Module: NumRu::GAnalysis
- Defined in:
- lib/numru/ganalysis.rb,
lib/numru/ganalysis/qg.rb,
lib/numru/ganalysis/eof.rb,
lib/numru/ganalysis/met.rb,
lib/numru/ganalysis/pde.rb,
lib/numru/ganalysis/log_p.rb,
lib/numru/ganalysis/met_z.rb,
lib/numru/ganalysis/planet.rb,
lib/numru/ganalysis/fitting.rb,
lib/numru/ganalysis/histogram.rb,
lib/numru/ganalysis/beta_plane.rb,
lib/numru/ganalysis/covariance.rb,
lib/numru/ganalysis/sigma_coord.rb,
lib/numru/ganalysis/sph_harmonic_iso_g.rb,
ext/numru/ganalysis/pde_ext.c
Defined Under Namespace
Modules: Fitting, LogP, Met, MetZ, PDE, Planet, QG, QG_common, QG_sphere, QG_sphere_common, QG_sphere_div, SigmaCoord, SphHarmonicIsoG Classes: BetaPlane
Class Method Summary collapse
- .correlation(gphys0, gphys1, *dims) ⇒ Object
- .covariance(gphys0, gphys1, *dims) ⇒ Object
-
.eof(gphys, *args) ⇒ Object
Calculate EOF vectors and contribution rate.
- .eof2(gphys1, gphys2, *args) ⇒ Object
- .histogram(gphys0, opts = Hash.new) ⇒ Object (also: histogram1D)
- .histogram2D(gphys0, gphys1, opts = Hash.new) ⇒ Object
Class Method Details
.correlation(gphys0, gphys1, *dims) ⇒ Object
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# File 'lib/numru/ganalysis/covariance.rb', line 60 def correlation(gphys0, gphys1, *dims) val0 = gphys0.val val1 = gphys1.val if val0.is_a?(NArrayMiss) mask = val0.get_mask else mask = NArray.byte(*(val0.shape)).fill!(1) end if val1.is_a?(NArrayMiss) mask2 = val1.get_mask else mask2 = NArray.byte(*(val1.shape)).fill!(1) end mask.mul!(mask2) val0 = NArrayMiss.to_nam(val0) unless val0.is_a?(NArrayMiss) val1 = NArrayMiss.to_nam(val1) unless val1.is_a?(NArrayMiss) val0 = val0.set_mask(mask) val1 = val1.set_mask(mask) p val0,val1 if $DEBUG gphys0 = gphys0.copy.replace_val(val0) gphys1 = gphys1.copy.replace_val(val1) covariance, ndiv = gphys0.covariance(gphys1,*dims) dims = dims.map{|dim| gphys0.dim_index(dim) } return covariance/(gphys0.stddev(*dims)*gphys1.stddev(*dims)), mask.to_type(NArray::LINT).sum(*dims) end |
.covariance(gphys0, gphys1, *dims) ⇒ Object
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# File 'lib/numru/ganalysis/covariance.rb', line 8 def covariance(gphys0, gphys1, *dims) unless GPhys===gphys0 && GPhys===gphys1 raise "gphys0 and gphys1 must be GPhys" end unless gphys0.shape == gphys1.shape raise "gphys0 and gphys1 must have the same shape" end units = gphys0.units*gphys1.units if dims.length == 0 dims = Array.new gphys0.rank.times{|i| dims.push i } else dims = dims.map{|dim| gphys0.dim_index(dim) } end val0 = gphys0.val val1 = gphys1.val if val0.is_a?(NArrayMiss) if val1.is_a?(NArrayMiss) mask = val0.get_mask * val1.get_mask ndiv = mask.to_type(NArray::LINT).accum(*dims) val0 = val0.set_mask(mask) val1 = val1.set_mask(mask) else ndiv = val0.get_mask.to_type(NArray::LINT).accum(*dims) val1 = NArrayMiss.to_nam(val1,val0.get_mask) end elsif val1.is_a?(NArrayMiss) ndiv = val1.get_mask.to_type(NArray::LINT).accum(*dims) val0 = NArrayMiss.to_nam(val0,val1.get_mask) else ndiv = 1 gphys0.shape.each_with_index{|s,i| ndiv *= s if dims.include?(i) } end val0 -= val0.accum(*dims).div!(ndiv) val1 -= val1.accum(*dims).div!(ndiv) nary = val0.mul_add(val1,*dims) if Float === nary ndiv = ndiv[0] if ndiv.is_a?(NArray) nary /= (ndiv-1) return UNumeric.new(nary, units), ndiv else nary = nary.div!(ndiv-1) vary = VArray.new(nary, {"long_name"=>"covariance","units"=>units.to_s}, "covariance") new_grid = gphys0.grid.delete_axes(dims, "covariance").copy return GPhys.new(new_grid,vary), ndiv end end |
.eof(gphys, *args) ⇒ Object
Calculate EOF vectors and contribution rate
call-seq
NumRu::GAnalysis.eof(gphys, dim0[, dim1, ..., dimN[, opts]]) => [eof, rate]
Arguments
gphys
-
GPhys object to be calculated its EOF
dim0
, …,dimN
-
dimension name (String) or number (Ingeter) to calculate variance or covariance, and those dimensions are not contained in the result EOF vectors.
