Module: Daru::Maths::Statistics::Vector
Overview
rubocop:disable Metrics/ModuleLength
Instance Method Summary collapse
-
#acf(max_lags = nil) ⇒ Object
Calculates the autocorrelation coefficients of the series.
-
#acvf(demean = true, unbiased = true) ⇒ Object
Provides autocovariance.
- #average_deviation_population(m = nil) ⇒ Object (also: #adp)
-
#box_cox_transformation(lambda) ⇒ Object
:nocov:.
-
#center ⇒ Object
Center data by subtracting the mean from each non-nil value.
- #coefficient_of_variation ⇒ Object (also: #cov)
-
#count(value = false, &block) ⇒ Object
Retrieves number of cases which comply condition.
-
#covariance_population(other) ⇒ Object
Population covariance with denominator (N).
-
#covariance_sample(other) ⇒ Object
(also: #covariance)
Sample covariance with denominator (N-1).
-
#cumsum ⇒ Object
Calculate cumulative sum of Vector.
-
#describe(methods = nil) ⇒ Object
Create a summary of count, mean, standard deviation, min and max of the vector in one shot.
-
#dichotomize(low = nil) ⇒ Object
Dichotomize the vector with 0 and 1, based on lowest value.
-
#diff(max_lags = 1) ⇒ Daru::Vector
Performs the difference of the series.
-
#ema(n = 10, wilder = false) ⇒ Daru::Vector
Exponential Moving Average.
-
#emsd(n = 10, wilder = false) ⇒ Daru::Vector
Exponential Moving Standard Deviation.
-
#emv(n = 10, wilder = false) ⇒ Daru::Vector
Exponential Moving Variance.
-
#factors ⇒ Object
Retrieve unique values of non-nil data.
- #frequencies ⇒ Object (also: #freqs)
-
#index_of_max(size = nil, &block) ⇒ Object
Returns the index of the maximum value(s) present in the vector, with an optional comparator block.
-
#index_of_max_by(size = nil, &block) ⇒ Object
Returns the index of the maximum value(s) present in the vector, with a compulsory object block.
-
#index_of_min(size = nil, &block) ⇒ Object
Returns the index of the minimum value(s) present in the vector, with an optional comparator block.
-
#index_of_min_by(size = nil, &block) ⇒ Object
Returns the index of the minimum value(s) present in the vector, with a compulsory object block.
- #kurtosis(m = nil) ⇒ Object
-
#macd(fast = 12, slow = 26, signal = 9) ⇒ Array<Daru::Vector>
Moving Average Convergence-Divergence.
-
#max(size = nil, &block) ⇒ Object
Returns the maximum value(s) present in the vector, with an optional comparator block.
-
#max_by(size = nil, &block) ⇒ Object
Returns the maximum value(s) present in the vector, with a compulsory object block.
-
#max_index ⇒ Daru::Vector
Return the maximum element present in the Vector, as a Vector.
- #mean ⇒ Object
- #median ⇒ Object
- #median_absolute_deviation ⇒ Object (also: #mad)
-
#min(size = nil, &block) ⇒ Object
Returns the minimum value(s) present in the vector, with an optional comparator block.
-
#min_by(size = nil, &block) ⇒ Object
Returns the minimum value(s) present in the vector, with a compulsory object block.
- #mode ⇒ Object
-
#percent_change(periods = 1) ⇒ Object
The percent_change method computes the percent change over the given number of periods.
-
#percentile(q, strategy = :midpoint) ⇒ Object
(also: #percentil)
Returns the value of the percentile q.
- #product ⇒ Object
- #proportion(value = 1) ⇒ Object
- #proportions ⇒ Object
- #range ⇒ Object
- #ranked ⇒ Object
-
#rolling(function, n = 10) ⇒ Daru::Vector
Calculate the rolling function for a loopback value.
-
#rolling_count {|n| ... } ⇒ Object
Calculate rolling non-missing count.
-
#rolling_max {|n| ... } ⇒ Object
Calculate rolling max value.
-
#rolling_mean {|n| ... } ⇒ Object
Calculate rolling average.
-
#rolling_median {|n| ... } ⇒ Object
Calculate rolling median.
