Class: Daru::Vector
- Extended by:
- Gem::Deprecate
- Includes:
- Maths::Arithmetic::Vector, Maths::Statistics::Vector, Enumerable
- Defined in:
- lib/daru/vector.rb,
lib/daru/extensions/rserve.rb
Overview
rubocop:disable Metrics/ClassLength
Constant Summary collapse
- DEFAULT_SORTER =
lambda { |(lv, li), (rv, ri)| case when lv.nil? && rv.nil? li <=> ri when lv.nil? -1 when rv.nil? 1 else lv <=> rv end }
- DATE_REGEXP =
/^(\d{2}-\d{2}-\d{4}|\d{4}-\d{2}-\d{2})$/
Instance Attribute Summary collapse
-
#data ⇒ Object
readonly
Store vector data in an array.
-
#dtype ⇒ Object
readonly
The underlying dtype of the Vector.
-
#index ⇒ Object
The row index.
-
#labels ⇒ Object
Store a hash of labels for values.
-
#missing_positions ⇒ Object
readonly
An Array or the positions in the vector that are being treated as ‘missing’.
-
#name ⇒ Object
readonly
The name of the Daru::Vector.
-
#nm_dtype ⇒ Object
readonly
If the dtype is :nmatrix, this attribute represents the data type of the underlying NMatrix object.
-
#plotting_library ⇒ Object
Ploting library being used for this vector.
Class Method Summary collapse
-
.[](*indexes) ⇒ Object
Create a vector using (almost) any object * Array: flattened * Range: transformed using to_a * Daru::Vector * Numeric and string values.
-
._load(data) ⇒ Object
:nodoc:.
- .coerce(data, options = {}) ⇒ Object
-
.new_with_size(n, opts = {}, &block) ⇒ Object
Create a new vector by specifying the size and an optional value and block to generate values.
Instance Method Summary collapse
-
#==(other) ⇒ Object
Two vectors are equal if they have the exact same index values corresponding with the exact same elements.
-
#[](*input_indexes) ⇒ Object
Get one or more elements with specified index or a range.
-
#[]=(*indexes, val) ⇒ Object
Just like in Hashes, you can specify the index label of the Daru::Vector and assign an element an that place in the Daru::Vector.
-
#_dump ⇒ Object
:nodoc:.
- #all?(&block) ⇒ Boolean
- #any?(&block) ⇒ Boolean
- #apply_method(method, keys: nil, by_position: true) ⇒ Object (also: #apply_method_on_sub_vector)
-
#at(*positions) ⇒ object
Returns vector of values given positional values.
-
#bootstrap(estimators, nr, s = nil) ⇒ Object
Bootstrap Generate
nr
resamples (with replacement) of sizes
from vector, computing each estimate fromestimators
over each resample. -
#cast(opts = {}) ⇒ Object
Cast a vector to a new data type.
-
#category? ⇒ true, false
Tells if vector is categorical or not.
-
#clone_structure ⇒ Object
Copies the structure of the vector (i.e the index, size, etc.) and fills all all values with nils.
-
#concat(element, index) ⇒ Object
(also: #push, #<<)
Append an element to the vector by specifying the element and index.
-
#count_values(*values) ⇒ Integer
Count the number of values specified.
-
#cut(partitions, opts = {}) ⇒ Daru::Vector
Partition a numeric variable into categories.
-
#daru_vector ⇒ Object
(also: #dv)
:nocov:.
-
#db_type ⇒ Object
Returns the database type for the vector, according to its content.
-
#delete(element) ⇒ Object
Delete an element by value.
-
#delete_at(index) ⇒ Object
Delete element by index.
-
#delete_if ⇒ Object
Delete an element if block returns true.
- #detach_index ⇒ Object
-
#dup ⇒ Daru::Vector
Duplicated a vector.
- #each(&block) ⇒ Object
- #each_index(&block) ⇒ Object
- #each_with_index(&block) ⇒ Object
- #empty? ⇒ Boolean
- #get_sub_vector(keys, by_position: true) ⇒ Daru::Vector
- #group_by(*args) ⇒ Object
-
#has_index?(index) ⇒ Boolean
Returns true if an index exists.
-
#has_missing_data? ⇒ Boolean
(also: #flawed?)
Reports whether missing data is present in the Vector.
- #head(q = 10) ⇒ Object
-
#in(other) ⇒ Object
Comparator for checking if any of the elements in other exist in self.
-
#include_values?(*values) ⇒ true, false
Check if any one of mentioned values occur in the vector.
-
#index_of(element) ⇒ Object
Get index of element.
-
#indexes(*values) ⇒ Array
Return indexes of values specified.
-
#initialize(source, opts = {}) ⇒ Vector
constructor
Create a Vector object.
-
#inspect(spacing = 20, threshold = 15) ⇒ Object
Over rides original inspect for pretty printing in irb.
-
#is_values(*values) ⇒ Daru::Vector
Return vector of booleans with value at ith position is either true or false depending upon whether value at position i is equal to any of the values passed in the argument or not.
-
#jackknife(estimators, k = 1) ⇒ Object
Jacknife Returns a dataset with jacknife delete-
k
estimators
estimators
could be: a) Hash with variable names as keys and lambdas as values a.jacknife(:log_s2=>lambda {|v| Math.log(v.variance)}) b) Array with method names to jacknife a.jacknife([:mean, :sd]) c) A single method to jacknife a.jacknife(:mean)k
represent the block size for block jacknife. -
#keep_if ⇒ Object
Keep an element if block returns true.
-
#lag(k = 1) ⇒ Daru::Vector
Lags the series by ‘k` periods.
- #map!(&block) ⇒ Object
- #method_missing(name, *args, &block) ⇒ Object
-
#n_valid ⇒ Object
number of non-missing elements.
- #numeric? ⇒ Boolean
-
#numeric_summary ⇒ String
Displays summary for an numeric type Vector.
- #object? ⇒ Boolean
-
#object_summary ⇒ String
Displays summary for an object type Vector.
-
#only_missing(as_a = :vector) ⇒ Object
Returns a Vector containing only missing data (preserves indexes).
-
#only_numerics ⇒ Object
Returns a Vector with only numerical data.
-
#only_valid(as_a = :vector, _duplicate = true) ⇒ Object
Creates a new vector consisting only of non-nil data.
