ⇒ Daru::DataFrame
Replace specified values with given value
673 674 675 676 |
# File 'lib/daru/dataframe.rb', line 673 def replace_values old_values, new_value @data.each { |vec| vec.replace_values old_values, new_value } self end |
#respond_to_missing?(name, include_private = false) ⇒ Boolean
2233 2234 2235 |
# File 'lib/daru/dataframe.rb', line 2233 def respond_to_missing?(name, include_private=false) name.to_s.end_with?('=') || has_vector?(name) || super end |
#rolling_fillna(direction = :forward) ⇒ Object
718 719 720 |
# File 'lib/daru/dataframe.rb', line 718 def rolling_fillna(direction=:forward) dup.rolling_fillna!(direction) end |
#rolling_fillna!(direction = :forward) ⇒ Object
Rolling fillna replace all Float::NAN and NIL values with the preceeding or following value
713 714 715 716 |
# File 'lib/daru/dataframe.rb', line 713 def rolling_fillna!(direction=:forward) @data.each { |vec| vec.rolling_fillna!(direction) } self end |
#row ⇒ Object
Access a row or set/create a row. Refer #[] and #[]= docs for details.
Usage
df.row[:a] # access row named ':a'
df.row[:b] = [1,2,3] # set row ':b' to [1,2,3]
548 549 550 |
# File 'lib/daru/dataframe.rb', line 548 def row Daru::Accessors::DataFrameByRow.new(self) end |
#row_at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive rows by positions
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# File 'lib/daru/dataframe.rb', line 401 def row_at *positions original_positions = positions positions = coerce_positions(*positions, nrows) validate_positions(*positions, nrows) if positions.is_a? Integer return Daru::Vector.new @data.map { |vec| vec.at(*positions) }, index: @vectors else new_rows = @data.map { |vec| vec.at(*original_positions) } return Daru::DataFrame.new new_rows, index: @index.at(*original_positions), order: @vectors end end |
#save(filename) ⇒ Object
Use marshalling to save dataframe to a file.
2131 2132 2133 |
# File 'lib/daru/dataframe.rb', line 2131 def save filename Daru::IO.save self, filename end |
#set_at(positions, vector) ⇒ Object
Set vectors by positions
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# File 'lib/daru/dataframe.rb', line 500 def set_at positions, vector if positions.last == :row positions.pop return set_row_at(positions, vector) end validate_positions(*positions, ncols) vector = if vector.is_a? Daru::Vector vector.reindex @index else Daru::Vector.new vector end raise SizeError, 'Vector length should match index length' if vector.size != @index.size positions.each { |pos| @data[pos] = vector } end |
#set_index(new_index, opts = {}) ⇒ Object
Set a particular column as the new DF
1531 1532 1533 1534 1535 1536 1537 1538 1539 |
# File 'lib/daru/dataframe.rb', line 1531 def set_index new_index, opts={} raise ArgumentError, 'All elements in new index must be unique.' if @size != self[new_index].uniq.size self.index = Daru::Index.new(self[new_index].to_a) delete_vector(new_index) unless opts[:keep] self end |
#set_row_at(positions, vector) ⇒ Object
Set rows by positions
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
# File 'lib/daru/dataframe.rb', line 432 def set_row_at positions, vector validate_positions(*positions, nrows) vector = if vector.is_a? Daru::Vector vector.reindex @vectors else Daru::Vector.new vector end raise SizeError, 'Vector length should match row length' if vector.size != @vectors.size @data.each_with_index do |vec, pos| vec.set_at(positions, vector.at(pos)) end @index = @data[0].index set_size end |
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
1302 1303 1304 |
# File 'lib/daru/dataframe.rb', line 1302 def shape [nrows, ncols] end |
#sort(vector_order, opts = {}) ⇒ Object
Non-destructive version of #sort!
1785 1786 1787 |
# File 'lib/daru/dataframe.rb', line 1785 def sort vector_order, opts={} dup.sort! vector_order, opts end |
#sort!(vector_order, opts = {}) ⇒ Object
Sorts a dataframe (ascending/descending) in the given pripority sequence of vectors, with or without a block.
