Class: Daru::Vector

Inherits:
Object show all
Extended by:
Gem::Deprecate
Includes:
Maths::Arithmetic::Vector, Maths::Statistics::Vector, Enumerable
Defined in:
lib/daru/vector.rb,
lib/daru/extensions/rserve.rb

Overview

rubocop:disable Metrics/ClassLength

Constant Summary collapse

DEFAULT_SORTER =
lambda { |(lv, li), (rv, ri)|
  case
  when lv.nil? && rv.nil?
    li <=> ri
  when lv.nil?
    -1
  when rv.nil?
    1
  else
    lv <=> rv
  end
}
DATE_REGEXP =
/^(\d{2}-\d{2}-\d{4}|\d{4}-\d{2}-\d{2})$/

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Methods included from Maths::Statistics::Vector

#acf, #acvf, #average_deviation_population, #box_cox_transformation, #center, #coefficient_of_variation, #count, #covariance_population, #covariance_sample, #cumsum, #describe, #dichotomize, #diff, #ema, #emsd, #emv, #factors, #frequencies, #index_of_max, #index_of_max_by, #index_of_min, #index_of_min_by, #kurtosis, #macd, #max, #max_by, #max_index, #mean, #median, #median_absolute_deviation, #min, #min_by, #mode, #percent_change, #percentile, #product, #proportion, #proportions, #range, #ranked, #rolling, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_sum, #rolling_variance, #sample_with_replacement, #sample_without_replacement, #skew, #standard_deviation_population, #standard_deviation_sample, #standard_error, #standardize, #sum, #sum_of_squared_deviation, #sum_of_squares, #value_counts, #variance_population, #variance_sample, #vector_centered_compute, #vector_percentile, #vector_standardized_compute

Methods included from Maths::Arithmetic::Vector

#%, #*, #**, #+, #-, #/, #abs, #add, #exp, #round, #sqrt

Constructor Details

#initialize(source, opts = {}) ⇒ Vector

Create a Vector object.

Arguments

Hash. If Array, a numeric index will be created if not supplied in the options. Specifying more index elements than actual values in source will insert nil into the surplus index elements. When a Hash is specified, the keys of the Hash are taken as the index elements and the corresponding values as the values that populate the vector.

Options

  • :name - Name of the vector

  • :index - Index of the vector

  • :dtype - The underlying data type. Can be :array, :nmatrix or :gsl.

Default :array.

  • :nm_dtype - For NMatrix, the data type of the numbers. See the NMatrix docs for

further information on supported data type.

  • :missing_values - An Array of the values that are to be treated as ‘missing’.

nil is the default missing value.

Usage

vecarr = Daru::Vector.new [1,2,3,4], index: [:a, :e, :i, :o]
vechsh = Daru::Vector.new({a: 1, e: 2, i: 3, o: 4})

Parameters:

  • source (Array, Hash)
    • Supply elements in the form of an Array or a



189
190
191
192
193
194
195
196
197
198
# File 'lib/daru/vector.rb', line 189

def initialize source, opts={}
  if opts[:type] == :category
    # Initialize category type vector
    extend Daru::Category
    initialize_category source, opts
  else
    # Initialize non-category type vector
    initialize_vector source, opts
  end
end

Dynamic Method Handling

This class handles dynamic methods through the method_missing method

#method_missing(name, *args, &block) ⇒ Object



1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
# File 'lib/daru/vector.rb', line 1412

def method_missing(name, *args, &block)
  # FIXME: it is shamefully fragile. Should be either made stronger
  # (string/symbol dychotomy, informative errors) or removed totally. - zverok
  if name =~ /(.+)\=/
    self[$1.to_sym] = args[0]
  elsif has_index?(name)
    self[name]
  else
    super
  end
end

Instance Attribute Details

#dataObject (readonly)

Store vector data in an array



153
154
155
# File 'lib/daru/vector.rb', line 153

def data
  @data
end

#dtypeObject (readonly)

The underlying dtype of the Vector. Can be either :array, :nmatrix or :gsl.



141
142
143
# File 'lib/daru/vector.rb', line 141

def dtype
  @dtype
end

#indexObject

The row index. Can be either Daru::Index or Daru::MultiIndex.



139
140
141
# File 'lib/daru/vector.rb', line 139

def index
  @index
end

#labelsObject

Store a hash of labels for values. Supplementary only. Recommend using index for proper usage.



151
152
153
# File 'lib/daru/vector.rb', line 151

def labels
  @labels
end

#missing_positionsObject (readonly)

An Array or the positions in the vector that are being treated as ‘missing’.



147
148
149
# File 'lib/daru/vector.rb', line 147

def missing_positions
  @missing_positions
end

#nameObject (readonly)

The name of the Daru::Vector. String.



137
138
139
# File 'lib/daru/vector.rb', line 137

def name
  @name
end

#nm_dtypeObject (readonly)

If the dtype is :nmatrix, this attribute represents the data type of the underlying NMatrix object. See NMatrix docs for more details on NMatrix data types.



145
146
147
# File 'lib/daru/vector.rb', line 145

def nm_dtype
  @nm_dtype
end

#plotting_libraryObject

Ploting library being used for this vector



155
156
157
# File 'lib/daru/vector.rb', line 155

def plotting_library
  @plotting_library
end

Class Method Details

.[](*indexes) ⇒ Object

Create a vector using (almost) any object

  • Array: flattened

  • Range: transformed using to_a

  • Daru::Vector

  • Numeric and string values

Description

The ‘Vector.[]` class method creates a vector from almost any object that has a `#to_a` method defined on it. It is similar to R’s ‘c` method.

Usage

a = Daru::Vector[1,2,3,4,6..10]
#=>
# <Daru::Vector:99448510 @name = nil @size = 9 >
#   nil
# 0   1
# 1   2
# 2   3
# 3   4
# 4   6
# 5   7
# 6   8
# 7   9
# 8  10


66
67
68
69
70
71
# File 'lib/daru/vector.rb', line 66

def [](*indexes)
  values = indexes.map do |a|
    a.respond_to?(:to_a) ? a.to_a : a
  end.flatten
  Daru::Vector.new(values)
end

._load(data) ⇒ Object

:nodoc:



73
74
75
76
77
78
79
# File 'lib/daru/vector.rb', line 73

def _load(data) # :nodoc:
  h = Marshal.load(data)
  Daru::Vector.new(h[:data],
    index: h[:index],
    name: h[:name],
    dtype: h[:dtype], missing_values: h[:missing_values])
end

.coerce(data, options = {}) ⇒ Object



81
82
83
84
85
86
87
88
89
90
# File 'lib/daru/vector.rb', line 81

def coerce(data, options={})
  case data
  when Daru::Vector
    data
  when Array, Hash
    new(data, options)
  else
    raise ArgumentError, "Can't coerce #{data.class} to #{self}"
  end
end

.new_with_size(n, opts = {}, &block) ⇒ Object

Create a new vector by specifying the size and an optional value and block to generate values.