- #positions(*values) ⇒ Object
-
#recode(dt = nil, &block) ⇒ Object
Like map, but returns a Daru::Vector with the returned values.
-
#recode!(dt = nil, &block) ⇒ Object
Destructive version of recode!.
-
#reindex(new_index) ⇒ Object
Create a new vector with a different index, and preserve the indexing of current elements.
-
#reindex!(new_index) ⇒ Daru::Vector
Sets new index for vector.
-
#reject_values(*values) ⇒ Daru::Vector
Return a vector with specified values removed.
-
#rename(new_name) ⇒ Object
(also: #name=)
Give the vector a new name.
-
#reorder(order) ⇒ Object
Non-destructive version of #reorder!.
-
#reorder!(order) ⇒ Object
Reorder the vector with given positions.
-
#replace_nils(replacement) ⇒ Object
Non-destructive version of #replace_nils!.
-
#replace_nils!(replacement) ⇒ Object
Replace all nils in the vector with the value passed as an argument.
-
#replace_values(old_values, new_value) ⇒ Daru::Vector
Replaces specified values with a new value.
- #reset_index! ⇒ Object
- #respond_to_missing?(name, include_private = false) ⇒ Boolean
-
#rolling_fillna(direction = :forward) ⇒ Object
Non-destructive version of rolling_fillna!.
-
#rolling_fillna!(direction = :forward) ⇒ Object
Rolling fillna replace all Float::NAN and NIL values with the preceeding or following value.
-
#save(filename) ⇒ Object
Save the vector to a file.
-
#set_at(positions, val) ⇒ Object
Change value at given positions.
- #size ⇒ Object
-
#sort(opts = {}, &block) ⇒ Object
Sorts a vector according to its values.
-
#sort_by_index(opts = {}) ⇒ Vector
Sorts the vector according to it’s`Index` values.
-
#sorted_data(&block) ⇒ Object
Just sort the data and get an Array in return using Enumerable#sort.
-
#split_by_separator(sep = ',') ⇒ Object
Returns a hash of Vectors, defined by the different values defined on the fields Example:.
- #split_by_separator_freq(sep = ',') ⇒ Object
-
#splitted(sep = ',') ⇒ Object
Return an Array with the data splitted by a separator.
-
#summary(indent_level = 0) ⇒ String
Create a summary of the Vector.
- #tail(q = 10) ⇒ Object
-
#to_a ⇒ Object
Return an array.
-
#to_category(opts = {}) ⇒ Daru::Vector
Converts a non category type vector to category type vector.
-
#to_df ⇒ Daru::DataFrame
The vector as a single-vector dataframe.
-
#to_gsl ⇒ Object
If dtype != gsl, will convert data to GSL::Vector with to_a.
-
#to_h ⇒ Object
Convert to hash (explicit).
-
#to_html(threshold = 30) ⇒ Object
Convert to html for iruby.
- #to_html_tbody(threshold = 30) ⇒ Object
- #to_html_thead ⇒ Object
-
#to_json ⇒ Object
Convert the hash from to_h to json.
-
#to_matrix(axis = :horizontal) ⇒ Object
Convert Vector to a horizontal or vertical Ruby Matrix.
-
#to_nmatrix(axis = :horizontal) ⇒ NMatrix
Convert vector to nmatrix object.
-
#to_REXP ⇒ Object
rubocop:disable Style/MethodName.
- #to_s ⇒ Object
-
#type ⇒ Object
The type of data contained in the vector.
-
#uniq ⇒ Object
Keep only unique elements of the vector alongwith their indexes.
-
#verify ⇒ Object
Reports all values that doesn’t comply with a condition.
-
#where(bool_array) ⇒ Object
Return a new vector based on the contents of a boolean array.
Methods included from Maths::Statistics::Vector
#acf, #acvf, #average_deviation_population, #box_cox_transformation, #center, #coefficient_of_variation, #count, #covariance_population, #covariance_sample, #cumsum, #describe, #dichotomize, #diff, #ema, #emsd, #emv, #factors, #frequencies, #index_of_max, #index_of_max_by, #index_of_min, #index_of_min_by, #kurtosis, #macd, #max, #max_by, #max_index, #mean, #median, #median_absolute_deviation, #min, #min_by, #mode, #percent_change, #percentile, #product, #proportion, #proportions, #range, #ranked, #rolling, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_sum, #rolling_variance, #sample_with_replacement, #sample_without_replacement, #skew, #standard_deviation_population, #standard_deviation_sample, #standard_error, #standardize, #sum, #sum_of_squared_deviation, #sum_of_squares, #value_counts, #variance_population, #variance_sample, #vector_centered_compute, #vector_percentile, #vector_standardized_compute
Methods included from Maths::Arithmetic::Vector
#%, #*, #**, #+, #-, #/, #abs, #add, #exp, #round, #sqrt
Constructor Details
#initialize(source, opts = {}) ⇒ Vector
Create a Vector object.
Arguments
Hash. If Array, a numeric index will be created if not supplied in the options. Specifying more index elements than actual values in source will insert nil into the surplus index elements. When a Hash is specified, the keys of the Hash are taken as the index elements and the corresponding values as the values that populate the vector.
Options
-
:name
- Name of the vector -
:index
- Index of the vector -
:dtype
- The underlying data type. Can be :array, :nmatrix or :gsl.
Default :array.
-
:nm_dtype
- For NMatrix, the data type of the numbers. See the NMatrix docs for
further information on supported data type.
-
:missing_values
- An Array of the values that are to be treated as ‘missing’.
nil is the default missing value.
Usage
vecarr = Daru::Vector.new [1,2,3,4], index: [:a, :e, :i, :o]
vechsh = Daru::Vector.new({a: 1, e: 2, i: 3, o: 4})
189 190 191 192 193 194 195 196 197 198 |
# File 'lib/daru/vector.rb', line 189 def initialize source, opts={} if opts[:type] == :category # Initialize category type vector extend Daru::Category initialize_category source, opts else # Initialize non-category type vector initialize_vector source, opts end end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(name, *args, &block) ⇒ Object
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 |
# File 'lib/daru/vector.rb', line 1412 def method_missing(name, *args, &block) # FIXME: it is shamefully fragile. Should be either made stronger # (string/symbol dychotomy, informative errors) or removed totally. - zverok if name =~ /(.+)\=/ self[$1.to_sym] = args[0] elsif has_index?(name) self[name] else super end end |
Instance Attribute Details
#data ⇒ Object (readonly)
Store vector data in an array
153 154 155 |
# File 'lib/daru/vector.rb', line 153 def data @data end |
#dtype ⇒ Object (readonly)
The underlying dtype of the Vector. Can be either :array, :nmatrix or :gsl.