-
#rolling_min {|n| ... } ⇒ Object
Calculate rolling min value.
-
#rolling_std {|n| ... } ⇒ Object
Calculate rolling standard deviation.
-
#rolling_sum {|n| ... } ⇒ Object
Calculate rolling sum.
-
#rolling_variance {|n| ... } ⇒ Object
Calculate rolling variance.
-
#sample_with_replacement(sample = 1) ⇒ Object
Returns an random sample of size n, with replacement, only with non-nil data.
-
#sample_without_replacement(sample = 1) ⇒ Object
Returns an random sample of size n, without replacement, only with valid data.
-
#skew(m = nil) ⇒ Object
Calculate skewness using (sigma(xi - mean)^3)/((N)*std_dev_sample^3).
- #standard_deviation_population(m = nil) ⇒ Object (also: #sdp)
- #standard_deviation_sample(m = nil) ⇒ Object (also: #sds, #sd)
- #standard_error ⇒ Object (also: #se)
-
#standardize(use_population = false) ⇒ Object
Standardize data.
- #sum ⇒ Object
- #sum_of_squared_deviation ⇒ Object
- #sum_of_squares(m = nil) ⇒ Object (also: #ss)
-
#value_counts ⇒ Object
Count number of occurrences of each value in the Vector.
-
#variance_population(m = nil) ⇒ Object
Population variance with denominator (N).
-
#variance_sample(m = nil) ⇒ Object
(also: #variance)
Sample variance with denominator (N-1).
- #vector_centered_compute(m) ⇒ Object
-
#vector_percentile ⇒ Object
Replace each non-nil value in the vector with its percentile.
- #vector_standardized_compute(m, sd) ⇒ Object
Instance Method Details
#acf(max_lags = nil) ⇒ Object
Calculates the autocorrelation coefficients of the series.
The first element is always 1, since that is the correlation of the series with itself.
870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
# File 'lib/daru/maths/statistics/vector.rb', line 870 def acf(max_lags=nil) max_lags ||= (10 * Math.log10(size)).to_i (0..max_lags).map do |i| if i.zero? 1.0 else m = mean # can't use Pearson coefficient since the mean for the lagged series should # be the same as the regular series ((self - m) * (lag(i) - m)).sum / variance_sample / (size - 1) end end end |
#acvf(demean = true, unbiased = true) ⇒ Object
Provides autocovariance.
Options
-
:demean = true; optional. Supply false if series is not to be demeaned
-
:unbiased = true; optional. true/false for unbiased/biased form of autocovariance
Returns
Autocovariance value
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 |
# File 'lib/daru/maths/statistics/vector.rb', line 895 def acvf(demean=true, unbiased=true) # rubocop:disable Metrics/AbcSize,Metrics/MethodLength opts = { demean: true, unbaised: true }.merge(opts) demean = opts[:demean] unbiased = opts[:unbiased] demeaned_series = demean ? self - mean : self n = (10 * Math.log10(size)).to_i + 1 m = mean d = if unbiased Array.new(size, size) else (1..size).to_a.reverse[0..n] end 0.upto(n - 1).map do |i| (demeaned_series * (lag(i) - m)).sum / d[i] end end |
#average_deviation_population(m = nil) ⇒ Object Also known as: adp
482 483 484 485 486 487 488 |
# File 'lib/daru/maths/statistics/vector.rb', line 482 def average_deviation_population m=nil must_be_numeric! m ||= mean reject_values(*Daru::MISSING_VALUES).data.inject(0) { |memo, val| (val - m).abs + memo }.quo(size - count_values(*Daru::MISSING_VALUES)) end |
#box_cox_transformation(lambda) ⇒ Object
:nocov:
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
# File 'lib/daru/maths/statistics/vector.rb', line 548 def box_cox_transformation lambda # :nodoc: must_be_numeric! recode do |x| if !x.nil? if lambda.zero? Math.log(x) else (x ** lambda - 1).quo(lambda) end else nil end end end |
#center ⇒ Object
Center data by subtracting the mean from each non-nil value.