Description

The new_with_size class method lets you create a Daru::Vector by specifying the size as the argument. The optional block, if supplied, is run once for populating each element in the Vector.

The result of each run of the block is the value that is ultimately assigned to that position in the Vector.

Options

:value All the rest like .new



33
34
35
36
37
# File 'lib/daru/vector.rb', line 33

def new_with_size n, opts={}, &block
  value = opts.delete :value
  block ||= ->(_) { value }
  Daru::Vector.new Array.new(n, &block), opts
end

Instance Method Details

#==(other) ⇒ Object

Two vectors are equal if they have the exact same index values corresponding with the exact same elements. Name is ignored.



309
310
311
312
313
314
315
316
317
# File 'lib/daru/vector.rb', line 309

def == other
  case other
  when Daru::Vector
    @index == other.index && size == other.size &&
      @index.all? { |index| self[index] == other[index] }
  else
    super
  end
end

#[](*input_indexes) ⇒ Object

Get one or more elements with specified index or a range.

Usage

# For vectors employing single layer Index

v[:one, :two] # => Daru::Vector with indexes :one and :two
v[:one]       # => Single element
v[:one..:three] # => Daru::Vector with indexes :one, :two and :three

# For vectors employing hierarchial multi index


226
227
228
229
230
231
232
233
234
235
236
237
238
239
# File 'lib/daru/vector.rb', line 226

def [](*input_indexes)
  # Get array of positions indexes
  positions = @index.pos(*input_indexes)

  # If one object is asked return it
  return @data[positions] if positions.is_a? Numeric

  # Form a new Vector using positional indexes
  Daru::Vector.new(
    positions.map { |loc| @data[loc] },
    name: @name,
    index: @index.subset(*input_indexes), dtype: @dtype
  )
end

#[]=(*indexes, val) ⇒ Object

Just like in Hashes, you can specify the index label of the Daru::Vector and assign an element an that place in the Daru::Vector.

Usage

v = Daru::Vector.new([1,2,3], index: [:a, :b, :c])
v[:a] = 999
#=>
##<Daru::Vector:90257920 @name = nil @size = 3 >
#    nil
#  a 999
#  b   2
#  c   3


297
298
299
300
301
302
303
304
305
# File 'lib/daru/vector.rb', line 297

def []=(*indexes, val)
  cast(dtype: :array) if val.nil? && dtype != :array

  guard_type_check(val)

  modify_vector(indexes, val)

  update_position_cache
end

#_dumpObject

:nodoc:



1382
1383
1384
1385
1386
1387
1388
1389
# File 'lib/daru/vector.rb', line 1382

def _dump(*) # :nodoc:
  Marshal.dump(
    data:           @data.to_a,
    dtype:          @dtype,
    name:           @name,
    index:          @index
  )
end

#all?(&block) ⇒ Boolean

Returns:

  • (Boolean)


585
586
587
# File 'lib/daru/vector.rb', line 585

def all? &block
  @data.data.all?(&block)
end

#any?(&block) ⇒ Boolean

Returns:

  • (Boolean)


581
582
583
# File 'lib/daru/vector.rb', line 581

def any? &block
  @data.data.any?(&block)
end

#apply_method(method, keys: nil, by_position: true) ⇒ Object Also known as: apply_method_on_sub_vector



125
126
127
128
129
130
131
132
133
# File 'lib/daru/vector.rb', line 125

def apply_method(method, keys: nil, by_position: true)
  vect = keys ? get_sub_vector(keys, by_position: by_position) : self

  case method
  when Symbol then vect.send(method)
  when Proc   then method.call(vect)
  else raise
  end
end

#at(*positions) ⇒ object

Returns vector of values given positional values

Examples:

dv = Daru::Vector.new 'a'..'e'
dv.at 0, 1, 2
# => #<Daru::Vector(3)>
#   0   a
#   1   b
#   2   c

Parameters:

  • positions (Array<object>)

    positional values

Returns:

  • (object)

    vector



251
252
253
254
255
256
257
258
259
260
261
262
263
# File 'lib/daru/vector.rb', line 251

def at *positions
  # to be used to form index
  original_positions = positions
  positions = coerce_positions(*positions)
  validate_positions(*positions)

  if positions.is_a? Integer
    @data[positions]
  else
    values = positions.map { |pos| @data[pos] }
    Daru::Vector.new values, index: @index.at(*original_positions), dtype: dtype
  end
end

#bootstrap(estimators, nr, s = nil) ⇒ Object

Bootstrap

Generate nr resamples (with replacement) of size s from vector, computing each estimate from estimators over each resample. estimators could be a) Hash with variable names as keys and lambdas as values

a.bootstrap(:log_s2=>lambda {|v| Math.log(v.variance)},1000)

b) Array with names of method to bootstrap

a.bootstrap([:mean, :sd],1000)

c) A single method to bootstrap

a.jacknife(:mean, 1000)

If s is nil, is set to vector size by default.

Returns a DataFrame where each vector is a vector of length nr containing the computed resample estimates.



1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
# File 'lib/daru/vector.rb', line 1181

def bootstrap(estimators, nr, s=nil)
  s ||= size
  h_est, es, bss = prepare_bootstrap(estimators)

  nr.times do
    bs = sample_with_replacement(s)
    es.each do |estimator|
      bss[estimator].push(h_est[estimator].call(bs))
    end
  end

  es.each do |est|
    bss[est] = Daru::Vector.new bss[est]
  end

  Daru::DataFrame.new bss
end

#cast(opts = {}) ⇒ Object

Cast a vector to a new data type.

Options

  • :dtype - :array for Ruby Array. :nmatrix for NMatrix.

Raises:

  • (ArgumentError)


513
514
515
516
517
518
# File 'lib/daru/vector.rb', line 513

def cast opts={}
  dt = opts[:dtype]
  raise ArgumentError, "Unsupported dtype #{opts[:dtype]}" unless %i[array nmatrix gsl].include?(dt)

  @data = cast_vector_to dt unless @dtype == dt
end

#category?true, false

Tells if vector is categorical or not.