141 142 143 |
# File 'lib/daru/vector.rb', line 141 def dtype @dtype end |
#index ⇒ Object
The row index. Can be either Daru::Index or Daru::MultiIndex.
139 140 141 |
# File 'lib/daru/vector.rb', line 139 def index @index end |
#labels ⇒ Object
Store a hash of labels for values. Supplementary only. Recommend using index for proper usage.
151 152 153 |
# File 'lib/daru/vector.rb', line 151 def labels @labels end |
#missing_positions ⇒ Object (readonly)
An Array or the positions in the vector that are being treated as ‘missing’.
147 148 149 |
# File 'lib/daru/vector.rb', line 147 def missing_positions @missing_positions end |
#name ⇒ Object (readonly)
The name of the Daru::Vector. String.
137 138 139 |
# File 'lib/daru/vector.rb', line 137 def name @name end |
#nm_dtype ⇒ Object (readonly)
If the dtype is :nmatrix, this attribute represents the data type of the underlying NMatrix object. See NMatrix docs for more details on NMatrix data types.
145 146 147 |
# File 'lib/daru/vector.rb', line 145 def nm_dtype @nm_dtype end |
#plotting_library ⇒ Object
Ploting library being used for this vector
155 156 157 |
# File 'lib/daru/vector.rb', line 155 def plotting_library @plotting_library end |
Class Method Details
.[](*indexes) ⇒ Object
Create a vector using (almost) any object
-
Array: flattened
-
Range: transformed using to_a
-
Daru::Vector
-
Numeric and string values
Description
The ‘Vector.[]` class method creates a vector from almost any object that has a `#to_a` method defined on it. It is similar to R’s ‘c` method.
Usage
a = Daru::Vector[1,2,3,4,6..10]
#=>
# <Daru::Vector:99448510 @name = nil @size = 9 >
# nil
# 0 1
# 1 2
# 2 3
# 3 4
# 4 6
# 5 7
# 6 8
# 7 9
# 8 10
66 67 68 69 70 71 |
# File 'lib/daru/vector.rb', line 66 def [](*indexes) values = indexes.map do |a| a.respond_to?(:to_a) ? a.to_a : a end.flatten Daru::Vector.new(values) end |
._load(data) ⇒ Object
:nodoc:
73 74 75 76 77 78 79 |
# File 'lib/daru/vector.rb', line 73 def _load(data) # :nodoc: h = Marshal.load(data) Daru::Vector.new(h[:data], index: h[:index], name: h[:name], dtype: h[:dtype], missing_values: h[:missing_values]) end |
.coerce(data, options = {}) ⇒ Object
81 82 83 84 85 86 87 88 89 90 |
# File 'lib/daru/vector.rb', line 81 def coerce(data, ={}) case data when Daru::Vector data when Array, Hash new(data, ) else raise ArgumentError, "Can't coerce #{data.class} to #{self}" end end |
.new_with_size(n, opts = {}, &block) ⇒ Object
Create a new vector by specifying the size and an optional value and block to generate values.
Description
The new_with_size class method lets you create a Daru::Vector by specifying the size as the argument. The optional block, if supplied, is run once for populating each element in the Vector.
The result of each run of the block is the value that is ultimately assigned to that position in the Vector.
Options
:value All the rest like .new
33 34 35 36 37 |
# File 'lib/daru/vector.rb', line 33 def new_with_size n, opts={}, &block value = opts.delete :value block ||= ->(_) { value } Daru::Vector.new Array.new(n, &block), opts end |
Instance Method Details
#==(other) ⇒ Object
Two vectors are equal if they have the exact same index values corresponding with the exact same elements. Name is ignored.
309 310 311 312 313 314 315 316 317 |
# File 'lib/daru/vector.rb', line 309 def == other case other when Daru::Vector @index == other.index && size == other.size && @index.all? { |index| self[index] == other[index] } else super end end |
#[](*input_indexes) ⇒ Object
Get one or more elements with specified index or a range.
Usage
# For vectors employing single layer Index
v[:one, :two] # => Daru::Vector with indexes :one and :two
v[:one] # => Single element
v[:one..:three] # => Daru::Vector with indexes :one, :two and :three
# For vectors employing hierarchial multi index
226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# File 'lib/daru/vector.rb', line 226 def [](*input_indexes) # Get array of positions indexes positions = @index.pos(*input_indexes) # If one object is asked return it return @data[positions] if positions.is_a? Numeric # Form a new Vector using positional indexes Daru::Vector.new( positions.map { |loc| @data[loc] }, name: @name, index: @index.subset(*input_indexes), dtype: @dtype ) end |
#[]=(*indexes, val) ⇒ Object
297 298 299 300 301 302 303 304 305 |
# File 'lib/daru/vector.rb', line 297 def []=(*indexes, val) cast(dtype: :array) if val.nil? && dtype != :array guard_type_check(val) modify_vector(indexes, val) update_position_cache end |
#_dump ⇒ Object
:nodoc:
1382 1383 1384 1385 1386 1387 1388 1389 |
# File 'lib/daru/vector.rb', line 1382 def _dump(*) # :nodoc: Marshal.dump( data: @data.to_a, dtype: @dtype, name: @name, index: @index ) end |
#all?(&block) ⇒ Boolean
585 586 587 |
# File 'lib/daru/vector.rb', line 585 def all? &block @data.data.all?(&block) end |
#any?(&block) ⇒ Boolean
581 582 583 |
# File 'lib/daru/vector.rb', line 581 def any? &block @data.data.any?(&block) end |
#apply_method(method, keys: nil, by_position: true) ⇒ Object Also known as: apply_method_on_sub_vector
125 126 127 128 129 130 131 132 133 |
# File 'lib/daru/vector.rb', line 125 def apply_method(method, keys: nil, by_position: true) vect = keys ? get_sub_vector(keys, by_position: by_position) : self case method when Symbol then vect.send(method) when Proc then method.call(vect) else raise end end |
#at(*positions) ⇒ object
Returns vector of values given positional values
251 252 253 254 255 256 257 258 259 260 261 262 263 |
# File 'lib/daru/vector.rb', line 251 def at *positions # to be used to form index original_positions = positions positions = coerce_positions(*positions) validate_positions(*positions) if positions.is_a? Integer @data[positions] else values = positions.map { |pos| @data[pos] } Daru::Vector.new values, index: @index.at(*original_positions), dtype: dtype end end |
#bootstrap(estimators, nr, s = nil) ⇒ Object
Bootstrap
Generate nr
resamples (with replacement) of size s
from vector, computing each estimate from estimators
over each resample. estimators
could be a) Hash with variable names as keys and lambdas as values
a.bootstrap(:log_s2=>lambda {|v| Math.log(v.variance)},1000)
b) Array with names of method to bootstrap
a.bootstrap([:mean, :sd],1000)
c) A single method to bootstrap
a.jacknife(:mean, 1000)
If s is nil, is set to vector size by default.