529 530 531 |
# File 'lib/daru/maths/statistics/vector.rb', line 529 def center self - mean end |
#coefficient_of_variation ⇒ Object Also known as: cov
373 374 375 |
# File 'lib/daru/maths/statistics/vector.rb', line 373 def coefficient_of_variation standard_deviation_sample / mean end |
#count(value = false, &block) ⇒ Object
Retrieves number of cases which comply condition. If block given, retrieves number of instances where block returns true. If other values given, retrieves the frequency for this value. If no value given, counts the number of non-nil elements in the Vector.
381 382 383 384 385 386 387 388 389 |
# File 'lib/daru/maths/statistics/vector.rb', line 381 def count value=false, &block if block_given? @data.select(&block).count elsif value count { |val| val == value } else size - indexes(*Daru::MISSING_VALUES).size end end |
#covariance_population(other) ⇒ Object
Population covariance with denominator (N)
431 432 433 434 |
# File 'lib/daru/maths/statistics/vector.rb', line 431 def covariance_population other size == other.size or raise ArgumentError, 'size of both the vectors must be equal' covariance_sum(other) / (size - count_values(*Daru::MISSING_VALUES)) end |
#covariance_sample(other) ⇒ Object Also known as: covariance
Sample covariance with denominator (N-1)
425 426 427 428 |
# File 'lib/daru/maths/statistics/vector.rb', line 425 def covariance_sample other size == other.size or raise ArgumentError, 'size of both the vectors must be equal' covariance_sum(other) / (size - count_values(*Daru::MISSING_VALUES) - 1) end |
#cumsum ⇒ Object
Calculate cumulative sum of Vector
919 920 921 922 923 924 925 926 927 928 929 930 931 932 |
# File 'lib/daru/maths/statistics/vector.rb', line 919 def cumsum result = [] acc = 0 @data.each do |d| if include_with_nan? Daru::MISSING_VALUES, d result << nil else acc += d result << acc end end Daru::Vector.new(result, index: @index) end |
#describe(methods = nil) ⇒ Object
Create a summary of count, mean, standard deviation, min and max of the vector in one shot.
Arguments
methods
- An array with aggregation methods specified as symbols to be applied to vectors. Default is [:count, :mean, :std, :max, :min]. Methods will be applied in the specified order.
43 44 45 46 47 |
# File 'lib/daru/maths/statistics/vector.rb', line 43 def describe methods=nil methods ||= %i[count mean std min max] description = methods.map { |m| send(m) } Daru::Vector.new(description, index: methods, name: :statistics) end |
#dichotomize(low = nil) ⇒ Object
Dichotomize the vector with 0 and 1, based on lowest value. If parameter is defined, this value and lower will be 0 and higher, 1.
514 515 516 517 518 519 520 521 522 523 524 525 526 |
# File 'lib/daru/maths/statistics/vector.rb', line 514 def dichotomize(low=nil) low ||= factors.min recode do |x| if x.nil? nil elsif x > low 1 else 0 end end end |
#diff(max_lags = 1) ⇒ Daru::Vector
Performs the difference of the series. Note: The first difference of series is X(t) - X(t-1) But, second difference of series is NOT X(t) - X(t-2) It is the first difference of the first difference
> (X(t) - X(t-1)) - (X(t-1) - X(t-2))
Arguments
-
max_lags: integer, (default: 1), number of differences reqd.
670 671 672 673 674 675 676 677 678 |
# File 'lib/daru/maths/statistics/vector.rb', line 670 def diff(max_lags=1) ts = self difference = [] max_lags.times do difference = ts - ts.lag ts = difference end difference end |
#ema(n = 10, wilder = false) ⇒ Daru::Vector
Exponential Moving Average. Calculates an exponential moving average of the series using a specified parameter. If wilder is false (the default) then the EMA uses a smoothing value of 2 / (n + 1), if it is true then it uses the Welles Wilder smoother of 1 / n.
