Module: NumRu::GAnalysis::QG_common
- Included in:
- QG, QG_sphere, QG_sphere_div
- Defined in:
- lib/numru/ganalysis/qg.rb
Overview
QG_common: collection of common methods for QG, QG_sphere, and QG_sphere_div.
Class Method Summary collapse
- .cut_bottom(z) ⇒ Object
-
.extend_bottom(z, val_extended = nil) ⇒ Object
Extend the bottom pressure level by the lowest thickness (a hypothetical “Under-ground” level is created) If value of the extended bottom level is set to val_extended (Numeric or NArray etc), if it is specified (non nil).
-
.gp2gpref(gp) ⇒ Object
geopotential (multi-D) -> reference geopotential profile (1D).
-
.gpd2qzz(gp, b) ⇒ Object
[ (p/b) gp_z ]_z /p.
-
.gph2gpd_gpref(gph) ⇒ Object
geopotential height to geopotential deviation from the global&time mean.
-
.gph2gpref(gph) ⇒ Object
geopotential height (multi-D) -> reference geopotential profile (1D).
-
.gpref2n2(gpref) ⇒ Object
reference geopotential -> buoyancy frequency squared.
Instance Method Summary collapse
Class Method Details
.cut_bottom(z) ⇒ Object
154 155 156 157 158 159 160 161 162 |
# File 'lib/numru/ganalysis/qg.rb', line 154 def cut_bottom(z) pdim = Met.find_prs_d(z) plev = z.coord(pdim).val if plev[0] - plev[1] > 0 z[ *([true]*pdim + [1..-1,false]) ] else z[ *([true]*pdim + [0..-2,false]) ] end end |
.extend_bottom(z, val_extended = nil) ⇒ Object
Extend the bottom pressure level by the lowest thickness (a hypothetical “Under-ground” level is created) If value of the extended bottom level is set to val_extended (Numeric or NArray etc), if it is specified (non nil). If nil, the value at the original bottom level is simply copied.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# File 'lib/numru/ganalysis/qg.rb', line 127 def extend_bottom(z, val_extended=nil) pdim = Met.find_prs_d(z) plev = z.coord(pdim).val raise("Only one pressure level is found; 2 or more needed") if (plev==1) bottom_first = ( plev[0] - plev[1] > 0 ) np = z.shape[pdim] idx = (0...np).collect{|i| i} if bottom_first # The first level is the bottom one idx.unshift(0) # idx => [0,0,1,2,...,np-1] ihb = 0 # index of the extended bottom level dp = plev[0] - plev[1] phb = plev[0] + dp # pressure of the extended bottom level else # The last level is the bottom one idx.push(np-1) # idx => [0,1,2,...,np-1,np-1] ihb = np # index of the extended bottom level dp = plev[-1] - plev[-2] phb = plev[-1] + dp # pressure of the extended bottom level end ze = z[ *([true]*pdim + [idx,false]) ].copy # add one level below ze.coord(pdim)[ihb] = phb if val_extended ze[ *([true]*pdim + [ihb,false]) ] = val_extended end ze end |
.gp2gpref(gp) ⇒ Object
geopotential (multi-D) -> reference geopotential profile (1D)
24 25 26 27 28 29 30 31 32 33 34 35 36 |
# File 'lib/numru/ganalysis/qg.rb', line 24 def gp2gpref(gp) gpref = Planet::ave_s(gp) # horizontal ave (spherical) if gpref.rank >= 2 # likely a time sequence. need to reduce more. pdim = Met.find_prs_d(gpref) idxs = (0...gpref.rank).collect{|i| i} idxs.delete(pdim) gpref = gpref.mean(*idxs) end gpref.name = "gpref" gpref.long_name = "Reference geopotential" gpref end |
.gpd2qzz(gp, b) ⇒ Object
[ (p/b) gp_z ]_z /p
