Module: NumRu::GAnalysis::MetZ
- Defined in:
- lib/numru/ganalysis/met_z.rb
Overview
Meterological analysis regarding vertical section, integration, etc.
Class Method Summary collapse
-
.mass_strm_any(v, ps, w, wcoord, vs = nil, ws = nil) ⇒ Object
mass stream function on any vertical coordinate.
-
.mass_strm_p(v, ps, pcoord = nil, vs = nil) ⇒ Object
Derive the mass stream function in the pressure coordinate.
Class Method Details
.mass_strm_any(v, ps, w, wcoord, vs = nil, ws = nil) ⇒ Object
mass stream function on any vertical coordinate
Similar to mass_strm_p, but it supports representation to have an arbitrary physical quantity, such as potential temperature, as the vertical coordinate (instead of pressure).
Applicable both to pressure- and sigma-coordinate input data
ARGUMENTS
-
v [GPhys] : meridional wind with a vertical dimension (p or sigma) It must have a latitudinal dimension too. Longitudinal and time dimensions are optional. If it has a longitudinal dimension, zonal mean is taken. The order of the dimensions is not restricted.
-
ps [GPhys] : surface pressure. Its must have the same grid as v but for the vertical dimension (ps.rank must be v.rank-1)
-
w [GPhys] : Grid-point values (at the same points as v) of the quantity used to represent the vertical coordinate. Its shape must be the same as that of v, as a matter of course.
-
wcoord [1D VArray] : Output vertical coordinate. It must have the same units as w.
-
vs [nil(default) or GPhys]: vs is not needed (neglected) when v has a sigma coordinate. It is an optional parameter to specify the surface values of v, when it is in the pressure coordinate. vs can be omitted (nil), even when v has a pressure coordinate; in that case, vs is set by interpolating v if ps is within the p range of v (e.g. when ps<=1000hPa), or it is naively extended (using the bottom values of v) if ps is out of the range (e.g. when ps>1000hPa). In other words, the current implementation assumes that v is available below the surface, as is customary for reanalysis data.
-
ws [nil(default) or GPhys]: same as vs but for the surface value of w.
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# File 'lib/numru/ganalysis/met_z.rb', line 182 def mass_strm_any(v, ps, w, wcoord, vs=nil, ws=nil) pascal = Units["Pa"] grav = Met.g.to_f #< check > raise(ArgumentError,"v.shape != w.shape") if v.shape != w.shape raise(ArgumentError,"ps.rank != v.rank-1") if ps.rank != v.rank-1 raise(ArgumentError,"w.units !~wcoord.units") if w.units !~ wcoord.units #< preprare data > if zdim = Met.find_prs_d(v) # substitution, not comparison # has a pressure coordinate pcv = v.coord(zdim) # v's p coord pcv_val = pcv.val v_val = v.val # should be NArray or NArrayMiss v_val = v_val.to_na if v_val.is_a?(NArrayMiss) w_val = w.val # should be NArray or NArrayMiss w_val = w_val.to_na if w_val.is_a?(NArrayMiss) if pcv_val[0] > pcv_val[-1] # reverse the p coordinate to the increasing order pcv_val = pcv_val[-1..0] v_val = v_val[ *([true]*zdim + [-1..0,false]) ] w_val = w_val[ *([true]*zdim + [-1..0,false]) ] end pcv_val = pcv.units.convert2(pcv_val, pascal) if pcv.units!=pascal pcv_over_g = pcv_val / grav ps_val = ps.val ps_val = ps_val.to_na if ps_val.is_a?(NArrayMiss) ps_val = ps.units.convert2(ps_val, pascal) if ps.units!=pascal ps_over_g = ps_val / grav vs_val = vs && vs.val # nil (default) or vs.val (if vs is given) vs_val = vs_val.to_na if vs_val.is_a?(NArrayMiss) ws_val = ws && ws.val # nil (default) or ws.val (if ws is given) ws_val = ws_val.to_na if ws_val.is_a?(NArrayMiss) v_val, p_over_g, nzbound = GPhys.c_cap_by_boundary(v_val, zdim, pcv_over_g, true, ps_over_g, vs_val) w_val, p_over_g, nzbound = GPhys.c_cap_by_boundary(w_val, zdim, pcv_over_g, true, ps_over_g, ws_val) elsif zdim = SigmaCoord.find_sigma_d(v) # substitution, not comparison # has a sigma coordnate sig = v.coord(zdim) nz = sig.length nzbound = nil ps = ps.convert_units(pascal) if ps.units != pascal sig_val = sig.val v_val = v.val # should be NArray, not NArrayMiss (coz sigma) w_val = w.val p_over_g = SigmaCoord.sig_ps2p(ps.val/grav, sig_val, zdim) else raise ArgumentError, "v does not have a p or sigma coordinate." end #< cumulative vertical integration > wc_val = wcoord.val if wc_val[0] > wc_val[-1] # change it to the increasing order wc_val = wc_val[-1..0] wcoord = wcoord.copy.replace_val(wc_val) end rho_v_cum = GPhys.c_cum_integ_irreg(v_val, p_over_g, zdim, nzbound, wc_val, w_val) #< zonal mean & latitudinal factor > lam, phi, lond, latd = Planet.get_lambda_phi(v, false) if latd.nil? raise(ArgumentError, "v appears not having a latitudinal dimension") end if lond rho_v_cum = rho_v_cum.mean(lond) latd -= 1 if lond<latd end a_cos = NMath.cos(phi.val) * ( 2 * Math::PI * Planet.radius.to_f ) latd.times{a_cos.newdim!(0)} (rho_v_cum.rank - latd -1).times{a_cos.newdim!(-1)} mstrm_val = rho_v_cum * a_cos #< make a GPhys > axes = Array.new for d in 0...v.rank case d when lond # lost by zonal mean when zdim wax = Axis.new().set_pos(wcoord) axes.push(wax) else axes.push(v.axis(d).copy) # kept end end grid = Grid.new( *axes ) units = Units["kg.m-1"] # p/g*a : Pa / (m.s-2) * m = kg.m-1 units *= v.units mstrm_va = VArray.new(mstrm_val, {"long_name"=>"mass stream function", "units"=>units.to_s}, "mstrm") mstrm = GPhys.new(grid, mstrm_va) mstrm end |
.mass_strm_p(v, ps, pcoord = nil, vs = nil) ⇒ Object
Derive the mass stream function in the pressure coordinate
Applicable both to pressure- and sigma-coordinate input data (the output is always on the pressure coordinate).