Warning for EMA usage: EMAs are unstable for small series, as they use a lot more than n observations to calculate. The series is stable if the size of the series is >= 3.45 * (n + 1)
754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
# File 'lib/daru/maths/statistics/vector.rb', line 754 def ema(n=10, wilder=false) # rubocop:disable Metrics/AbcSize smoother = wilder ? 1.0 / n : 2.0 / (n + 1) # need to start everything from the first non-nil observation start = @data.index { |i| !i.nil? } # first n - 1 observations are nil base = [nil] * (start + n - 1) # nth observation is just a moving average base << @data[start...(start + n)].inject(0.0) { |s, a| a.nil? ? s : s + a } / n (start + n).upto size - 1 do |i| base << self[i] * smoother + (1 - smoother) * base.last end Daru::Vector.new(base, index: @index, name: @name) end |
#emsd(n = 10, wilder = false) ⇒ Daru::Vector
Exponential Moving Standard Deviation. Calculates an exponential moving standard deviation of the series using a specified parameter. If wilder is false (the default) then the EMSD uses a smoothing value of 2 / (n + 1), if it is true then it uses the Welles Wilder smoother of 1 / n.
825 826 827 828 829 830 831 832 |
# File 'lib/daru/maths/statistics/vector.rb', line 825 def emsd(n=10, wilder=false) result = [] emv_return = emv(n, wilder) emv_return.each do |d| result << (d.nil? ? nil : Math.sqrt(d)) end Daru::Vector.new(result, index: @index, name: @name) end |
#emv(n = 10, wilder = false) ⇒ Daru::Vector
Exponential Moving Variance. Calculates an exponential moving variance of the series using a specified parameter. If wilder is false (the default) then the EMV uses a smoothing value of 2 / (n + 1), if it is true then it uses the Welles Wilder smoother of 1 / n.
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
# File 'lib/daru/maths/statistics/vector.rb', line 788 def emv(n=10, wilder=false) # rubocop:disable Metrics/AbcSize smoother = wilder ? 1.0 / n : 2.0 / (n + 1) # need to start everything from the first non-nil observation start = @data.index { |i| !i.nil? } # first n - 1 observations are nil var_base = [nil] * (start + n - 1) mean_base = [nil] * (start + n - 1) mean_base << @data[start...(start + n)].inject(0.0) { |s, a| a.nil? ? s : s + a } / n # nth observation is just a moving variance_population var_base << @data[start...(start + n)].inject(0.0) { |s,x| x.nil? ? s : s + (x - mean_base.last)**2 } / n (start + n).upto size - 1 do |i| last = mean_base.last mean_base << self[i] * smoother + (1 - smoother) * last var_base << (1 - smoother) * var_base.last + smoother * (self[i] - last) * (self[i] - mean_base.last) end Daru::Vector.new(var_base, index: @index, name: @name) end |
#factors ⇒ Object
Retrieve unique values of non-nil data
65 66 67 |
# File 'lib/daru/maths/statistics/vector.rb', line 65 def factors reject_values(*Daru::MISSING_VALUES).uniq.reset_index! end |
#frequencies ⇒ Object Also known as: freqs
345 346 347 348 349 350 351 |
# File 'lib/daru/maths/statistics/vector.rb', line 345 def frequencies Daru::Vector.new( @data.each_with_object(Hash.new(0)) do |element, hash| hash[element] += 1 unless element.nil? end ) end |
#index_of_max(size = nil, &block) ⇒ Object
Returns the index of the maximum value(s) present in the vector, with an optional comparator block.
263 264 265 266 267 |
# File 'lib/daru/maths/statistics/vector.rb', line 263 def index_of_max(size=nil,&block) vals = max(size, &block) dv = reject_values(*Daru::MISSING_VALUES) vals.is_a?(Array) ? (vals.map { |x| dv.index_of(x) }) : dv.index_of(vals) end |
#index_of_max_by(size = nil, &block) ⇒ Object
Returns the index of the maximum value(s) present in the vector, with a compulsory object block.
285 286 287 288 289 |
# File 'lib/daru/maths/statistics/vector.rb', line 285 def index_of_max_by(size=nil,&block) vals = max_by(size, &block) dv = reject_values(*Daru::MISSING_VALUES) vals.is_a?(Array) ? (vals.map { |x| dv.index_of(x) }) : dv.index_of(vals) end |
#index_of_min(size = nil, &block) ⇒ Object
Returns the index of the minimum value(s) present in the vector, with an optional comparator block.