Examples:

dv = Daru::Vector.new [1, 2, 3], type: :category
dv.category?
# => true

Returns:

  • (true, false)

    true if vector is of type category, false otherwise



561
562
563
# File 'lib/daru/vector.rb', line 561

def category?
  type == :category
end

#clone_structureObject

Copies the structure of the vector (i.e the index, size, etc.) and fills all all values with nils.



1369
1370
1371
# File 'lib/daru/vector.rb', line 1369

def clone_structure
  Daru::Vector.new(([nil]*size), name: @name, index: @index.dup)
end

#concat(element, index) ⇒ Object Also known as: push, <<

Append an element to the vector by specifying the element and index

Raises:

  • (IndexError)


497
498
499
500
501
502
503
504
# File 'lib/daru/vector.rb', line 497

def concat element, index
  raise IndexError, 'Expected new unique index' if @index.include? index

  @index |= [index]
  @data[@index[index]] = element

  update_position_cache
end

#count_values(*values) ⇒ Integer

Count the number of values specified

Examples:

dv = Daru::Vector.new [1, 2, 1, 2, 3, 4, nil, nil]
dv.count_values nil
# => 2

Parameters:

  • values (Array)

    values to count for

Returns:

  • (Integer)

    the number of times the values mentioned occurs



876
877
878
# File 'lib/daru/vector.rb', line 876

def count_values(*values)
  positions(*values).size
end

#cut(partitions, opts = {}) ⇒ Daru::Vector

Partition a numeric variable into categories.

Examples:

heights = Daru::Vector.new [30, 35, 32, 50, 42, 51]
height_cat = heights.cut [30, 40, 50, 60], labels=['low', 'medium', 'high']
# => #<Daru::Vector(6)>
#       0    low
#       1    low
#       2    low
#       3   high
#       4 medium
#       5   high

Parameters:

  • partitions (Array<Numeric>)

    an array whose consecutive elements provide intervals for categories

  • opts (Hash) (defaults to: {})

    options to cut the partition

Options Hash (opts):

  • :close_at (:left, :right)

    specifies whether the interval closes at the right side of left side

  • :labels (Array)

    names of the categories

Returns:

  • (Daru::Vector)

    numeric variable converted to categorical variable



1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
# File 'lib/daru/vector.rb', line 1446

def cut partitions, opts={}
  close_at, labels = opts[:close_at] || :right, opts[:labels]
  partitions = partitions.to_a
  values = to_a.map { |val| cut_find_category partitions, val, close_at }
  cats = cut_categories(partitions, close_at)

  dv = Daru::Vector.new values,
    index: @index,
    type: :category,
    categories: cats

  # Rename categories if new labels provided
  if labels
    dv.rename_categories Hash[cats.zip(labels)]
  else
    dv
  end
end

#daru_vectorObject Also known as: dv

:nocov:



1392
1393
1394
# File 'lib/daru/vector.rb', line 1392

def daru_vector(*)
  self
end

#db_typeObject

Returns the database type for the vector, according to its content



1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
# File 'lib/daru/vector.rb', line 1353

def db_type
  # first, detect any character not number
  case
  when @data.any? { |v| v.to_s =~ DATE_REGEXP }
    'DATE'
  when @data.any? { |v| v.to_s =~ /[^0-9e.-]/ }
    'VARCHAR (255)'
  when @data.any? { |v| v.to_s =~ /\./ }
    'DOUBLE'
  else
    'INTEGER'
  end
end

#delete(element) ⇒ Object

Delete an element by value



521
522
523
# File 'lib/daru/vector.rb', line 521

def delete element
  delete_at index_of(element)
end

#delete_at(index) ⇒ Object

Delete element by index



526
527
528
529
530
531
# File 'lib/daru/vector.rb', line 526

def delete_at index
  @data.delete_at @index[index]
  @index = Daru::Index.new(@index.to_a - [index])

  update_position_cache
end

#delete_ifObject

Delete an element if block returns true. Destructive.



679
680
681
682
683
684
685
686
687
688
689
690
# File 'lib/daru/vector.rb', line 679

def delete_if
  return to_enum(:delete_if) unless block_given?

  keep_e, keep_i = each_with_index.reject { |n, _i| yield(n) }.transpose

  @data = cast_vector_to @dtype, keep_e
  @index = Daru::Index.new(keep_i)

  update_position_cache

  self
end

#detach_indexObject



851
852
853
854
855
856
# File 'lib/daru/vector.rb', line 851

def detach_index
  Daru::DataFrame.new(
    index: @index.to_a,
    values: @data.to_a
  )
end

#dupDaru::Vector

Duplicated a vector

Returns:



1162
1163
1164
# File 'lib/daru/vector.rb', line 1162

def dup
  Daru::Vector.new @data.dup, name: @name, index: @index.dup
end

#each(&block) ⇒ Object



97
98
99
100
101
102
# File 'lib/daru/vector.rb', line 97

def each(&block)
  return to_enum(:each) unless block_given?

  @data.each(&block)
  self
end

#each_index(&block) ⇒ Object



104
105
106
107
108
109
# File 'lib/daru/vector.rb', line 104

def each_index(&block)
  return to_enum(:each_index) unless block_given?

  @index.each(&block)
  self
end

#each_with_index(&block) ⇒ Object



111
112
113
114
115
116
117
# File 'lib/daru/vector.rb', line 111

def each_with_index &block
  return to_enum(:each_with_index) unless block_given?

  @data.to_a.zip(@index.to_a).each(&block)

  self
end

#empty?Boolean

Returns:

  • (Boolean)


444
445
446
# File 'lib/daru/vector.rb', line 444

def empty?
  @index.empty?
end

#get_sub_vector(keys, by_position: true) ⇒ Daru::Vector

Parameters:

  • keys (Array)

    can be positions (if by_position is true) or indexes (if by_position if false)

Returns:



887
888
889
890
891
892
893
894
895
896
# File 'lib/daru/vector.rb', line 887

def get_sub_vector(keys, by_position: true)
  return Daru::Vector.new([]) if keys == []

  keys = @index.pos(*keys) unless by_position

  sub_vect = at(*keys)
  sub_vect = Daru::Vector.new([sub_vect]) unless sub_vect.is_a?(Daru::Vector)

  sub_vect
end

#group_by(*args) ⇒ Object



1478
1479
1480
# File 'lib/daru/vector.rb', line 1478

def group_by(*args)
  to_df.group_by(*args)
end

#has_index?(index) ⇒ Boolean

Returns true if an index exists

Returns:

  • (Boolean)


881
882
883
# File 'lib/daru/vector.rb', line 881

def has_index? index
  @index.include? index
end

#has_missing_data?Boolean Also known as: flawed?