Returns a DataFrame where each vector is a vector of length nr
containing the computed resample estimates.
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 |
# File 'lib/daru/vector.rb', line 1181 def bootstrap(estimators, nr, s=nil) s ||= size h_est, es, bss = prepare_bootstrap(estimators) nr.times do bs = sample_with_replacement(s) es.each do |estimator| bss[estimator].push(h_est[estimator].call(bs)) end end es.each do |est| bss[est] = Daru::Vector.new bss[est] end Daru::DataFrame.new bss end |
#cast(opts = {}) ⇒ Object
Cast a vector to a new data type.
Options
-
:dtype
- :array for Ruby Array. :nmatrix for NMatrix.
513 514 515 516 517 518 |
# File 'lib/daru/vector.rb', line 513 def cast opts={} dt = opts[:dtype] raise ArgumentError, "Unsupported dtype #{opts[:dtype]}" unless %i[array nmatrix gsl].include?(dt) @data = cast_vector_to dt unless @dtype == dt end |
#category? ⇒ true, false
Tells if vector is categorical or not.
561 562 563 |
# File 'lib/daru/vector.rb', line 561 def category? type == :category end |
#clone_structure ⇒ Object
Copies the structure of the vector (i.e the index, size, etc.) and fills all all values with nils.
1369 1370 1371 |
# File 'lib/daru/vector.rb', line 1369 def clone_structure Daru::Vector.new(([nil]*size), name: @name, index: @index.dup) end |
#concat(element, index) ⇒ Object Also known as: push, <<
Append an element to the vector by specifying the element and index
497 498 499 500 501 502 503 504 |
# File 'lib/daru/vector.rb', line 497 def concat element, index raise IndexError, 'Expected new unique index' if @index.include? index @index |= [index] @data[@index[index]] = element update_position_cache end |
#count_values(*values) ⇒ Integer
Count the number of values specified
876 877 878 |
# File 'lib/daru/vector.rb', line 876 def count_values(*values) positions(*values).size end |
#cut(partitions, opts = {}) ⇒ Daru::Vector
Partition a numeric variable into categories.
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 |
# File 'lib/daru/vector.rb', line 1446 def cut partitions, opts={} close_at, labels = opts[:close_at] || :right, opts[:labels] partitions = partitions.to_a values = to_a.map { |val| cut_find_category partitions, val, close_at } cats = cut_categories(partitions, close_at) dv = Daru::Vector.new values, index: @index, type: :category, categories: cats # Rename categories if new labels provided if labels dv.rename_categories Hash[cats.zip(labels)] else dv end end |
#daru_vector ⇒ Object Also known as: dv
:nocov:
1392 1393 1394 |
# File 'lib/daru/vector.rb', line 1392 def daru_vector(*) self end |
#db_type ⇒ Object
Returns the database type for the vector, according to its content
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 |
# File 'lib/daru/vector.rb', line 1353 def db_type # first, detect any character not number case when @data.any? { |v| v.to_s =~ DATE_REGEXP } 'DATE' when @data.any? { |v| v.to_s =~ /[^0-9e.-]/ } 'VARCHAR (255)' when @data.any? { |v| v.to_s =~ /\./ } 'DOUBLE' else 'INTEGER' end end |
#delete(element) ⇒ Object
Delete an element by value
521 522 523 |
# File 'lib/daru/vector.rb', line 521 def delete element delete_at index_of(element) end |
#delete_at(index) ⇒ Object
Delete element by index
526 527 528 529 530 531 |
# File 'lib/daru/vector.rb', line 526 def delete_at index @data.delete_at @index[index] @index = Daru::Index.new(@index.to_a - [index]) update_position_cache end |
#delete_if ⇒ Object
Delete an element if block returns true. Destructive.
679 680 681 682 683 684 685 686 687 688 689 690 |
# File 'lib/daru/vector.rb', line 679 def delete_if return to_enum(:delete_if) unless block_given? keep_e, keep_i = each_with_index.reject { |n, _i| yield(n) }.transpose @data = cast_vector_to @dtype, keep_e @index = Daru::Index.new(keep_i) update_position_cache self end |
#detach_index ⇒ Object
851 852 853 854 855 856 |
# File 'lib/daru/vector.rb', line 851 def detach_index Daru::DataFrame.new( index: @index.to_a, values: @data.to_a ) end |
#dup ⇒ Daru::Vector
Duplicated a vector
1162 1163 1164 |
# File 'lib/daru/vector.rb', line 1162 def dup Daru::Vector.new @data.dup, name: @name, index: @index.dup end |
#each(&block) ⇒ Object
97 98 99 100 101 102 |
# File 'lib/daru/vector.rb', line 97 def each(&block) return to_enum(:each) unless block_given? @data.each(&block) self end |
#each_index(&block) ⇒ Object
104 105 106 107 108 109 |
# File 'lib/daru/vector.rb', line 104 def each_index(&block) return to_enum(:each_index) unless block_given? @index.each(&block) self end |
#each_with_index(&block) ⇒ Object
111 112 113 114 115 116 117 |
# File 'lib/daru/vector.rb', line 111 def each_with_index &block return to_enum(:each_with_index) unless block_given? @data.to_a.zip(@index.to_a).each(&block) self end |
#empty? ⇒ Boolean
444 445 446 |
# File 'lib/daru/vector.rb', line 444 def empty? @index.empty? end |
#get_sub_vector(keys, by_position: true) ⇒ Daru::Vector
887 888 889 890 891 892 893 894 895 896 |
# File 'lib/daru/vector.rb', line 887 def get_sub_vector(keys, by_position: true) return Daru::Vector.new([]) if keys == [] keys = @index.pos(*keys) unless by_position sub_vect = at(*keys) sub_vect = Daru::Vector.new([sub_vect]) unless sub_vect.is_a?(Daru::Vector) sub_vect end |
#group_by(*args) ⇒ Object
1478 1479 1480 |
# File 'lib/daru/vector.rb', line 1478 def group_by(*args) to_df.group_by(*args) end |
#has_index?(index) ⇒ Boolean
Returns true if an index exists
881 882 883 |
# File 'lib/daru/vector.rb', line 881 def has_index? index @index.include? index end |
#has_missing_data? ⇒ Boolean Also known as: flawed?