ARGUMENTS
-
v [GPhys] : meridional wind with a vertical dimension (p or sigma) It must have a latitudinal dimension too. Longitudinal and time dimensions are optional. If it has a longitudinal dimension, zonal mean is taken. The order of the dimensions is not restricted.
-
ps [GPhys] : surface pressure. Its must have the same grid as v but for the vertical dimension (ps.rank must be v.rank-1)
-
pcoord [1D VArray](optional) : output vertical coordinate (set if nil)
-
vs [nil(default) or GPhys]: vs is not needed (neglected) when v has a sigma coordinate. It is an optional parameter to specify the surface values of v, when it is in the pressure coordinate. vs can be omitted (nil), even when v has a pressure coordinate; in that case, vs is set by interpolating v if ps is within the p range of v (e.g. when ps<=1000hPa), or it is naively extended (using the bottom values of v) if ps is out of the range (e.g. when ps>1000hPa). In other words, the current implementation assumes that v is available below the surface, as is customary for reanalysis data.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# File 'lib/numru/ganalysis/met_z.rb', line 36 def mass_strm_p(v, ps, pcoord=nil, vs=nil) pascal = Units["Pa"] grav = Met.g.to_f #< consolidate the p or sigma coordinate input > if zdim = Met.find_prs_d(v) # substitution, not comparison # has a pressure coordinate pcv = v.coord(zdim) # pcv is v's p coord, not pcoord from outside. # This is used only to feed c_cap_by_boundary. pcoord = pcv.copy if pcoord.nil? # if not given from outside, use pcv pcv_val = pcv.val v_val = v.val # should be NArray or NArrayMiss v_val = v_val.to_na if v_val.is_a?(NArrayMiss) if pcv_val[0] > pcv_val[-1] # reverse the p coordinate to the increasing order pcv_val = pcv_val[-1..0] v_val = v_val[ *([true]*zdim + [-1..0,false]) ] end pcv_val = pcv.units.convert2(pcv_val, pascal) if pcv.units!=pascal pcv_over_g = pcv_val / grav ps_val = ps.val ps_val = ps_val.to_na if ps_val.is_a?(NArrayMiss) ps_val = ps.units.convert2(ps_val, pascal) if ps.units!=pascal ps_over_g = ps_val / grav vs_val = vs && vs.val # nil (default) or vs.val (if vs is given) vs_val = vs_val.to_na if vs_val.is_a?(NArrayMiss) v_val, p_over_g, nzbound = GPhys.c_cap_by_boundary(v_val, zdim, pcv_over_g, true, ps_over_g, vs_val) elsif zdim = SigmaCoord.find_sigma_d(v) # substitution, not comparison # has a sigma coordnate sig = v.coord(zdim) unless pcoord pcoord = sig * 1000 pcoord.units = "hPa" pcoord.name = "p" pcoord.long_name = "pressure" pcoord.put_att("standard_name","air_pressure") pcoord.put_att("positive","down") end nz = sig.length nzbound = nil ps = ps.convert_units(pascal) if ps.units != pascal sig_val = sig.val v_val = v.val # should be NArray, not NArrayMiss (coz sigma) p_over_g = SigmaCoord.sig_ps2p(ps.val/grav, sig_val, zdim) else raise ArgumentError, "v does not have a p or sigma coordinate." end #< cumulative vertical integration > pc_val = pcoord.val if pc_val[0] > pc_val[-1] # change it to the increasing order pc_val = pc_val[-1..0] pcoord = pcoord.copy.replace_val(pc_val) end pc_val = pcoord.units.convert2(pc_val,pascal) pc_over_g = pc_val / grav rho_v_cum = GPhys.c_cum_integ_irreg(v_val, p_over_g, zdim, nzbound, pc_over_g, nil) #< zonal mean & latitudinal factor > lam, phi, lond, latd = Planet.get_lambda_phi(v, false) if latd.nil? raise(ArgumentError, "v appears not having a latitudinal dimension") end if lond rho_v_cum = rho_v_cum.mean(lond) latd -= 1 if lond<latd end a_cos = NMath.cos(phi.val) * ( 2 * Math::PI * Planet.radius.to_f ) latd.times{a_cos.newdim!(0)} (rho_v_cum.rank - latd -1).times{a_cos.newdim!(-1)} mstrm_val = rho_v_cum * a_cos #< make a GPhys > axes = Array.new for d in 0...v.rank case d when lond # lost by zonal mean when zdim pax = Axis.new().set_pos(pcoord) axes.push(pax) else axes.push(v.axis(d).copy) # kept end end grid = Grid.new( *axes ) units = Units["kg.m-1"] # p/g*a : Pa / (m.s-2) * m = kg.m-1 units *= v.units mstrm_va = VArray.new(mstrm_val, {"long_name"=>"mass stream function", "units"=>units.to_s}, "mstrm") mstrm = GPhys.new(grid, mstrm_va) mstrm end |