310 311 312 313 314 |
# File 'lib/daru/maths/statistics/vector.rb', line 310 def index_of_min(size=nil,&block) vals = min(size, &block) dv = reject_values(*Daru::MISSING_VALUES) vals.is_a?(Array) ? (vals.map { |x| dv.index_of(x) }) : dv.index_of(vals) end |
#index_of_min_by(size = nil, &block) ⇒ Object
Returns the index of the minimum value(s) present in the vector, with a compulsory object block.
332 333 334 335 336 |
# File 'lib/daru/maths/statistics/vector.rb', line 332 def index_of_min_by(size=nil,&block) vals = min_by(size, &block) dv = reject_values(*Daru::MISSING_VALUES) vals.is_a?(Array) ? (vals.map { |x| dv.index_of(x) }) : dv.index_of(vals) end |
#kurtosis(m = nil) ⇒ Object
472 473 474 475 476 477 478 479 480 |
# File 'lib/daru/maths/statistics/vector.rb', line 472 def kurtosis m=nil if @data.respond_to? :kurtosis @data.kurtosis else m ||= mean fo = @data.inject(0) { |a, x| a + ((x - m) ** 4) } fo.quo((size - indexes(*Daru::MISSING_VALUES).size) * standard_deviation_sample(m) ** 4) - 3 end end |
#macd(fast = 12, slow = 26, signal = 9) ⇒ Array<Daru::Vector>
Moving Average Convergence-Divergence. Calculates the MACD (moving average convergence-divergence) of the time series.
853 854 855 856 857 858 |
# File 'lib/daru/maths/statistics/vector.rb', line 853 def macd(fast=12, slow=26, signal=9) macdseries = ema(fast) - ema(slow) macdsignal = macdseries.ema(signal) macdhist = macdseries - macdsignal [macdseries, macdsignal, macdhist] end |
#max(size = nil, &block) ⇒ Object
Returns the maximum value(s) present in the vector, with an optional comparator block.
88 89 90 |
# File 'lib/daru/maths/statistics/vector.rb', line 88 def max(size=nil, &block) reject_values(*Daru::MISSING_VALUES).to_a.max(size, &block) end |
#max_by(size = nil, &block) ⇒ Object
Returns the maximum value(s) present in the vector, with a compulsory object block.
107 108 109 110 |
# File 'lib/daru/maths/statistics/vector.rb', line 107 def max_by(size=nil, &block) raise ArgumentError, 'Expected compulsory object block in max_by method' unless block_given? reject_values(*Daru::MISSING_VALUES).to_a.max_by(size, &block) end |
#max_index ⇒ Daru::Vector
Return the maximum element present in the Vector, as a Vector.
340 341 342 343 |
# File 'lib/daru/maths/statistics/vector.rb', line 340 def max_index max_value = @data.max Daru::Vector.new({index_of(max_value) => max_value}, name: @name, dtype: @dtype) end |
#mean ⇒ Object
10 11 12 |
# File 'lib/daru/maths/statistics/vector.rb', line 10 def mean @data.mean end |
#median ⇒ Object
26 27 28 |
# File 'lib/daru/maths/statistics/vector.rb', line 26 def median @data.respond_to?(:median) ? @data.median : percentile(50) end |
#median_absolute_deviation ⇒ Object Also known as: mad
49 50 51 52 |
# File 'lib/daru/maths/statistics/vector.rb', line 49 def median_absolute_deviation m = median recode { |val| (val - m).abs }.median end |
#min(size = nil, &block) ⇒ Object
Returns the minimum value(s) present in the vector, with an optional comparator block.
130 131 132 |
# File 'lib/daru/maths/statistics/vector.rb', line 130 def min(size=nil, &block) reject_values(*Daru::MISSING_VALUES).to_a.min(size, &block) end |
#min_by(size = nil, &block) ⇒ Object
Returns the minimum value(s) present in the vector, with a compulsory object block.