Reports whether missing data is present in the Vector.
457 458 459 |
# File 'lib/daru/vector.rb', line 457 def has_missing_data? !indexes(*Daru::MISSING_VALUES).empty? end |
#head(q = 10) ⇒ Object
435 436 437 |
# File 'lib/daru/vector.rb', line 435 def head q=10 self[0..(q-1)] end |
#in(other) ⇒ Object
Comparator for checking if any of the elements in other exist in self.
386 387 388 389 390 391 392 393 |
# File 'lib/daru/vector.rb', line 386 def in other other = Hash[other.zip(Array.new(other.size, 0))] Daru::Core::Query::BoolArray.new( @data.each_with_object([]) do |d, memo| memo << (other.key?(d) ? true : false) end ) end |
#include_values?(*values) ⇒ true, false
Check if any one of mentioned values occur in the vector
472 473 474 |
# File 'lib/daru/vector.rb', line 472 def include_values?(*values) values.any? { |v| include_with_nan? @data, v } end |
#index_of(element) ⇒ Object
Get index of element
566 567 568 569 570 571 |
# File 'lib/daru/vector.rb', line 566 def index_of element case dtype when :array then @index.key(@data.index { |x| x.eql? element }) else @index.key @data.index(element) end end |
#indexes(*values) ⇒ Array
Return indexes of values specified
1300 1301 1302 |
# File 'lib/daru/vector.rb', line 1300 def indexes(*values) index.to_a.values_at(*positions(*values)) end |
#inspect(spacing = 20, threshold = 15) ⇒ Object
Over rides original inspect for pretty printing in irb
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 |
# File 'lib/daru/vector.rb', line 1069 def inspect spacing=20, threshold=15 row_headers = index.is_a?(MultiIndex) ? index.sparse_tuples : index.to_a "#<#{self.class}(#{size})#{':category' if category?}>\n" + Formatters::Table.format( to_a.lazy.map { |v| [v] }, headers: @name && [@name], row_headers: row_headers, threshold: threshold, spacing: spacing ) end |
#is_values(*values) ⇒ Daru::Vector
Do not use it to check for Float::NAN as Float::NAN == Float::NAN is false
Return vector of booleans with value at ith position is either true or false depending upon whether value at position i is equal to any of the values passed in the argument or not
492 493 494 |
# File 'lib/daru/vector.rb', line 492 def is_values(*values) Daru::Vector.new values.map { |v| eq(v) }.inject(:|) end |
#jackknife(estimators, k = 1) ⇒ Object
Jacknife
Returns a dataset with jacknife delete-k
estimators
estimators
could be: a) Hash with variable names as keys and lambdas as values
a.jacknife(:log_s2=>lambda {|v| Math.log(v.variance)})
b) Array with method names to jacknife
a.jacknife([:mean, :sd])
c) A single method to jacknife
a.jacknife(:mean)
k
represent the block size for block jacknife. By default is set to 1, for classic delete-one jacknife.
Returns a dataset where each vector is an vector of length cases
/k
containing the computed jacknife estimates.
Reference:
-
Sawyer, S. (2005). Resampling Data: Using a Statistical Jacknife.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 |
# File 'lib/daru/vector.rb', line 1216 def jackknife(estimators, k=1) # rubocop:disable Metrics/AbcSize,Metrics/MethodLength raise "n should be divisible by k:#{k}" unless (size % k).zero? nb = (size / k).to_i h_est, es, ps = prepare_bootstrap(estimators) est_n = es.map { |v| [v, h_est[v].call(self)] }.to_h nb.times do |i| other = @data.dup other.slice!(i*k, k) other = Daru::Vector.new other es.each do |estimator| # Add pseudovalue ps[estimator].push( nb * est_n[estimator] - (nb-1) * h_est[estimator].call(other) ) end end es.each do |est| ps[est] = Daru::Vector.new ps[est] end Daru::DataFrame.new ps end |
#keep_if ⇒ Object
Keep an element if block returns true. Destructive.
693 694 695 696 697 |
# File 'lib/daru/vector.rb', line 693 def keep_if return to_enum(:keep_if) unless block_given? delete_if { |val| !yield(val) } end |
#lag(k = 1) ⇒ Daru::Vector
Lags the series by ‘k` periods.
Lags the series by ‘k` periods, “shifting” data and inserting `nil`s from beginning or end of a vector, while preserving original vector’s size.
‘k` can be positive or negative integer. If `k` is positive, `nil`s are inserted at the beginning of the vector, otherwise they are inserted at the end.