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 |
# File 'lib/daru/dataframe.rb', line 1761 def sort! vector_order, opts={} raise ArgumentError, 'Required atleast one vector name' if vector_order.empty? # To enable sorting with categorical data, # map categories to integers preserving their order old = convert_categorical_vectors vector_order block = sort_prepare_block vector_order, opts order = @index.size.times.sort(&block) new_index = @index.reorder order # To reverse map mapping of categorical data to integers restore_categorical_vectors old @data.each do |vector| vector.reorder! order end self.index = new_index self end |
#split_by_category(cat_name) ⇒ Array
Split the dataframe into many dataframes based on category vector
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 |
# File 'lib/daru/dataframe.rb', line 2265 def split_by_category cat_name cat_dv = self[cat_name] raise ArguementError, "#{cat_name} is not a category vector" unless cat_dv.category? cat_dv.categories.map do |cat| where(cat_dv.eq cat) .rename(cat) .delete_vector cat_name end end |
#summary ⇒ String
Generate a summary of this DataFrame based on individual vectors in the DataFrame
1668 1669 1670 1671 1672 1673 1674 1675 1676 |
# File 'lib/daru/dataframe.rb', line 1668 def summary summary = "= #{name}" summary << "\n Number of rows: #{nrows}" @vectors.each do |v| summary << "\n Element:[#{v}]\n" summary << self[v].summary(1) end summary end |
#tail(quantity = 10) ⇒ Object Also known as: last
The last ten elements of the DataFrame
1374 1375 1376 1377 |
# File 'lib/daru/dataframe.rb', line 1374 def tail quantity=10 start = [-quantity, -size].max row.at start..-1 end |
#to_a ⇒ Object
Converts the DataFrame into an array of hashes where key is vector name and value is the corresponding element. The 0th index of the array contains the array of hashes while the 1th index contains the indexes of each row of the dataframe. Each element in the index array corresponds to its row in the array of hashes, which has the same index.
2014 2015 2016 |
# File 'lib/daru/dataframe.rb', line 2014 def to_a [each_row.map(&:to_h), @index.to_a] end |
#to_category(*names) ⇒ Daru::DataFrame
Converts the specified non category type vectors to category type vectors
2213 2214 2215 2216 |
# File 'lib/daru/dataframe.rb', line 2213 def to_category *names names.each { |n| self[n] = self[n].to_category } self end |
#to_df ⇒ self
Returns the dataframe. This can be convenient when the user does not know whether the object is a vector or a dataframe.
1979 1980 1981 |
# File 'lib/daru/dataframe.rb', line 1979 def to_df self end |
#to_gsl ⇒ Object
Convert all numeric vectors to GSL::Matrix
1984 1985 1986 1987 1988 |
# File 'lib/daru/dataframe.rb', line 1984 def to_gsl numerics_as_arrays = numeric_vectors.map { |n| self[n].to_a } GSL::Matrix.alloc(*numerics_as_arrays.transpose) end |
#to_h ⇒ Object
Converts DataFrame to a hash (explicit) with keys as vector names and values as the corresponding vectors.
2030 2031 2032 2033 2034 |
# File 'lib/daru/dataframe.rb', line 2030 def to_h @vectors .each_with_index .map { |vec_name, idx| [vec_name, @data[idx]] }.to_h end |
#to_html(threshold = 30) ⇒ Object
Convert to html for IRuby.
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 |
# File 'lib/daru/dataframe.rb', line 2037 def to_html(threshold=30) table_thead = to_html_thead table_tbody = to_html_tbody(threshold) path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi.html.erb', __FILE__) else File.('../iruby/templates/dataframe.html.erb', __FILE__) end ERB.new(File.read(path).strip).result(binding) end |
#to_html_tbody(threshold = 30) ⇒ Object
2058 2059 2060 2061 2062 2063 2064 2065 2066 |
# File 'lib/daru/dataframe.rb', line 2058 def to_html_tbody(threshold=30) table_tbody_path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi_tbody.html.erb', __FILE__) else File.('../iruby/templates/dataframe_tbody.html.erb', __FILE__) end ERB.new(File.read(table_tbody_path).strip).result(binding) end |
#to_html_thead ⇒ Object
2048 2049 2050 2051 2052 2053 2054 2055 2056 |
# File 'lib/daru/dataframe.rb', line 2048 def to_html_thead table_thead_path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi_thead.html.erb', __FILE__) else File.('../iruby/templates/dataframe_thead.html.erb', __FILE__) end ERB.new(File.read(table_thead_path).strip).result(binding) end |
#to_json(no_index = true) ⇒ Object
Convert to json. If no_index is false then the index will NOT be included in the JSON thus created.