149 150 151 152 |
# File 'lib/daru/maths/statistics/vector.rb', line 149 def min_by(size=nil, &block) raise ArgumentError, 'Expected compulsory object block in min_by method' unless block_given? reject_values(*Daru::MISSING_VALUES).to_a.min_by(size, &block) end |
#mode ⇒ Object
30 31 32 33 |
# File 'lib/daru/maths/statistics/vector.rb', line 30 def mode mode = frequencies.to_h.select { |_,v| v == frequencies.max }.keys mode.size > 1 ? Daru::Vector.new(mode) : mode.first end |
#percent_change(periods = 1) ⇒ Object
The percent_change method computes the percent change over the given number of periods.
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
# File 'lib/daru/maths/statistics/vector.rb', line 635 def percent_change periods=1 must_be_numeric! prev = nil arr = @data.each_with_index.map do |cur, i| if i < periods || include_with_nan?(Daru::MISSING_VALUES, cur) || include_with_nan?(Daru::MISSING_VALUES, prev) nil else (cur - prev) / prev.to_f end.tap { prev = cur if cur } end Daru::Vector.new(arr, index: @index, name: @name) end |
#percentile(q, strategy = :midpoint) ⇒ Object Also known as: percentil
Returns the value of the percentile q
Accepts an optional second argument specifying the strategy to interpolate when the requested percentile lies between two data points a and b Valid strategies are:
-
:midpoint (Default): (a + b) / 2
-
:linear : a + (b - a) * d where d is the decimal part of the index between a and b.
References
This is the NIST recommended method (en.wikipedia.org/wiki/Percentile#NIST_method)
500 501 502 503 504 505 506 507 508 509 |
# File 'lib/daru/maths/statistics/vector.rb', line 500 def percentile(q, strategy=:midpoint) case strategy when :midpoint midpoint_percentile(q) when :linear linear_percentile(q) else raise ArgumentError, "Unknown strategy #{strategy}" end end |
#product ⇒ Object
18 19 20 |
# File 'lib/daru/maths/statistics/vector.rb', line 18 def product @data.product end |
#proportion(value = 1) ⇒ Object
400 401 402 |
# File 'lib/daru/maths/statistics/vector.rb', line 400 def proportion value=1 frequencies[value].quo(size - count_values(*Daru::MISSING_VALUES)).to_f end |
#proportions ⇒ Object
356 357 358 359 360 361 |
# File 'lib/daru/maths/statistics/vector.rb', line 356 def proportions len = size - count_values(*Daru::MISSING_VALUES) frequencies.to_h.each_with_object({}) do |(el, count), hash| hash[el] = count / len.to_f end end |
#range ⇒ Object
22 23 24 |
# File 'lib/daru/maths/statistics/vector.rb', line 22 def range max - min end |
#ranked ⇒ Object
363 364 365 366 367 368 369 370 371 |
# File 'lib/daru/maths/statistics/vector.rb', line 363 def ranked sum = 0 r = frequencies.to_h.sort.each_with_object({}) do |(el, count), memo| memo[el] = ((sum + 1) + (sum + count)).quo(2) sum += count end recode { |e| r[e] } end |
#rolling(function, n = 10) ⇒ Daru::Vector
Calculate the rolling function for a loopback value.