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# File 'lib/numru/ganalysis/qg.rb', line 65 def gpd2qzz(gp, b) bunits = Units["s-2"] # this is assumed! pdim = Met.find_prs_d(gp) p = gp.coord(pdim) z = LogP.p2z(p) zunits = z.units g = Derivative::( gp.val, pdim ) z = Derivative::( z.val, 0 ) p = Derivative::( p.val, 0 ) b = b.val b = b.to_na if b.respond_to?(:to_na) # likely a NArrayMiss b = Derivative::( b, 0 ) pb = p/b pbm = (pb[0..-2] + pb[1..-1]) / 2.0 # pb_{i+1/2} (for i=0..-2) pbm01 = pbm[0..-2] # pb_{i-1/2} (for i=1..-2) pbm12 = pbm[1..-1] # pb_{i+1/2} (for i=1..-2) dz20 = z[2..-1] - z[0..-3] # z_{i+1} - z_{i-1} (for i=1..-2) dz21 = z[2..-1] - z[1..-2] # z_{i+1} - z_{i} (for i=1..-2) dz10 = z[1..-2] - z[0..-3] # z_{i} - x_{i-1} (for i=1..-2) pc = p[1..-2] # p_{i} (for i=1..-2) a2 = 2*pbm12/(dz21*dz20)/pc a0 = 2*pbm01/(dz10*dz20)/pc a1 = -a2 - a0 to_rankD = [1]*pdim + [true] + [1]*(gp.rank-pdim-1) a2 = a2.reshape(*to_rankD) a1 = a1.reshape(*to_rankD) a0 = a0.reshape(*to_rankD) vqzz = g[ *([true]*pdim+[2..-1,false]) ] * a2 \ + g[ *([true]*pdim+[1..-2,false]) ] * a1 \ + g[ *([true]*pdim+[0..-3,false]) ] * a0 qzz = gp.copy qzz.data.replace_val(vqzz) qzz.name = "qzz" qzz.long_name = "z-deriv term in QG PV" qzz.units = qzz.units / zunits**2 / bunits qzz end |
.gph2gpd_gpref(gph) ⇒ Object
geopotential height to geopotential deviation from the global&time mean
40 41 42 43 44 45 46 47 |
# File 'lib/numru/ganalysis/qg.rb', line 40 def gph2gpd_gpref(gph) gp = gph * Met::g gpref = gp2gpref(gp) gpd = gp - gpref gpd.name = "gpd" gpd.long_name = "Geopotential deviation" [gpd, gpref] end |
.gph2gpref(gph) ⇒ Object
geopotential height (multi-D) -> reference geopotential profile (1D)
18 19 20 |
# File 'lib/numru/ganalysis/qg.rb', line 18 def gph2gpref(gph) gp2gpref(gph) * Met::g end |
.gpref2n2(gpref) ⇒ Object
reference geopotential -> buoyancy frequency squared
51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/numru/ganalysis/qg.rb', line 51 def gpref2n2(gpref) gp_z = LogP.pcdata_dz( gpref ) gp_zz = LogP.pcdata_dz2( gpref ) gp_zz[0] = gp_zz[1] # At boundary, it's safer to extend lapse rate gp_zz[-1] = gp_zz[-2] # At boundary, it's safer to extend lapse rate n2 = gp_zz + gp_z * (Met::Kappa / LogP.h) n2.name = "N2" n2.long_name = "N**2 (log-p)" #p "@@@@@ N2 @@@@",n2.coord(0).val.to_a, n2.val.sqrt.to_a n2 end |
Instance Method Details
#div_waf(fx, fy, fz, bottom_treatment = true) ⇒ Object
div of WAF
(p cos_phi)^-1 div(p waf) = (cos_phi)^-1 ( div_h(fx,fy) + p^-1 d_z (p fz) )
-
fx, fy, fz (GPhys) : the x, y and z components of waf
-
bottom_treatment (true (==default) or false) : If true, the lowest level vertical divergence is computed by assuming that fz is zero at the extended “underground” level. The thickness assumed (=p-p) is consistent with the ((<extend_bottom>)) method.
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/numru/ganalysis/qg.rb', line 185 def div_waf(fx, fy, fz, bottom_treatment=true) cosphi = cos_phi(fx) p = Met.get_prs(fx) fz_z = LogP.pcdata_dz( fz*p ) / p #>>>>>> the lowest layer treatment consistent with qb, in which # geopotential (or stream function) is extended by extend_bottom. # Assumption: the first level is the lowest (bottom) one if bottom_treatment # using the relation p^{-1} d/dz = -H^{-1} d/dp # and assuming fz=0 below the bottom (the "underground" level), # p^{-1} d/dz (p fz) = -H^{-1} d/dp (p fz), # which is H^{-1} p fz / delta_p, at the lowest level with a # "thickness" of delta_p. w = p[0..1].val dp = w[1] - w[0] p0 = w[0] pdim = Met.find_prs_d(fz) sel0 = [true]*pdim + [0,false] # to specify the first level fz_z[*sel0] = fz[*sel0]*p0 / (LogP.h*dp) end #<<<<<< divh = ( div_h(fx, fy) + fz_z ) / cosphi # ^ div_h is defined in QG, QG_sphere,..., but not in QG_common divh.name = "divwaf" divh.long_name = "div of waf (#{fx.name},..)" divh end |