839 840 841 842 843 844 845 846 847 848 849 |
# File 'lib/daru/vector.rb', line 839 def lag k=1 case k when 0 then dup when 1...size copy([nil] * k + data.to_a) when -size..-1 copy(data.to_a[k.abs...size]) else copy([]) end end |
#map!(&block) ⇒ Object
119 120 121 122 123 |
# File 'lib/daru/vector.rb', line 119 def map!(&block) return to_enum(:map!) unless block_given? @data.map!(&block) self end |
#n_valid ⇒ Object
number of non-missing elements
864 865 866 |
# File 'lib/daru/vector.rb', line 864 def n_valid size - indexes(*Daru::MISSING_VALUES).size end |
#numeric? ⇒ Boolean
448 449 450 |
# File 'lib/daru/vector.rb', line 448 def numeric? type == :numeric end |
#numeric_summary ⇒ String
Displays summary for an numeric type Vector
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 |
# File 'lib/daru/vector.rb', line 1053 def numeric_summary summary = "\n median: #{median}" + "\n mean: %0.4f" % mean if sd summary << "\n std.dev.: %0.4f" % sd + "\n std.err.: %0.4f" % se end if count_values(*Daru::MISSING_VALUES).zero? summary << "\n skew: %0.4f" % skew + "\n kurtosis: %0.4f" % kurtosis end summary end |
#object? ⇒ Boolean
452 453 454 |
# File 'lib/daru/vector.rb', line 452 def object? type == :object end |
#object_summary ⇒ String
Displays summary for an object type Vector
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# File 'lib/daru/vector.rb', line 1038 def object_summary nval = count_values(*Daru::MISSING_VALUES) summary = "\n factors: #{factors.to_a.join(',')}" \ "\n mode: #{mode.to_a.join(',')}" \ "\n Distribution\n" data = frequencies.sort.each_with_index.map do |v, k| [k, v, '%0.2f%%' % ((nval.zero? ? 1 : v.quo(nval))*100)] end summary + Formatters::Table.format(data) end |
#only_missing(as_a = :vector) ⇒ Object
Returns a Vector containing only missing data (preserves indexes).
1330 1331 1332 1333 1334 1335 1336 |
# File 'lib/daru/vector.rb', line 1330 def only_missing as_a=:vector if as_a == :vector self[*indexes(*Daru::MISSING_VALUES)] elsif as_a == :array self[*indexes(*Daru::MISSING_VALUES)].to_a end end |
#only_numerics ⇒ Object
Returns a Vector with only numerical data. Missing data is included but non-Numeric objects are excluded. Preserves index.
1341 1342 1343 1344 1345 1346 1347 1348 |
# File 'lib/daru/vector.rb', line 1341 def only_numerics numeric_indexes = each_with_index .select { |v, _i| v.is_a?(Numeric) || v.nil? } .map(&:last) self[*numeric_indexes] end |
#only_valid(as_a = :vector, _duplicate = true) ⇒ Object
Creates a new vector consisting only of non-nil data
Arguments
as an Array. Otherwise will return a Daru::Vector.
vector, setting this to false will return the same vector. Otherwise, a duplicate will be returned irrespective of presence of missing data.
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 |
# File 'lib/daru/vector.rb', line 1255 def only_valid as_a=:vector, _duplicate=true # FIXME: Now duplicate is just ignored. # There are no spec that fail on this case, so I'll leave it # this way for now - zverok, 2016-05-07 new_index = @index.to_a - indexes(*Daru::MISSING_VALUES) new_vector = new_index.map { |idx| self[idx] } if as_a == :vector Daru::Vector.new new_vector, index: new_index, name: @name, dtype: dtype else new_vector end end |
#positions(*values) ⇒ Object
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 |
# File 'lib/daru/vector.rb', line 1465 def positions(*values) case values when [nil] nil_positions when [Float::NAN] nan_positions when [nil, Float::NAN], [Float::NAN, nil] nil_positions + nan_positions else size.times.select { |i| include_with_nan? values, @data[i] } end end |
#recode(dt = nil, &block) ⇒ Object
Like map, but returns a Daru::Vector with the returned values.
663 664 665 666 667 |
# File 'lib/daru/vector.rb', line 663 def recode dt=nil, &block return to_enum(:recode) unless block_given? dup.recode! dt, &block end |
#recode!(dt = nil, &block) ⇒ Object
Destructive version of recode!
670 671 672 673 674 675 676 |
# File 'lib/daru/vector.rb', line 670 def recode! dt=nil, &block return to_enum(:recode!) unless block_given? @data.map!(&block).data @data = cast_vector_to(dt || @dtype) self end |
#reindex(new_index) ⇒ Object
Create a new vector with a different index, and preserve the indexing of current elements.
1130 1131 1132 |
# File 'lib/daru/vector.rb', line 1130 def reindex new_index dup.reindex!(new_index) end |
#reindex!(new_index) ⇒ Daru::Vector
Unlike #reorder! which takes positions as input it takes index as an input to reorder the vector
Sets new index for vector. Preserves index->value correspondence. Sets nil for new index keys absent from original index.
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 |
# File 'lib/daru/vector.rb', line 1088 def reindex! new_index values = [] each_with_index do |val, i| values[new_index[i]] = val if new_index.include?(i) end values.fill(nil, values.size, new_index.size - values.size) @data = cast_vector_to @dtype, values @index = new_index update_position_cache self end |
#reject_values(*values) ⇒ Daru::Vector
Return a vector with specified values removed
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 |
# File 'lib/daru/vector.rb', line 1280 def reject_values(*values) resultant_pos = size.times.to_a - positions(*values) dv = at(*resultant_pos) # Handle the case when number of positions is 1 # and hence #at doesn't return a vector if dv.is_a?(Daru::Vector) dv else pos = resultant_pos.first at(pos..pos) end end |
#rename(new_name) ⇒ Object Also known as: name=
Give the vector a new name
1153 1154 1155 1156 |
# File 'lib/daru/vector.rb', line 1153 def rename new_name @name = new_name self end |
#reorder(order) ⇒ Object
Non-destructive version of #reorder!
1124 1125 1126 |
# File 'lib/daru/vector.rb', line 1124 def reorder order dup.reorder! order end |
#reorder!(order) ⇒ Object
Unlike #reindex! which takes index as input, it takes positions as an input to reorder the vector
Reorder the vector with given positions
1115 1116 1117 1118 1119 1120 1121 |
# File 'lib/daru/vector.rb', line 1115 def reorder! order @index = @index.reorder order data_array = order.map { |i| @data[i] } @data = cast_vector_to @dtype, data_array, @nm_dtype update_position_cache self end |
#replace_nils(replacement) ⇒ Object
Non-destructive version of #replace_nils!
859 860 861 |
# File 'lib/daru/vector.rb', line 859 def replace_nils replacement dup.replace_nils!(replacement) end |
#replace_nils!(replacement) ⇒ Object
Replace all nils in the vector with the value passed as an argument. Destructive. See #replace_nils for non-destructive version
Arguments
-
replacement
- The value which should replace all nils
766 767 768 769 770 771 772 |
# File 'lib/daru/vector.rb', line 766 def replace_nils! replacement indexes(*Daru::MISSING_VALUES).each do |idx| self[idx] = replacement end self end |
#replace_values(old_values, new_value) ⇒ Daru::Vector
It performs the replace in place.