Reports whether missing data is present in the Vector.

Returns:

  • (Boolean)


457
458
459
# File 'lib/daru/vector.rb', line 457

def has_missing_data?
  !indexes(*Daru::MISSING_VALUES).empty?
end

#head(q = 10) ⇒ Object



435
436
437
# File 'lib/daru/vector.rb', line 435

def head q=10
  self[0..(q-1)]
end

#in(other) ⇒ Object

Comparator for checking if any of the elements in other exist in self.

Examples:

Usage of ‘in`.

vector = Daru::Vector.new([1,2,3,4,5])
vector.where(vector.in([3,5]))
#=>
##<Daru::Vector:82215960 @name = nil @size = 2 >
#    nil
#  2   3
#  4   5

Parameters:

  • other (Array, Daru::Vector)

    A collection which has elements that need to be checked for in self.



386
387
388
389
390
391
392
393
# File 'lib/daru/vector.rb', line 386

def in other
  other = Hash[other.zip(Array.new(other.size, 0))]
  Daru::Core::Query::BoolArray.new(
    @data.each_with_object([]) do |d, memo|
      memo << (other.key?(d) ? true : false)
    end
  )
end

#include_values?(*values) ⇒ true, false

Check if any one of mentioned values occur in the vector

Examples:

dv = Daru::Vector.new [1, 2, 3, 4, nil]
dv.include_values? nil, Float::NAN
# => true

Parameters:

  • values (Array)

    values to check for

Returns:

  • (true, false)

    returns true if any one of specified values occur in the vector



472
473
474
# File 'lib/daru/vector.rb', line 472

def include_values?(*values)
  values.any? { |v| include_with_nan? @data, v }
end

#index_of(element) ⇒ Object

Get index of element



566
567
568
569
570
571
# File 'lib/daru/vector.rb', line 566

def index_of element
  case dtype
  when :array then @index.key(@data.index { |x| x.eql? element })
  else @index.key @data.index(element)
  end
end

#indexes(*values) ⇒ Array

Return indexes of values specified

Examples:

dv = Daru::Vector.new [1, 2, nil, Float::NAN], index: 11..14
dv.indexes nil, Float::NAN
# => [13, 14]

Parameters:

  • values (Array)

    values to find indexes for

Returns:

  • (Array)

    array of indexes of values specified



1300
1301
1302
# File 'lib/daru/vector.rb', line 1300

def indexes(*values)
  index.to_a.values_at(*positions(*values))
end

#inspect(spacing = 20, threshold = 15) ⇒ Object

Over rides original inspect for pretty printing in irb



1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
# File 'lib/daru/vector.rb', line 1069

def inspect spacing=20, threshold=15
  row_headers = index.is_a?(MultiIndex) ? index.sparse_tuples : index.to_a

  "#<#{self.class}(#{size})#{':category' if category?}>\n" +
    Formatters::Table.format(
      to_a.lazy.map { |v| [v] },
      headers: @name && [@name],
      row_headers: row_headers,
      threshold: threshold,
      spacing: spacing
    )
end

#is_values(*values) ⇒ Daru::Vector

Note:

Do not use it to check for Float::NAN as Float::NAN == Float::NAN is false

Return vector of booleans with value at ith position is either true or false depending upon whether value at position i is equal to any of the values passed in the argument or not

Examples:

dv = Daru::Vector.new [1, 2, 3, 2, 1]
dv.is_values 1, 2
# => #<Daru::Vector(5)>
#     0  true
#     1  true
#     2 false
#     3  true
#     4  true

Parameters:

  • values (Array)

    values to equate with

Returns:



492
493
494
# File 'lib/daru/vector.rb', line 492

def is_values(*values)
  Daru::Vector.new values.map { |v| eq(v) }.inject(:|)
end

#jackknife(estimators, k = 1) ⇒ Object

Jacknife

Returns a dataset with jacknife delete-k estimators estimators could be: a) Hash with variable names as keys and lambdas as values

a.jacknife(:log_s2=>lambda {|v| Math.log(v.variance)})

b) Array with method names to jacknife

a.jacknife([:mean, :sd])

c) A single method to jacknife

a.jacknife(:mean)

k represent the block size for block jacknife. By default is set to 1, for classic delete-one jacknife.

Returns a dataset where each vector is an vector of length cases/k containing the computed jacknife estimates.

Reference:

  • Sawyer, S. (2005). Resampling Data: Using a Statistical Jacknife.



1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
# File 'lib/daru/vector.rb', line 1216

def jackknife(estimators, k=1) # rubocop:disable Metrics/AbcSize,Metrics/MethodLength
  raise "n should be divisible by k:#{k}" unless (size % k).zero?

  nb = (size / k).to_i
  h_est, es, ps = prepare_bootstrap(estimators)

  est_n = es.map { |v| [v, h_est[v].call(self)] }.to_h

  nb.times do |i|
    other = @data.dup
    other.slice!(i*k, k)
    other = Daru::Vector.new other

    es.each do |estimator|
      # Add pseudovalue
      ps[estimator].push(
        nb * est_n[estimator] - (nb-1) * h_est[estimator].call(other)
      )
    end
  end

  es.each do |est|
    ps[est] = Daru::Vector.new ps[est]
  end
  Daru::DataFrame.new ps
end

#keep_ifObject

Keep an element if block returns true. Destructive.



693
694
695
696
697
# File 'lib/daru/vector.rb', line 693

def keep_if
  return to_enum(:keep_if) unless block_given?

  delete_if { |val| !yield(val) }
end

#lag(k = 1) ⇒ Daru::Vector

Lags the series by ‘k` periods.

Lags the series by ‘k` periods, “shifting” data and inserting `nil`s from beginning or end of a vector, while preserving original vector’s size.

‘k` can be positive or negative integer. If `k` is positive, `nil`s are inserted at the beginning of the vector, otherwise they are inserted at the end.

Examples:

Lag a vector with different periods ‘k`


ts = Daru::Vector.new(1..5)
            # => [1, 2, 3, 4, 5]

ts.lag      # => [nil, 1, 2, 3, 4]
ts.lag(1)   # => [nil, 1, 2, 3, 4]
ts.lag(2)   # => [nil, nil, 1, 2, 3]
ts.lag(-1)  # => [2, 3, 4, 5, nil]

Parameters:

  • k (Integer) (defaults to: 1)

    “shift” the series by ‘k` periods. `k` can be positive or negative. (default = 1)

Returns:

  • (Daru::Vector)

    a new vector with “shifted” inital values and ‘nil` values inserted. The return vector is the same length as the orignal vector.