opts
-
a Hash object whose key is String or Symbol. The following options are available:
* nmodes: Integer, number of EOF modes to be calculate (default all EOF modes)
* weight: GPhys or NArray, weight vector
+gphys+ is multiplied by the weight vector before calculation of variance covariance matrix
and the result eigen vectors are divided by the vector.
If weight vector is not set,
it is cosine of latitude when the first two axes of the +gphys+ are "lon" and "lat" and +disable_weight+ option is not +true+,
else 1.
* disable_weight: See weight option.
Return values
eof
-
GPhys object for array of EOF vectors.
rate
-
GPhys object for array of contribution rate correspoinding to the EOF vectors.
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# File 'lib/numru/ganalysis/eof.rb', line 51 def eof(gphys, *args) unless defined?(@@EOF_engin) raise "SSL2 (Ruby-SSL2) or LAPACK (Ruby-LAPACK) or GSL (Ruby/GSL) must have been installed. (SSL2 or LAPACK is recommended for large computation)" end if Hash === args[-1] dims = args[0..-2] opts = args[-1] else dims = args opts = Hash.new end dims = dims.map{|dim| gphys.dim_index(dim) } n = 1 n_lost = 1 dims1 = Array.new shape1 = Array.new gphys.shape.each_with_index{|s,i| if dims.include?(i) n_lost *= s else n *= s dims1.push i shape1.push s end } new_grid = gphys.instance_variable_get("@grid").delete_axes(dims, "covariance matrix").copy new_index = NArray.sint(*new_grid.shape).indgen index = NArray.object(gphys.rank) index[dims] = true if w = (opts[:weight] || opts["weight"]) if GPhys === w w = w.val end unless NArray === w raise "weight must be NArray of GPhys" end unless w.shape == new_grid.shape raise "shape of weight is invalid" end w /= w.mean w.reshape!(n) elsif new_grid.rank >= 2 nc0 = new_grid.coord(0) nc1 = new_grid.coord(1) if !(opts[:disable_weight]||opts["disable_weight"]) && ( /^lon/ =~ nc0.name || /^degree.*_east/ =~ nc0.units.to_s ) && ( /^lat/ =~ nc1.name || /^degree.*_north/ =~ nc1.units.to_s ) rad = NumRu::Units.new("radian") nlon = nc0.length lat = nc1.convert_units(rad).val w = NArray.new(lat.typecode,nlon).fill!(1) * NMath::cos(lat).reshape(1,lat.length) w /= w.mean w.reshape!(n) else w = nil end else w = nil end ary = NArrayMiss.new(gphys.typecode, n_lost, n) ind_rank = dims1.length ind = Array.new(ind_rank,0) n.times{|n1| index[dims1] = ind val = gphys[*index].val val.reshape!(n_lost) vm = val.mean val -= vm unless vm.nil? ary[true,n1] = val break if n1==n-1 ind[0] += 1 ind_rank.times{|i| if ind[i] == shape1[i] ind[i] = 0 ind[i+1] += 1 else break end } } ary = ary.mul!(w.reshape(1,n)) if w nmodes = opts[:nmodes] || opts["nmodes"] || n case @@EOF_engin when "ssl2" print "start calc covariance matrix\n" if $DEBUG nary = NArray.new(gphys.typecode,n*(n+1)/2) nn = 0 total_var = 0 n.times{|n0| for n1 in n0...n nary[nn] = ary[n0].mul_add(ary[n1],0)/(n_lost-1) if n1==n0 total_var += nary[nn] end nn += 1 end } ary = nil # for GC print "start calc eigen vector\n" if $DEBUG val, vec = SSL2.seig2(nary,nmodes) when "lapack" print "start calc covariance matrix\n" if $DEBUG nary = NArray.new(gphys.typecode,n,n) total_var = 0.0 n.times{|n0| nary[n0...n,n0] = (ary[true,n0...n].mul_add(ary[true,n0],0)/(n_lost-1)).get_array! total_var += nary[n0,n0] } ary = nil # for GC print "start calc eigen vector\n" if $DEBUG case nary.typecode when NArray::DFLOAT m, val, vec, isuppz, work, iwork, info, = NumRu::Lapack.dsyevr("V", "I", "L", nary, 0, 0, n-nmodes+1, n, 0.0, -1, -1) m, val, vec, = NumRu::Lapack.dsyevr("V", "I", "L", nary, 0, 0, n-nmodes+1, n, 0.0, work[0], iwork[0]) when NArray::SFLOAT m, val, vec, isuppz, work, iwork, info, = NumRu::Lapack.ssyevr("V", "I", "L", nary, 0, 0, n-nmodes+1, n, 0.0, -1, -1) m, val, vec, = NumRu::Lapack.ssyevr("V", "I", "L", nary, 0, 0, n-nmodes+1, n, 0.0, work[0], iwork[0]) end val = val[-1..0] vec = vec[true,-1..0] when "gsl" print "start calc covariance matrix\n" if $DEBUG nary = NArray.new(gphys.typecode,n,n) n.times{|n0| nary[n0...n,n0] = (ary[true,n0...n].mul_add(ary[true,n0],0)/(n_lost-1)).get_array! nary[n0,n0...n] = nary[n0...n,n0] } ary = nil # for GC print "start calc eigen vector\n" if $DEBUG val, vec = GSL::Eigen::symmv(nary.to_gm) GSL::Eigen.symmv_sort(val, vec, GSL::Eigen::SORT_VAL_DESC) vec = vec.to_na[0...nmodes,true].transpose(1,0) val = val.to_na total_var = val.sum val = val[0...nmodes] end axes = new_grid.instance_variable_get('@axes') axis_order = Axis.new axis_order.pos = VArray.new(NArray.sint(nmodes).indgen(1), {}, "mode") axes << axis_order new_grid = Grid.new(*axes) vec /= w if w vec.reshape!(*new_grid.shape) vec *= NMath::sqrt( val.reshape( *([1]*(axes.length-1)+[nmodes]) ) ) va_eof = VArray.new(vec, {"long_name"=>"EOF vector","units"=>gphys.units.to_s }, "EOF") eof = GPhys.new(new_grid, va_eof) va_rate = VArray.new(val.div!(total_var), {"long_name"=>"EOF contribution rate", "units"=>"1" }, "rate") rate = GPhys.new(Grid.new(axis_order), va_rate) return [eof, rate] end |
.eof2(gphys1, gphys2, *args) ⇒ Object
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# File 'lib/numru/ganalysis/eof.rb', line 215 def eof2(gphys1, gphys2, *args) if Hash === args[-1] opts = args[-1] else opts = Hash.new end raise ArgumentError, "The 1st arg must be a GPhys of rank 1: arg1 = #{gphys1.inspect}" unless gphys1.rank==1 raise ArgumentError, "The 2nd arg must be a GPhys of rank 1: arg2 = #{gphys2.inspect}" unless gphys2.rank==1 raise ArgumentError, "The 1st and 2nd args must have the same length: #{gphys1.length}!=#{gphys2.length}" unless gphys2.rank==1 nam = NArrayMiss.new(gphys1.typecode, 2, gphys1.length) nam[0,true] = gphys1.val nam[1,true] = gphys2.val gphys = GPhys.new(Grid.new(Axis.new.set_pos(VArray.new(NArray[0,1],{},"var")), gphys1.axis(0)), VArray.new(nam,gphys1.data.attr_copy,gphys1.name)) eof(gphys, 1, opts) end |
.histogram(gphys0, opts = Hash.new) ⇒ Object Also known as: histogram1D
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# File 'lib/numru/ganalysis/histogram.rb', line 15 def histogram(gphys0,opts=Hash.new) unless HistogramGSL raise "gsl is necessary to use this method" end unless GPhys === gphys0 raise "gphys0 (1st arg) must be GPhys" end unless Hash === opts raise "opts (2nd arg) must be Hash" end if opts["bins"] bins = opts["bins"] unless (bins.is_a?(NArray) || bins.is_a?(Array)) raise(TypeError, "option 'bins' must be Array or NArray") end bins = bins.to_gslv if bins.is_a?