Replaces specified values with a new value
1321 1322 1323 1324 1325 1326 1327 |
# File 'lib/daru/vector.rb', line 1321 def replace_values(old_values, new_value) old_values = [old_values] unless old_values.is_a? Array size.times do |pos| set_at([pos], new_value) if include_with_nan? old_values, at(pos) end self end |
#reset_index! ⇒ Object
755 756 757 758 |
# File 'lib/daru/vector.rb', line 755 def reset_index! @index = Daru::Index.new(Array.new(size) { |i| i }) self end |
#respond_to_missing?(name, include_private = false) ⇒ Boolean
1424 1425 1426 |
# File 'lib/daru/vector.rb', line 1424 def respond_to_missing?(name, include_private=false) name.to_s.end_with?('=') || has_index?(name) || super end |
#rolling_fillna(direction = :forward) ⇒ Object
Non-destructive version of rolling_fillna!
808 809 810 |
# File 'lib/daru/vector.rb', line 808 def rolling_fillna(direction=:forward) dup.rolling_fillna!(direction) end |
#rolling_fillna!(direction = :forward) ⇒ Object
Rolling fillna replace all Float::NAN and NIL values with the preceeding or following value
794 795 796 797 798 799 800 801 802 803 804 805 |
# File 'lib/daru/vector.rb', line 794 def rolling_fillna!(direction=:forward) enum = direction == :forward ? index : index.reverse_each last_valid_value = 0 enum.each do |idx| if valid_value?(self[idx]) last_valid_value = self[idx] else self[idx] = last_valid_value end end self end |
#save(filename) ⇒ Object
Save the vector to a file
Arguments
-
filename - Path of file where the vector is to be saved
1378 1379 1380 |
# File 'lib/daru/vector.rb', line 1378 def save filename Daru::IO.save self, filename end |
#set_at(positions, val) ⇒ Object
Change value at given positions
278 279 280 281 282 |
# File 'lib/daru/vector.rb', line 278 def set_at positions, val validate_positions(*positions) positions.map { |pos| @data[pos] = val } update_position_cache end |
#size ⇒ Object
93 94 95 |
# File 'lib/daru/vector.rb', line 93 def size @data.size end |
#sort(opts = {}, &block) ⇒ Object
Sorts a vector according to its values. If a block is specified, the contents will be evaluated and data will be swapped whenever the block evaluates to true. Defaults to ascending order sorting. Any missing values will be put at the end of the vector. Preserves indexing. Default sort algorithm is quick sort.
Options
-
:ascending
- if false, will sort in descending order. Defaults to true. -
:type
- Specify the sorting algorithm. Only supports quick_sort for now.
Usage
v = Daru::Vector.new ["My first guitar", "jazz", "guitar"]
# Say you want to sort these strings by length.
v.sort(ascending: false) { |a,b| a.length <=> b.length }
605 606 607 608 609 610 611 612 613 614 |
# File 'lib/daru/vector.rb', line 605 def sort opts={}, &block opts = {ascending: true}.merge(opts) vector_index = resort_index(@data.each_with_index, opts, &block) vector, index = vector_index.transpose index = @index.reorder index Daru::Vector.new(vector, index: index, name: @name, dtype: @dtype) end |
#sort_by_index(opts = {}) ⇒ Vector
Sorts the vector according to it’s`Index` values. Defaults to ascending order sorting.
634 635 636 637 638 639 |
# File 'lib/daru/vector.rb', line 634 def sort_by_index opts={} opts = {ascending: true}.merge(opts) _, new_order = resort_index(@index.each_with_index, opts).transpose reorder new_order end |
#sorted_data(&block) ⇒ Object
Just sort the data and get an Array in return using Enumerable#sort. Non-destructive. :nocov:
657 658 659 |
# File 'lib/daru/vector.rb', line 657 def sorted_data &block @data.to_a.sort(&block) end |
#split_by_separator(sep = ',') ⇒ Object
Returns a hash of Vectors, defined by the different values defined on the fields Example:
a=Daru::Vector.new(["a,b","c,d","a,b"])
a.split_by_separator
=> {"a"=>#<Daru::Vector:0x7f2dbcc09d88
@data=[1, 0, 1]>,
"b"=>#<Daru::Vector:0x7f2dbcc09c48
@data=[1, 1, 0]>,
"c"=>#<Daru::Vector:0x7f2dbcc09b08
@data=[0, 1, 1]>}
738 739 740 741 742 743 744 745 746 747 |
# File 'lib/daru/vector.rb', line 738 def split_by_separator sep=',' split_data = splitted sep split_data .flatten.uniq.compact.map do |key| [ key, Daru::Vector.new(split_data.map { |v| split_value(key, v) }) ] end.to_h end |
#split_by_separator_freq(sep = ',') ⇒ Object
749 750 751 752 753 |
# File 'lib/daru/vector.rb', line 749 def split_by_separator_freq(sep=',') split_by_separator(sep).map { |k, v| [k, v.map(&:to_i).inject(:+)] }.to_h end |
#splitted(sep = ',') ⇒ Object
Return an Array with the data splitted by a separator.
a=Daru::Vector.new(["a,b","c,d","a,b","d"])
a.splitted
=>
[["a","b"],["c","d"],["a","b"],["d"]]
713 714 715 716 717 718 719 720 721 722 723 |
# File 'lib/daru/vector.rb', line 713 def splitted sep=',' @data.map do |s| if s.nil? nil elsif s.respond_to? :split s.split sep else [s] end end end |
#summary(indent_level = 0) ⇒ String
Create a summary of the Vector
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 |
# File 'lib/daru/vector.rb', line 1022 def summary(indent_level=0) non_missing = size - count_values(*Daru::MISSING_VALUES) summary = ' =' * indent_level + "= #{name}" \ "\n n :#{size}" \ "\n non-missing:#{non_missing}" case type when :object summary << object_summary when :numeric summary << numeric_summary end summary.split("\n").join("\n" + ' ' * indent_level) end |
#tail(q = 10) ⇒ Object
439 440 441 442 |
# File 'lib/daru/vector.rb', line 439 def tail q=10 start = [size - q, 0].max self[start..(size-1)] end |
#to_a ⇒ Object
Return an array
961 962 963 |
# File 'lib/daru/vector.rb', line 961 def to_a @data.to_a end |
#to_category(opts = {}) ⇒ Daru::Vector
Converts a non category type vector to category type vector.