839
840
841
842
843
844
845
846
847
848
849
# File 'lib/daru/vector.rb', line 839

def lag k=1
  case k
  when 0 then dup
  when 1...size
    copy([nil] * k + data.to_a)
  when -size..-1
    copy(data.to_a[k.abs...size])
  else
    copy([])
  end
end

#map!(&block) ⇒ Object



119
120
121
122
123
# File 'lib/daru/vector.rb', line 119

def map!(&block)
  return to_enum(:map!) unless block_given?
  @data.map!(&block)
  self
end

#n_validObject

number of non-missing elements



864
865
866
# File 'lib/daru/vector.rb', line 864

def n_valid
  size - indexes(*Daru::MISSING_VALUES).size
end

#numeric?Boolean

Returns:

  • (Boolean)


448
449
450
# File 'lib/daru/vector.rb', line 448

def numeric?
  type == :numeric
end

#numeric_summaryString

Displays summary for an numeric type Vector

Returns:

  • (String)

    String containing numeric vector summary



1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
# File 'lib/daru/vector.rb', line 1053

def numeric_summary
  summary = "\n  median: #{median}" +
            "\n  mean: %0.4f" % mean
  if sd
    summary << "\n  std.dev.: %0.4f" % sd +
               "\n  std.err.: %0.4f" % se
  end

  if count_values(*Daru::MISSING_VALUES).zero?
    summary << "\n  skew: %0.4f" % skew +
               "\n  kurtosis: %0.4f" % kurtosis
  end
  summary
end

#object?Boolean

Returns:

  • (Boolean)


452
453
454
# File 'lib/daru/vector.rb', line 452

def object?
  type == :object
end

#object_summaryString

Displays summary for an object type Vector

Returns:

  • (String)

    String containing object vector summary



1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# File 'lib/daru/vector.rb', line 1038

def object_summary
  nval = count_values(*Daru::MISSING_VALUES)
  summary = "\n  factors: #{factors.to_a.join(',')}" \
            "\n  mode: #{mode.to_a.join(',')}" \
            "\n  Distribution\n"

  data = frequencies.sort.each_with_index.map do |v, k|
    [k, v, '%0.2f%%' % ((nval.zero? ? 1 : v.quo(nval))*100)]
  end

  summary + Formatters::Table.format(data)
end

#only_missing(as_a = :vector) ⇒ Object

Returns a Vector containing only missing data (preserves indexes).



1330
1331
1332
1333
1334
1335
1336
# File 'lib/daru/vector.rb', line 1330

def only_missing as_a=:vector
  if as_a == :vector
    self[*indexes(*Daru::MISSING_VALUES)]
  elsif as_a == :array
    self[*indexes(*Daru::MISSING_VALUES)].to_a
  end
end

#only_numericsObject

Returns a Vector with only numerical data. Missing data is included but non-Numeric objects are excluded. Preserves index.



1341
1342
1343
1344
1345
1346
1347
1348
# File 'lib/daru/vector.rb', line 1341

def only_numerics
  numeric_indexes =
    each_with_index
    .select { |v, _i| v.is_a?(Numeric) || v.nil? }
    .map(&:last)

  self[*numeric_indexes]
end

#only_valid(as_a = :vector, _duplicate = true) ⇒ Object

Creates a new vector consisting only of non-nil data

Arguments

as an Array. Otherwise will return a Daru::Vector.

vector, setting this to false will return the same vector. Otherwise, a duplicate will be returned irrespective of presence of missing data.

Parameters:

  • as_a (Symbol) (defaults to: :vector)

    Passing :array will return only the elements

  • _duplicate (Symbol) (defaults to: true)

    In case no missing data is found in the



1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
# File 'lib/daru/vector.rb', line 1255

def only_valid as_a=:vector, _duplicate=true
  # FIXME: Now duplicate is just ignored.
  #   There are no spec that fail on this case, so I'll leave it
  #   this way for now - zverok, 2016-05-07

  new_index = @index.to_a - indexes(*Daru::MISSING_VALUES)
  new_vector = new_index.map { |idx| self[idx] }

  if as_a == :vector
    Daru::Vector.new new_vector, index: new_index, name: @name, dtype: dtype
  else
    new_vector
  end
end

#positions(*values) ⇒ Object



1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
# File 'lib/daru/vector.rb', line 1465

def positions(*values)
  case values
  when [nil]
    nil_positions
  when [Float::NAN]
    nan_positions
  when [nil, Float::NAN], [Float::NAN, nil]
    nil_positions + nan_positions
  else
    size.times.select { |i| include_with_nan? values, @data[i] }
  end
end

#recode(dt = nil, &block) ⇒ Object

Like map, but returns a Daru::Vector with the returned values.



663
664
665
666
667
# File 'lib/daru/vector.rb', line 663

def recode dt=nil, &block
  return to_enum(:recode) unless block_given?

  dup.recode! dt, &block
end

#recode!(dt = nil, &block) ⇒ Object

Destructive version of recode!



670
671
672
673
674
675
676
# File 'lib/daru/vector.rb', line 670

def recode! dt=nil, &block
  return to_enum(:recode!) unless block_given?

  @data.map!(&block).data
  @data = cast_vector_to(dt || @dtype)
  self
end

#reindex(new_index) ⇒ Object

Create a new vector with a different index, and preserve the indexing of current elements.



1130
1131
1132
# File 'lib/daru/vector.rb', line 1130

def reindex new_index
  dup.reindex!(new_index)
end

#reindex!(new_index) ⇒ Daru::Vector

Note:

Unlike #reorder! which takes positions as input it takes index as an input to reorder the vector

Sets new index for vector. Preserves index->value correspondence. Sets nil for new index keys absent from original index.