2020 2021 2022 2023 2024 2025 2026 |
# File 'lib/daru/dataframe.rb', line 2020 def to_json no_index=true if no_index to_a[0].to_json else to_a.to_json end end |
#to_matrix ⇒ Object
Convert all vectors of type :numeric into a Matrix.
1991 1992 1993 |
# File 'lib/daru/dataframe.rb', line 1991 def to_matrix Matrix.columns each_vector.select(&:numeric?).map(&:to_a) end |
#to_nmatrix ⇒ Object
Convert all vectors of type :numeric and not containing nils into an NMatrix.
2003 2004 2005 2006 2007 |
# File 'lib/daru/dataframe.rb', line 2003 def to_nmatrix each_vector.select do |vector| vector.numeric? && !vector.include_values?(*Daru::MISSING_VALUES) end.map(&:to_a).transpose.to_nm end |
#to_nyaplotdf ⇒ Object
Return a Nyaplot::DataFrame from the data of this DataFrame. :nocov:
1997 1998 1999 |
# File 'lib/daru/dataframe.rb', line 1997 def to_nyaplotdf Nyaplot::DataFrame.new(to_a[0]) end |
#to_REXP ⇒ Object
rubocop:disable Style/MethodName
5 6 7 8 9 10 11 12 13 |
# File 'lib/daru/extensions/rserve.rb', line 5 def to_REXP # rubocop:disable Style/MethodName names = @vectors.to_a data = names.map do |f| Rserve::REXP::Wrapper.wrap(self[f].to_a) end l = Rserve::Rlist.new(data, names.map(&:to_s)) Rserve::REXP.create_data_frame(l) end |
#to_s ⇒ Object
2068 2069 2070 |
# File 'lib/daru/dataframe.rb', line 2068 def to_s "#<#{self.class}#{': ' + @name.to_s if @name}(#{nrows}x#{ncols})>" end |
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
2164 2165 2166 2167 2168 2169 2170 2171 2172 |
# File 'lib/daru/dataframe.rb', line 2164 def transpose Daru::DataFrame.new( each_vector.map(&:to_a).transpose, index: @vectors, order: @index, dtype: @dtype, name: @name ) end |
#union(other_df) ⇒ Object
Concatenates another DataFrame as #concat. Additionally it tries to preserve the index. If the indices contain common elements, #union will overwrite the according rows in the first dataframe.
1521 1522 1523 1524 1525 1526 1527 1528 |
# File 'lib/daru/dataframe.rb', line 1521 def union other_df index = (@index.to_a + other_df.index.to_a).uniq df = row[*(@index.to_a - other_df.index.to_a)] df = df.concat(other_df) df.index = Daru::Index.new(index) df end |
#uniq(*vtrs) ⇒ Object
Return unique rows by vector specified or all vectors
754 755 756 757 758 759 |
# File 'lib/daru/dataframe.rb', line 754 def uniq(*vtrs) vecs = vtrs.empty? ? vectors.map(&:to_s) : Array(vtrs) grouped = group_by(vecs) indexes = grouped.groups.values.map { |v| v[0] }.sort row[*indexes] end |
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc. are complete. This is provided so that time is not wasted in creating the metadata for the vector each time assignment/deletion of elements is done. Updating data this way is called lazy loading. To set or unset lazy loading, see the .lazy_update= method.
2077 2078 2079 |
# File 'lib/daru/dataframe.rb', line 2077 def update @data.each(&:update) if Daru.lazy_update end |
#vector_by_calculation(&block) ⇒ Object
DSL for yielding each row and returning a Daru::Vector based on the value each run of the block returns.
Usage
a1 = Daru::Vector.new([1, 2, 3, 4, 5, 6, 7])
a2 = Daru::Vector.new([10, 20, 30, 40, 50, 60, 70])
a3 = Daru::Vector.new([100, 200, 300, 400, 500, 600, 700])
ds = Daru::DataFrame.new({ :a => a1, :b => a2, :c => a3 })
total = ds.vector_by_calculation { a + b + c }
# <Daru::Vector:82314050 @name = nil @size = 7 >
# nil
# 0 111
# 1 222
# 2 333
# 3 444
# 4 555
# 5 666
# 6 777
1182 1183 1184 1185 1186 |
# File 'lib/daru/dataframe.rb', line 1182 def vector_by_calculation &block a = each_row.map { |r| r.instance_eval(&block) } Daru::Vector.new a, index: @index end |
#vector_count_characters(vecs = nil) ⇒ Object
1287 1288 1289 1290 1291 1292 1293 |
# File 'lib/daru/dataframe.rb', line 1287 def vector_count_characters vecs=nil vecs ||= @vectors.to_a collect_rows do |row| vecs.map { |v| row[v].to_s.size }.inject(:+) end end |
#vector_mean(max_missing = 0) ⇒ Object
Calculate mean of the rows of the dataframe.