692 693 694 695 696 697 698 699 |
# File 'lib/daru/maths/statistics/vector.rb', line 692 def rolling function, n=10 Daru::Vector.new( [nil] * (n - 1) + (0..(size - n)).map do |i| Daru::Vector.new(@data[i...(i + n)]).send(function) end, index: @index ) end |
#rolling_count {|n| ... } ⇒ Object
Calculate rolling non-missing count
725 726 727 728 729 |
# File 'lib/daru/maths/statistics/vector.rb', line 725 %i[count mean median max min sum std variance].each do |meth| define_method("rolling_#{meth}".to_sym) do |n=10| rolling(meth, n) end end |
#rolling_max {|n| ... } ⇒ Object
Calculate rolling max value
725 726 727 728 729 |
# File 'lib/daru/maths/statistics/vector.rb', line 725 %i[count mean median max min sum std variance].each do |meth| define_method("rolling_#{meth}".to_sym) do |n=10| rolling(meth, n) end end |
#rolling_mean {|n| ... } ⇒ Object
Calculate rolling average
725 726 727 728 729 |
# File 'lib/daru/maths/statistics/vector.rb', line 725 %i[count mean median max min sum std variance].each do |meth| define_method("rolling_#{meth}".to_sym) do |n=10| rolling(meth, n) end end |
#rolling_median {|n| ... } ⇒ Object
Calculate rolling median
725 726 727 728 729 |
# File 'lib/daru/maths/statistics/vector.rb', line 725 %i[count mean median max min sum std variance].each do |meth| define_method("rolling_#{meth}".to_sym) do |n=10| rolling(meth, n) end end |
#rolling_min {|n| ... } ⇒ Object
Calculate rolling min value
725 726 727 728 729 |
# File 'lib/daru/maths/statistics/vector.rb', line 725 %i[count mean median max min sum std variance].each do |meth| define_method("rolling_#{meth}".to_sym) do |n=10| rolling(meth, n) end end |
#rolling_std {|n| ... } ⇒ Object
Calculate rolling standard deviation
725 726 727 728 729 |
# File 'lib/daru/maths/statistics/vector.rb', line 725 %i[count mean median max min sum std variance].each do |meth| define_method("rolling_#{meth}".to_sym) do |n=10| rolling(meth, n) end end |
#rolling_sum {|n| ... } ⇒ Object
Calculate rolling sum
725 726 727 728 729 |
# File 'lib/daru/maths/statistics/vector.rb', line 725 %i[count mean median max min sum std variance].each do |meth| define_method("rolling_#{meth}".to_sym) do |n=10| rolling(meth, n) end end |
#rolling_variance {|n| ... } ⇒ Object
Calculate rolling variance
725 726 727 728 729 |
# File 'lib/daru/maths/statistics/vector.rb', line 725 %i[count mean median max min sum std variance].each do |meth| define_method("rolling_#{meth}".to_sym) do |n=10| rolling(meth, n) end end |
#sample_with_replacement(sample = 1) ⇒ Object
Returns an random sample of size n, with replacement, only with non-nil data.
In all the trails, every item have the same probability of been selected.
594 595 596 597 598 599 600 601 602 |
# File 'lib/daru/maths/statistics/vector.rb', line 594 def sample_with_replacement(sample=1) if @data.respond_to? :sample_with_replacement @data.sample_with_replacement sample else valid = indexes(*Daru::MISSING_VALUES).empty? ? self : reject_values(*Daru::MISSING_VALUES) vds = valid.size (0...sample).collect { valid[rand(vds)] } end end |
#sample_without_replacement(sample = 1) ⇒ Object
Returns an random sample of size n, without replacement, only with valid data.
Every element could only be selected once.
A sample of the same size of the vector is the vector itself.
610 611 612 613 614 615 616 |
# File 'lib/daru/maths/statistics/vector.rb', line 610 def sample_without_replacement(sample=1) if @data.respond_to? :sample_without_replacement @data.sample_without_replacement sample else raw_sample_without_replacement(sample) end end |
#skew(m = nil) ⇒ Object
Calculate skewness using (sigma(xi - mean)^3)/((N)*std_dev_sample^3)
462 463 464 465 466 467 468 469 470 |
# File 'lib/daru/maths/statistics/vector.rb', line 462 def skew m=nil if @data.respond_to? :skew @data.skew else m ||= mean th = @data.inject(0) { |memo, val| memo + ((val - m)**3) } th.quo((size - indexes(*Daru::MISSING_VALUES).size) * (standard_deviation_sample(m)**3)) end end |
#standard_deviation_population(m = nil) ⇒ Object Also known as: sdp
443 444 445 446 447 448 449 450 |
# File 'lib/daru/maths/statistics/vector.rb', line 443 def standard_deviation_population m=nil m ||= mean if @data.respond_to? :standard_deviation_population @data.standard_deviation_population(m) else Math.sqrt(variance_population(m)) end end |
#standard_deviation_sample(m = nil) ⇒ Object Also known as: sds, sd
452 453 454 455 456 457 458 459 |
# File 'lib/daru/maths/statistics/vector.rb', line 452 def standard_deviation_sample m=nil m ||= mean if @data.respond_to? :standard_deviation_sample @data.standard_deviation_sample m else Math.sqrt(variance_sample(m)) end end |
#standard_error ⇒ Object Also known as: se
56 57 58 |
# File 'lib/daru/maths/statistics/vector.rb', line 56 def standard_error standard_deviation_sample/Math.sqrt(size - count_values(*Daru::MISSING_VALUES)) end |
#standardize(use_population = false) ⇒ Object
Standardize data.