Parameters:

Returns:



1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
# File 'lib/daru/vector.rb', line 1088

def reindex! new_index
  values = []
  each_with_index do |val, i|
    values[new_index[i]] = val if new_index.include?(i)
  end
  values.fill(nil, values.size, new_index.size - values.size)

  @data = cast_vector_to @dtype, values
  @index = new_index

  update_position_cache

  self
end

#reject_values(*values) ⇒ Daru::Vector

Return a vector with specified values removed

Examples:

dv = Daru::Vector.new [1, 2, nil, Float::NAN]
dv.reject_values nil, Float::NAN
# => #<Daru::Vector(2)>
#   0   1
#   1   2

Parameters:

  • values (Array)

    values to reject from resultant vector

Returns:



1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
# File 'lib/daru/vector.rb', line 1280

def reject_values(*values)
  resultant_pos = size.times.to_a - positions(*values)
  dv = at(*resultant_pos)
  # Handle the case when number of positions is 1
  # and hence #at doesn't return a vector
  if dv.is_a?(Daru::Vector)
    dv
  else
    pos = resultant_pos.first
    at(pos..pos)
  end
end

#rename(new_name) ⇒ Object Also known as: name=

Give the vector a new name

Parameters:

  • new_name (Symbol)

    The new name.



1153
1154
1155
1156
# File 'lib/daru/vector.rb', line 1153

def rename new_name
  @name = new_name
  self
end

#reorder(order) ⇒ Object

Non-destructive version of #reorder!



1124
1125
1126
# File 'lib/daru/vector.rb', line 1124

def reorder order
  dup.reorder! order
end

#reorder!(order) ⇒ Object

Note:

Unlike #reindex! which takes index as input, it takes positions as an input to reorder the vector

Reorder the vector with given positions

Examples:

dv = Daru::Vector.new [3, 2, 1], index: ['c', 'b', 'a']
dv.reorder! [2, 1, 0]
# => #<Daru::Vector(3)>
#   a   1
#   b   2
#   c   3

Parameters:

  • order (Array)

    the order to reorder the vector with

Returns:

  • reordered vector



1115
1116
1117
1118
1119
1120
1121
# File 'lib/daru/vector.rb', line 1115

def reorder! order
  @index = @index.reorder order
  data_array = order.map { |i| @data[i] }
  @data = cast_vector_to @dtype, data_array, @nm_dtype
  update_position_cache
  self
end

#replace_nils(replacement) ⇒ Object

Non-destructive version of #replace_nils!



859
860
861
# File 'lib/daru/vector.rb', line 859

def replace_nils replacement
  dup.replace_nils!(replacement)
end

#replace_nils!(replacement) ⇒ Object

Replace all nils in the vector with the value passed as an argument. Destructive. See #replace_nils for non-destructive version

Arguments

  • replacement - The value which should replace all nils



766
767
768
769
770
771
772
# File 'lib/daru/vector.rb', line 766

def replace_nils! replacement
  indexes(*Daru::MISSING_VALUES).each do |idx|
    self[idx] = replacement
  end

  self
end

#replace_values(old_values, new_value) ⇒ Daru::Vector

Note:

It performs the replace in place.

Replaces specified values with a new value

Examples:

dv = Daru::Vector.new [1, 2, :a, :b]
dv.replace_values [:a, :b], nil
dv
# =>
# #<Daru::Vector:19903200 @name = nil @metadata = {} @size = 4 >
#     nil
#   0   1
#   1   2
#   2 nil
#   3 nil

Parameters:

  • old_values (Array)

    array of values to replace

  • new_value (object)

    new value to replace with

Returns:

  • (Daru::Vector)

    Same vector itself with values replaced with new value



1321
1322
1323
1324
1325
1326
1327
# File 'lib/daru/vector.rb', line 1321

def replace_values(old_values, new_value)
  old_values = [old_values] unless old_values.is_a? Array
  size.times do |pos|
    set_at([pos], new_value) if include_with_nan? old_values, at(pos)
  end
  self
end

#reset_index!Object



755
756
757
758
# File 'lib/daru/vector.rb', line 755

def reset_index!
  @index = Daru::Index.new(Array.new(size) { |i| i })
  self
end

#respond_to_missing?(name, include_private = false) ⇒ Boolean

Returns:

  • (Boolean)


1424
1425
1426
# File 'lib/daru/vector.rb', line 1424

def respond_to_missing?(name, include_private=false)
  name.to_s.end_with?('=') || has_index?(name) || super
end

#rolling_fillna(direction = :forward) ⇒ Object

Non-destructive version of rolling_fillna!



808
809
810
# File 'lib/daru/vector.rb', line 808

def rolling_fillna(direction=:forward)
  dup.rolling_fillna!(direction)
end

#rolling_fillna!(direction = :forward) ⇒ Object

Rolling fillna replace all Float::NAN and NIL values with the preceeding or following value

Examples:

dv = Daru::Vector.new([1, 2, 1, 4, nil, Float::NAN, 3, nil, Float::NAN])

 2.3.3 :068 > dv.rolling_fillna(:forward)
 => #<Daru::Vector(9)>
 0   1
 1   2
 2   1
 3   4
 4   4
 5   4
 6   3
 7   3
 8   3

Parameters:

  • direction (Symbol) (defaults to: :forward)

    (:forward, :backward) whether replacement value is preceeding or following



794
795
796
797
798
799
800
801
802
803
804
805
# File 'lib/daru/vector.rb', line 794

def rolling_fillna!(direction=:forward)
  enum = direction == :forward ? index : index.reverse_each
  last_valid_value = 0
  enum.each do |idx|
    if valid_value?(self[idx])
      last_valid_value = self[idx]
    else
      self[idx] = last_valid_value
    end
  end
  self
end

#save(filename) ⇒ Object

Save the vector to a file

Arguments

  • filename - Path of file where the vector is to be saved



1378
1379
1380
# File 'lib/daru/vector.rb', line 1378

def save filename
  Daru::IO.save self, filename
end

#set_at(positions, val) ⇒ Object

Change value at given positions

Examples:

dv = Daru::Vector.new 'a'..'e'
dv.set_at [0, 1], 'x'
dv
# => #<Daru::Vector(5)>
#   0   x
#   1   x
#   2   c
#   3   d
#   4   e

Parameters:

  • positions (Array<object>)

    positional values

  • val (object)

    value to assign



278
279
280
281
282
# File 'lib/daru/vector.rb', line 278

def set_at positions, val
  validate_positions(*positions)
  positions.map { |pos| @data[pos] = val }
  update_position_cache
end

#sizeObject



93
94
95
# File 'lib/daru/vector.rb', line 93

def size
  @data.size
end

#sort(opts = {}, &block) ⇒ Object

Sorts a vector according to its values. If a block is specified, the contents will be evaluated and data will be swapped whenever the block evaluates to true. Defaults to ascending order sorting. Any missing values will be put at the end of the vector. Preserves indexing. Default sort algorithm is quick sort.

Options

  • :ascending - if false, will sort in descending order. Defaults to true.

  • :type - Specify the sorting algorithm. Only supports quick_sort for now.