1405 1406 1407 1408 1409 1410 |
# File 'lib/daru/vector.rb', line 1405 def to_category opts={} dv = Daru::Vector.new to_a, type: :category, name: @name, index: @index dv.ordered = opts[:ordered] || false dv.categories = opts[:categories] if opts[:categories] dv end |
#to_df ⇒ Daru::DataFrame
Returns the vector as a single-vector dataframe.
899 900 901 |
# File 'lib/daru/vector.rb', line 899 def to_df Daru::DataFrame.new({@name => @data}, name: @name, index: @index) end |
#to_gsl ⇒ Object
If dtype != gsl, will convert data to GSL::Vector with to_a. Otherwise returns the stored GSL::Vector object.
946 947 948 949 950 951 952 953 |
# File 'lib/daru/vector.rb', line 946 def to_gsl raise NoMethodError, 'Install gsl-nmatrix for access to this functionality.' unless Daru.has_gsl? if dtype == :gsl @data.data else GSL::Vector.alloc(reject_values(*Daru::MISSING_VALUES).to_a) end end |
#to_h ⇒ Object
Convert to hash (explicit). Hash keys are indexes and values are the correspoding elements
956 957 958 |
# File 'lib/daru/vector.rb', line 956 def to_h @index.map { |index| [index, self[index]] }.to_h end |
#to_html(threshold = 30) ⇒ Object
Convert to html for iruby
971 972 973 974 975 976 977 978 979 980 |
# File 'lib/daru/vector.rb', line 971 def to_html(threshold=30) table_thead = to_html_thead table_tbody = to_html_tbody(threshold) path = if index.is_a?(MultiIndex) File.('../iruby/templates/vector_mi.html.erb', __FILE__) else File.('../iruby/templates/vector.html.erb', __FILE__) end ERB.new(File.read(path).strip).result(binding) end |
#to_html_tbody(threshold = 30) ⇒ Object
992 993 994 995 996 997 998 999 1000 |
# File 'lib/daru/vector.rb', line 992 def to_html_tbody(threshold=30) table_tbody_path = if index.is_a?(MultiIndex) File.('../iruby/templates/vector_mi_tbody.html.erb', __FILE__) else File.('../iruby/templates/vector_tbody.html.erb', __FILE__) end ERB.new(File.read(table_tbody_path).strip).result(binding) end |
#to_html_thead ⇒ Object
982 983 984 985 986 987 988 989 990 |
# File 'lib/daru/vector.rb', line 982 def to_html_thead table_thead_path = if index.is_a?(MultiIndex) File.('../iruby/templates/vector_mi_thead.html.erb', __FILE__) else File.('../iruby/templates/vector_thead.html.erb', __FILE__) end ERB.new(File.read(table_thead_path).strip).result(binding) end |
#to_json ⇒ Object
Convert the hash from to_h to json
966 967 968 |
# File 'lib/daru/vector.rb', line 966 def to_json(*) to_h.to_json end |
#to_matrix(axis = :horizontal) ⇒ Object
Convert Vector to a horizontal or vertical Ruby Matrix.
Arguments
-
axis
- Specify whether you want a :horizontal or a :vertical matrix.
908 909 910 911 912 913 914 915 916 |
# File 'lib/daru/vector.rb', line 908 def to_matrix axis=:horizontal if axis == :horizontal Matrix[to_a] elsif axis == :vertical Matrix.columns([to_a]) else raise ArgumentError, "axis should be either :horizontal or :vertical, not #{axis}" end end |
#to_nmatrix(axis = :horizontal) ⇒ NMatrix
Convert vector to nmatrix object
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 |
# File 'lib/daru/vector.rb', line 927 def to_nmatrix axis=:horizontal unless numeric? && !include?(nil) raise ArgumentError, 'Can not convert to nmatrix'\ 'because the vector is numeric' end case axis when :horizontal NMatrix.new [1, size], to_a when :vertical NMatrix.new [size, 1], to_a else raise ArgumentError, 'Invalid axis specified. '\ 'Valid axis are :horizontal and :vertical' end end |
#to_REXP ⇒ Object
rubocop:disable Style/MethodName
17 18 19 |
# File 'lib/daru/extensions/rserve.rb', line 17 def to_REXP # rubocop:disable Style/MethodName Rserve::REXP::Wrapper.wrap(to_a) end |
#to_s ⇒ Object
1002 1003 1004 |
# File 'lib/daru/vector.rb', line 1002 def to_s "#<#{self.class}#{': ' + @name.to_s if @name}(#{size})#{':category' if category?}>" end |
#type ⇒ Object
The type of data contained in the vector. Can be :object or :numeric. If the underlying dtype is an NMatrix, this method will return the data type of the NMatrix object.
Running through the data to figure out the kind of data is delayed to the last possible moment.
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
# File 'lib/daru/vector.rb', line 539 def type return @data.nm_dtype if dtype == :nmatrix if @type.nil? || @possibly_changed_type @type = :numeric each do |e| next if e.nil? || e.is_a?(Numeric) @type = :object break end @possibly_changed_type = false end @type end |
#uniq ⇒ Object
Keep only unique elements of the vector alongwith their indexes.
574 575 576 577 578 579 |
# File 'lib/daru/vector.rb', line 574 def uniq uniq_vector = @data.uniq new_index = uniq_vector.map { |element| index_of(element) } Daru::Vector.new uniq_vector, name: @name, index: new_index, dtype: @dtype end |
#verify ⇒ Object
Reports all values that doesn’t comply with a condition. Returns a hash with the index of data and the invalid data.
701 702 703 704 705 706 |
# File 'lib/daru/vector.rb', line 701 def verify (0...size) .map { |i| [i, @data[i]] } .reject { |_i, val| yield(val) } .to_h end |
#where(bool_array) ⇒ Object
Return a new vector based on the contents of a boolean array. Use with the comparator methods to obtain meaningful results. See this notebook for a good overview of using #where.
431 432 433 |
# File 'lib/daru/vector.rb', line 431 def where bool_array Daru::Core::Query.vector_where self, bool_array end |