(NArray) hist = GSL::Histogram.alloc(bins) else nbins = opts["nbins"] || gphys0.total/500 nbins = 10 if nbins < 10 min = opts["min"] || gphys0.min.val max = opts["max"] || gphys0.max.val if log_bins = (opts["log_bins"] && (min > 0)) min = Math.log10(min) max = Math.log10(max) end hist = GSL::Histogram.alloc(nbins,[min,max]) end val = gphys0.val val = val.get_array![val.get_mask!] if NArrayMiss === val val = NMath.log10(val) if log_bins hist.increment(val) bounds = hist.range.to_na bounds = 10 ** bounds if log_bins center = (bounds[0..-2]+bounds[1..-1])/2 cell_width = (bounds[1..-1] - bounds[0..-2]) / 2 name = gphys0.name attr = gphys0.data.attr_copy bounds = VArray.new(bounds, attr, name) center = VArray.new(center, attr, name) axis = Axis.new(true) axis.set_cell(center, bounds, name) axis.set_pos_to_center bin = hist.bin.to_na bin /= cell_width if opts["log_bins"] bin = VArray.new(bin, {"long_name" => (log_bins ? "number per unit bin width" : "number in bins"), "units"=>"1"}, "bin") new_gphys = GPhys.new(Grid.new(axis), bin) new_gphys.set_att("mean",[hist.mean]) new_gphys.set_att("standard_deviation",[hist.sigma]) return new_gphys end |
.histogram2D(gphys0, gphys1, opts = Hash.new) ⇒ Object
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# File 'lib/numru/ganalysis/histogram.rb', line 72 def histogram2D(gphys0, gphys1, opts=Hash.new) unless HistogramGSL raise "gsl is necessary to use this method" end unless GPhys === gphys0 raise "gphys0 (1st arg) must be GPhys" end unless GPhys === gphys1 raise "gphys1 (2nd arg) must be GPhys" end unless Hash === opts raise "opts (3nd arg) must be Hash" end nbins0 = opts["nbins0"] || gphys0.total/500 nbins0 = 10 if nbins0 < 10 nbins1 = opts["nbins1"] || gphys1.total/500 nbins1 = 10 if nbins1 < 10 min0 = opts["min0"] || gphys0.min.val max0 = opts["max0"] || gphys0.max.val min1 = opts["min1"] || gphys1.min.val max1 = opts["max1"] || gphys1.max.val hist = GSL::Histogram2d.alloc(nbins0,[min0,max0],nbins1,[min1,max1]) val0 = gphys0.val val1 = gphys1.val mask = nil if NArrayMiss === val0 mask = val0.get_mask! val0 = val0.get_array! end if NArrayMiss === val1 if mask mask = mask & val1.get_mask! else mask = val1.get_mask! end val1 = val1.get_array! end if mask val0 = val0[mask] val1 = val1[mask] end hist.increment(val0.to_gslv, val1.to_gslv) bounds0 = hist.xrange.to_na center0 = (bounds0[0..-2]+bounds0[1..-1])/2 name = gphys0.name attr = gphys0.data.attr_copy bounds0 = VArray.new(bounds0, attr, name) center0 = VArray.new(center0, attr, name) axis0 = Axis.new(true) axis0.set_cell(center0, bounds0, name) axis0.set_pos_to_center bounds1 = hist.yrange.to_na center1 = (bounds1[0..-2]+bounds1[1..-1])/2 name = gphys1.name attr = gphys1.data.attr_copy bounds1 = VArray.new(bounds1, attr, name) center1 = VArray.new(center1, attr, name) axis1 = Axis.new(true) axis1.set_cell(center1, bounds1, name) axis1.set_pos_to_center bin = hist.bin.to_na.reshape!(nbins1,nbins0).transpose(1,0) bin = VArray.new(bin, {"long_name"=>"number in bins", "units"=>"1"}, "bin") new_gphys = GPhys.new(Grid.new(axis0,axis1), bin) new_gphys.set_att("mean0",[hist.xmean]) new_gphys.set_att("standard_deviation0",[hist.xsigma]) new_gphys.set_att("mean1",[hist.ymean]) new_gphys.set_att("standard_deviation1",[hist.ysigma]) new_gphys.set_att("covariance",[hist.cov]) return new_gphys end |