Usage

v = Daru::Vector.new ["My first guitar", "jazz", "guitar"]
# Say you want to sort these strings by length.
v.sort(ascending: false) { |a,b| a.length <=> b.length }


605
606
607
608
609
610
611
612
613
614
# File 'lib/daru/vector.rb', line 605

def sort opts={}, &block
  opts = {ascending: true}.merge(opts)

  vector_index = resort_index(@data.each_with_index, opts, &block)
  vector, index = vector_index.transpose

  index = @index.reorder index

  Daru::Vector.new(vector, index: index, name: @name, dtype: @dtype)
end

#sort_by_index(opts = {}) ⇒ Vector

Sorts the vector according to it’s`Index` values. Defaults to ascending order sorting.

Examples:


dv = Daru::Vector.new [11, 13, 12], index: [23, 21, 22]
# Say you want to sort index in ascending order
dv.sort_by_index(ascending: true)
#=> Daru::Vector.new [13, 12, 11], index: [21, 22, 23]
# Say you want to sort index in descending order
dv.sort_by_index(ascending: false)
#=> Daru::Vector.new [11, 12, 13], index: [23, 22, 21]

Parameters:

  • opts (Hash) (defaults to: {})

    the options for sort_by_index method.

Options Hash (opts):

  • :ascending (Boolean)

    false, will sort ‘index` in descending order.

Returns:

  • (Vector)

    new sorted ‘Vector` according to the index values.



634
635
636
637
638
639
# File 'lib/daru/vector.rb', line 634

def sort_by_index opts={}
  opts = {ascending: true}.merge(opts)
  _, new_order = resort_index(@index.each_with_index, opts).transpose

  reorder new_order
end

#sorted_data(&block) ⇒ Object

Just sort the data and get an Array in return using Enumerable#sort. Non-destructive. :nocov:



657
658
659
# File 'lib/daru/vector.rb', line 657

def sorted_data &block
  @data.to_a.sort(&block)
end

#split_by_separator(sep = ',') ⇒ Object

Returns a hash of Vectors, defined by the different values defined on the fields Example:

a=Daru::Vector.new(["a,b","c,d","a,b"])
a.split_by_separator
=>  {"a"=>#<Daru::Vector:0x7f2dbcc09d88
      @data=[1, 0, 1]>,
     "b"=>#<Daru::Vector:0x7f2dbcc09c48
      @data=[1, 1, 0]>,
    "c"=>#<Daru::Vector:0x7f2dbcc09b08
      @data=[0, 1, 1]>}


738
739
740
741
742
743
744
745
746
747
# File 'lib/daru/vector.rb', line 738

def split_by_separator sep=','
  split_data = splitted sep
  split_data
    .flatten.uniq.compact.map do |key|
    [
      key,
      Daru::Vector.new(split_data.map { |v| split_value(key, v) })
    ]
  end.to_h
end

#split_by_separator_freq(sep = ',') ⇒ Object



749
750
751
752
753
# File 'lib/daru/vector.rb', line 749

def split_by_separator_freq(sep=',')
  split_by_separator(sep).map { |k, v|
    [k, v.map(&:to_i).inject(:+)]
  }.to_h
end

#splitted(sep = ',') ⇒ Object

Return an Array with the data splitted by a separator.

a=Daru::Vector.new(["a,b","c,d","a,b","d"])
a.splitted
  =>
[["a","b"],["c","d"],["a","b"],["d"]]


713
714
715
716
717
718
719
720
721
722
723
# File 'lib/daru/vector.rb', line 713

def splitted sep=','
  @data.map do |s|
    if s.nil?
      nil
    elsif s.respond_to? :split
      s.split sep
    else
      [s]
    end
  end
end

#summary(indent_level = 0) ⇒ String

Create a summary of the Vector

Examples:

dv = Daru::Vector.new [1, 2, 3]
puts dv.summary

# =
#   n :3
#   non-missing:3
#   median: 2
#   mean: 2.0000
#   std.dev.: 1.0000
#   std.err.: 0.5774
#   skew: 0.0000
#   kurtosis: -2.3333

Parameters:

  • indent_level (Fixnum) (defaults to: 0)

    indent level

Returns:

  • (String)

    String containing the summary of the Vector



1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
# File 'lib/daru/vector.rb', line 1022

def summary(indent_level=0)
  non_missing = size - count_values(*Daru::MISSING_VALUES)
  summary = '  =' * indent_level + "= #{name}" \
            "\n  n :#{size}" \
            "\n  non-missing:#{non_missing}"
  case type
  when :object
    summary << object_summary
  when :numeric
    summary << numeric_summary
  end
  summary.split("\n").join("\n" + '  ' * indent_level)
end

#tail(q = 10) ⇒ Object



439
440
441
442
# File 'lib/daru/vector.rb', line 439

def tail q=10
  start = [size - q, 0].max
  self[start..(size-1)]
end

#to_aObject

Return an array



961
962
963
# File 'lib/daru/vector.rb', line 961

def to_a
  @data.to_a
end

#to_category(opts = {}) ⇒ Daru::Vector

Converts a non category type vector to category type vector.

Parameters:

  • opts (Hash) (defaults to: {})

    options to convert to category

Options Hash (opts):

  • :ordered (true, false)

    Specify if vector is ordered or not. If it is ordered, it can be sorted and min, max like functions would work

  • :categories (Array)

    set categories in the specified order

Returns:



1405
1406
1407
1408
1409
1410
# File 'lib/daru/vector.rb', line 1405

def to_category opts={}
  dv = Daru::Vector.new to_a, type: :category, name: @name, index: @index
  dv.ordered = opts[:ordered] || false
  dv.categories = opts[:categories] if opts[:categories]
  dv
end

#to_dfDaru::DataFrame

Returns the vector as a single-vector dataframe.

Returns:



899
900
901
# File 'lib/daru/vector.rb', line 899

def to_df
  Daru::DataFrame.new({@name => @data}, name: @name, index: @index)
end

#to_gslObject

If dtype != gsl, will convert data to GSL::Vector with to_a. Otherwise returns the stored GSL::Vector object.