Arguments
-
use_population - Pass as true if you want to use population
standard deviation instead of sample standard deviation.
539 540 541 542 543 544 545 |
# File 'lib/daru/maths/statistics/vector.rb', line 539 def standardize use_population=false m ||= mean sd = use_population ? sdp : sds return Daru::Vector.new([nil]*size) if m.nil? || sd == 0.0 vector_standardized_compute m, sd end |
#sum ⇒ Object
14 15 16 |
# File 'lib/daru/maths/statistics/vector.rb', line 14 def sum @data.sum end |
#sum_of_squared_deviation ⇒ Object
60 61 62 |
# File 'lib/daru/maths/statistics/vector.rb', line 60 def sum_of_squared_deviation (@data.inject(0) { |a,x| x**2 + a } - (sum**2).quo(size - count_values(*Daru::MISSING_VALUES)).to_f).to_f end |
#sum_of_squares(m = nil) ⇒ Object Also known as: ss
436 437 438 439 440 441 |
# File 'lib/daru/maths/statistics/vector.rb', line 436 def sum_of_squares(m=nil) m ||= mean reject_values(*Daru::MISSING_VALUES).data.inject(0) { |memo, val| memo + (val - m)**2 } end |
#value_counts ⇒ Object
Count number of occurrences of each value in the Vector
392 393 394 395 396 397 398 |
# File 'lib/daru/maths/statistics/vector.rb', line 392 def value_counts values = @data.each_with_object(Hash.new(0)) do |d, memo| memo[d] += 1 end Daru::Vector.new(values) end |
#variance_population(m = nil) ⇒ Object
Population variance with denominator (N)
415 416 417 418 419 420 421 422 |
# File 'lib/daru/maths/statistics/vector.rb', line 415 def variance_population m=nil m ||= mean if @data.respond_to? :variance_population @data.variance_population m else sum_of_squares(m).quo(size - count_values(*Daru::MISSING_VALUES)).to_f end end |
#variance_sample(m = nil) ⇒ Object Also known as: variance
Sample variance with denominator (N-1)
405 406 407 408 409 410 411 412 |
# File 'lib/daru/maths/statistics/vector.rb', line 405 def variance_sample m=nil m ||= mean if @data.respond_to? :variance_sample @data.variance_sample m else sum_of_squares(m).quo(size - count_values(*Daru::MISSING_VALUES) - 1) end end |
#vector_centered_compute(m) ⇒ Object
580 581 582 583 584 585 586 587 |
# File 'lib/daru/maths/statistics/vector.rb', line 580 def vector_centered_compute(m) if @data.respond_to? :vector_centered_compute @data.vector_centered_compute(m) else Daru::Vector.new @data.collect { |x| x.nil? ? nil : x.to_f-m }, index: index, name: name, dtype: dtype end end |
#vector_percentile ⇒ Object
Replace each non-nil value in the vector with its percentile.
566 567 568 569 |
# File 'lib/daru/maths/statistics/vector.rb', line 566 def vector_percentile c = size - indexes(*Daru::MISSING_VALUES).size ranked.recode! { |i| i.nil? ? nil : (i.quo(c)*100).to_f } end |
#vector_standardized_compute(m, sd) ⇒ Object
571 572 573 574 575 576 577 578 |
# File 'lib/daru/maths/statistics/vector.rb', line 571 def vector_standardized_compute(m,sd) if @data.respond_to? :vector_standardized_compute @data.vector_standardized_compute(m,sd) else Daru::Vector.new @data.collect { |x| x.nil? ? nil : (x.to_f - m).quo(sd) }, index: index, name: name, dtype: dtype end end |