Arguments
-
max_missing
- The maximum number of elements in the row that can be
zero for the mean calculation to happen. Default to 0.
1443 1444 1445 1446 1447 1448 1449 1450 1451 |
# File 'lib/daru/dataframe.rb', line 1443 def vector_mean max_missing=0 # FIXME: in vector_sum we preserve created vector dtype, but # here we are not. Is this by design or ...? - zverok, 2016-05-18 mean_vec = Daru::Vector.new [0]*@size, index: @index, name: "mean_#{@name}" each_row_with_index.each_with_object(mean_vec) do |(row, i), memo| memo[i] = row.indexes(*Daru::MISSING_VALUES).size > max_missing ? nil : row.mean end end |
#vector_sum(*args) ⇒ Object
Sum all numeric/specified vectors in the DataFrame.
Returns a new vector that’s a containing a sum of all numeric or specified vectors of the DataFrame. By default, if the vector contains a nil, the sum is nil. With :skipnil argument set to true, nil values are assumed to be 0 (zero) and the sum vector is returned.
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 |
# File 'lib/daru/dataframe.rb', line 1425 def vector_sum(*args) defaults = {vecs: nil, skipnil: false} = args.last.is_a?(::Hash) ? args.pop : {} = defaults.merge() vecs = args[0] || [:vecs] skipnil = args[1] || [:skipnil] vecs ||= numeric_vectors sum = Daru::Vector.new [0]*@size, index: @index, name: @name, dtype: @dtype vecs.inject(sum) { |memo, n| self[n].add(memo, skipnil: skipnil) } end |
#verify(*tests) ⇒ Object
Test each row with one or more tests. The function returns an array with all errors.
FIXME: description here is too sparse. As far as I can get, it should tell something about that each test is [descr, fields, block], and that first value may be column name to output. - zverok, 2016-05-18
1154 1155 1156 1157 1158 1159 1160 1161 |
# File 'lib/daru/dataframe.rb', line 1154 def verify(*tests) id = tests.first.is_a?(Symbol) ? tests.shift : @vectors.first each_row_with_index.map do |row, i| tests.reject { |*_, block| block.call(row) } .map { |test| row, test, id, i } end.flatten end |
#where(bool_array) ⇒ Object
Query a DataFrame by passing a Daru::Core::Query::BoolArray object.
2189 2190 2191 |
# File 'lib/daru/dataframe.rb', line 2189 def where bool_array Daru::Core::Query.df_where self, bool_array end |
#which(&block) ⇒ Object
15 16 17 |
# File 'lib/daru/extensions/which_dsl.rb', line 15 def which(&block) WhichQuery.new(self, &block).exec end |
#write_csv(filename, opts = {}) ⇒ Object
Write this DataFrame to a CSV file.
Arguements
-
filename - Path of CSV file where the DataFrame is to be saved.
Options
-
convert_comma - If set to true, will convert any commas in any
of the data to full stops (‘.’). All the options accepted by CSV.read() can also be passed into this function.
2101 2102 2103 |
# File 'lib/daru/dataframe.rb', line 2101 def write_csv filename, opts={} Daru::IO.dataframe_write_csv self, filename, opts end |
#write_excel(filename, opts = {}) ⇒ Object
Write this dataframe to an Excel Spreadsheet
Arguments
-
filename - The path of the file where the DataFrame should be written.
2110 2111 2112 |
# File 'lib/daru/dataframe.rb', line 2110 def write_excel filename, opts={} Daru::IO.dataframe_write_excel self, filename, opts end |
#write_sql(dbh, table) ⇒ Object
Insert each case of the Dataset on the selected table
Arguments
-
dbh - DBI database connection object.
-
query - Query string.
Usage
ds = Daru::DataFrame.new({:id=>Daru::Vector.new([1,2,3]), :name=>Daru::Vector.new(["a","b","c"])})
dbh = DBI.connect("DBI:Mysql:database:localhost", "user", "password")
ds.write_sql(dbh,"test")
2126 2127 2128 |
# File 'lib/daru/dataframe.rb', line 2126 def write_sql dbh, table Daru::IO.dataframe_write_sql self, dbh, table end |