Raises:

  • (NoMethodError)


946
947
948
949
950
951
952
953
# File 'lib/daru/vector.rb', line 946

def to_gsl
  raise NoMethodError, 'Install gsl-nmatrix for access to this functionality.' unless Daru.has_gsl?
  if dtype == :gsl
    @data.data
  else
    GSL::Vector.alloc(reject_values(*Daru::MISSING_VALUES).to_a)
  end
end

#to_hObject

Convert to hash (explicit). Hash keys are indexes and values are the correspoding elements



956
957
958
# File 'lib/daru/vector.rb', line 956

def to_h
  @index.map { |index| [index, self[index]] }.to_h
end

#to_html(threshold = 30) ⇒ Object

Convert to html for iruby



971
972
973
974
975
976
977
978
979
980
# File 'lib/daru/vector.rb', line 971

def to_html(threshold=30)
  table_thead = to_html_thead
  table_tbody = to_html_tbody(threshold)
  path = if index.is_a?(MultiIndex)
           File.expand_path('../iruby/templates/vector_mi.html.erb', __FILE__)
         else
           File.expand_path('../iruby/templates/vector.html.erb', __FILE__)
         end
  ERB.new(File.read(path).strip).result(binding)
end

#to_html_tbody(threshold = 30) ⇒ Object



992
993
994
995
996
997
998
999
1000
# File 'lib/daru/vector.rb', line 992

def to_html_tbody(threshold=30)
  table_tbody_path =
    if index.is_a?(MultiIndex)
      File.expand_path('../iruby/templates/vector_mi_tbody.html.erb', __FILE__)
    else
      File.expand_path('../iruby/templates/vector_tbody.html.erb', __FILE__)
    end
  ERB.new(File.read(table_tbody_path).strip).result(binding)
end

#to_html_theadObject



982
983
984
985
986
987
988
989
990
# File 'lib/daru/vector.rb', line 982

def to_html_thead
  table_thead_path =
    if index.is_a?(MultiIndex)
      File.expand_path('../iruby/templates/vector_mi_thead.html.erb', __FILE__)
    else
      File.expand_path('../iruby/templates/vector_thead.html.erb', __FILE__)
    end
  ERB.new(File.read(table_thead_path).strip).result(binding)
end

#to_jsonObject

Convert the hash from to_h to json



966
967
968
# File 'lib/daru/vector.rb', line 966

def to_json(*)
  to_h.to_json
end

#to_matrix(axis = :horizontal) ⇒ Object

Convert Vector to a horizontal or vertical Ruby Matrix.

Arguments

  • axis - Specify whether you want a :horizontal or a :vertical matrix.



908
909
910
911
912
913
914
915
916
# File 'lib/daru/vector.rb', line 908

def to_matrix axis=:horizontal
  if axis == :horizontal
    Matrix[to_a]
  elsif axis == :vertical
    Matrix.columns([to_a])
  else
    raise ArgumentError, "axis should be either :horizontal or :vertical, not #{axis}"
  end
end

#to_nmatrix(axis = :horizontal) ⇒ NMatrix

Convert vector to nmatrix object

Examples:

dv = Daru::Vector.new [1, 2, 3]
dv.to_nmatrix
# =>
# [
#   [1, 2, 3] ]

Parameters:

  • axis (Symbol) (defaults to: :horizontal)

    :horizontal or :vertical

Returns:

  • (NMatrix)

    NMatrix object containing all values of the vector



927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
# File 'lib/daru/vector.rb', line 927

def to_nmatrix axis=:horizontal
  unless numeric? && !include?(nil)
    raise ArgumentError, 'Can not convert to nmatrix'\
      'because the vector is numeric'
  end

  case axis
  when :horizontal
    NMatrix.new [1, size], to_a
  when :vertical
    NMatrix.new [size, 1], to_a
  else
    raise ArgumentError, 'Invalid axis specified. '\
      'Valid axis are :horizontal and :vertical'
  end
end

#to_REXPObject

rubocop:disable Style/MethodName



17
18
19
# File 'lib/daru/extensions/rserve.rb', line 17

def to_REXP # rubocop:disable Style/MethodName
  Rserve::REXP::Wrapper.wrap(to_a)
end

#to_sObject



1002
1003
1004
# File 'lib/daru/vector.rb', line 1002

def to_s
  "#<#{self.class}#{': ' + @name.to_s if @name}(#{size})#{':category' if category?}>"
end

#typeObject

The type of data contained in the vector. Can be :object or :numeric. If the underlying dtype is an NMatrix, this method will return the data type of the NMatrix object.

Running through the data to figure out the kind of data is delayed to the last possible moment.



539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# File 'lib/daru/vector.rb', line 539

def type
  return @data.nm_dtype if dtype == :nmatrix

  if @type.nil? || @possibly_changed_type
    @type = :numeric
    each do |e|
      next if e.nil? || e.is_a?(Numeric)
      @type = :object
      break
    end
    @possibly_changed_type = false
  end

  @type
end

#uniqObject

Keep only unique elements of the vector alongwith their indexes.



574
575
576
577
578
579
# File 'lib/daru/vector.rb', line 574

def uniq
  uniq_vector = @data.uniq
  new_index   = uniq_vector.map { |element| index_of(element) }

  Daru::Vector.new uniq_vector, name: @name, index: new_index, dtype: @dtype
end

#verifyObject

Reports all values that doesn’t comply with a condition. Returns a hash with the index of data and the invalid data.



701
702
703
704
705
706
# File 'lib/daru/vector.rb', line 701

def verify
  (0...size)
    .map { |i| [i, @data[i]] }
    .reject { |_i, val| yield(val) }
    .to_h
end

#where(bool_array) ⇒ Object

Return a new vector based on the contents of a boolean array. Use with the comparator methods to obtain meaningful results. See this notebook for a good overview of using #where.

Examples:

Usage of #where.

vector = Daru::Vector.new([2,4,5,51,5,16,2,5,3,2,1,5,2,5,2,1,56,234,6,21])

# Simple logic statement passed to #where.
vector.where(vector.eq(5).or(vector.eq(1)))
# =>
##<Daru::Vector:77626210 @name = nil @size = 7 >
#    nil
#  2   5
#  4   5
#  7   5
# 10   1
# 11   5
# 13   5
# 15   1

# A somewhat more complex logic statement
vector.where((vector.eq(5) | vector.lteq(1)) & vector.in([4,5,1]))
#=>
##<Daru::Vector:81072310 @name = nil @size = 7 >
#    nil
#  2   5
#  4   5
#  7   5
# 10   1
# 11   5
# 13   5
# 15   1

Parameters:

  • bool_array (Daru::Core::Query::BoolArray, Array<TrueClass, FalseClass>)

    The collection containing the true of false values. Each element in the Vector corresponding to a ‘true` in the bool_arry will be returned alongwith it’s index.



431
432
433
# File 'lib/daru/vector.rb', line 431

def where bool_array
  Daru::Core::Query.vector_where self, bool_array
end