Class: OpenTox::Algorithm::Fminer
- Inherits:
-
Object
- Object
- OpenTox::Algorithm::Fminer
- Includes:
- OpenTox::Algorithm
- Defined in:
- lib/algorithm.rb
Overview
Fminer algorithms (github.com/amaunz/fminer2)
Instance Attribute Summary collapse
-
#all_activities ⇒ Object
Returns the value of attribute all_activities.
-
#compounds ⇒ Object
Returns the value of attribute compounds.
-
#db_class_sizes ⇒ Object
Returns the value of attribute db_class_sizes.
-
#minfreq ⇒ Object
Returns the value of attribute minfreq.
-
#prediction_feature ⇒ Object
Returns the value of attribute prediction_feature.
-
#smi ⇒ Object
Returns the value of attribute smi.
-
#training_dataset ⇒ Object
Returns the value of attribute training_dataset.
Attributes included from OpenTox
Instance Method Summary collapse
- #add_fminer_data(fminer_instance, value_map) ⇒ Object
- #check_params(params, per_mil, subjectid = nil) ⇒ Object
Methods included from OpenTox::Algorithm
effect, gauss, get_cdk_descriptors, get_jl_descriptors, get_ob_descriptors, isnull_or_singular?, load_ds_csv, min_frequency, numeric?, pc_descriptors, #run, sum_size, #to_rdfxml, zero_variance?
Methods included from OpenTox
#add_metadata, all, #delete, #initialize, #load_metadata, sign_in, text_to_html, #to_rdfxml
Instance Attribute Details
#all_activities ⇒ Object
Returns the value of attribute all_activities.
55 56 57 |
# File 'lib/algorithm.rb', line 55 def all_activities @all_activities end |
#compounds ⇒ Object
Returns the value of attribute compounds.
55 56 57 |
# File 'lib/algorithm.rb', line 55 def compounds @compounds end |
#db_class_sizes ⇒ Object
Returns the value of attribute db_class_sizes.
55 56 57 |
# File 'lib/algorithm.rb', line 55 def db_class_sizes @db_class_sizes end |
#minfreq ⇒ Object
Returns the value of attribute minfreq.
55 56 57 |
# File 'lib/algorithm.rb', line 55 def minfreq @minfreq end |
#prediction_feature ⇒ Object
Returns the value of attribute prediction_feature.
55 56 57 |
# File 'lib/algorithm.rb', line 55 def prediction_feature @prediction_feature end |
#smi ⇒ Object
Returns the value of attribute smi.
55 56 57 |
# File 'lib/algorithm.rb', line 55 def smi @smi end |
#training_dataset ⇒ Object
Returns the value of attribute training_dataset.
55 56 57 |
# File 'lib/algorithm.rb', line 55 def training_dataset @training_dataset end |
Instance Method Details
#add_fminer_data(fminer_instance, value_map) ⇒ Object
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# File 'lib/algorithm.rb', line 104 def add_fminer_data(fminer_instance, value_map) # detect nr duplicates per compound compound_sizes = {} @training_dataset.compounds.each do |compound| entries=@training_dataset.data_entries[compound] entries.each do |feature, values| compound_sizes[compound] || compound_sizes[compound] = [] compound_sizes[compound] << values.size unless values.size == 0 end compound_sizes[compound].uniq! raise "Inappropriate data for fminer" if compound_sizes[compound].size > 1 compound_sizes[compound] = compound_sizes[compound][0] # integer instead of array end id = 1 # fminer start id is not 0 @training_dataset.compounds.each do |compound| entry=@training_dataset.data_entries[compound] begin smiles = OpenTox::Compound.new(compound).to_smiles rescue LOGGER.warn "No resource for #{compound.to_s}" next end if smiles == '' or smiles.nil? LOGGER.warn "Cannot find smiles for #{compound.to_s}." next end entry.each do |feature,values| if feature == @prediction_feature.uri (0...compound_sizes[compound]).each { |i| if values[i].nil? LOGGER.warn "No #{feature} activity for #{compound.to_s}." else if @prediction_feature.feature_type == "classification" activity= value_map.invert[values[i]].to_i # activities are mapped to 1..n @db_class_sizes[activity-1].nil? ? @db_class_sizes[activity-1]=1 : @db_class_sizes[activity-1]+=1 # AM effect elsif @prediction_feature.feature_type == "regression" activity= values[i].to_f end begin fminer_instance.AddCompound(smiles,id) if fminer_instance fminer_instance.AddActivity(activity, id) if fminer_instance @all_activities[id]=activity # DV: insert global information @compounds[id] = compound @smi[id] = smiles id += 1 rescue Exception => e LOGGER.warn "Could not add " + smiles + "\t" + values[i].to_s + " to fminer" LOGGER.warn e.backtrace end end } end end end end |
#check_params(params, per_mil, subjectid = nil) ⇒ Object
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
# File 'lib/algorithm.rb', line 57 def check_params(params,per_mil,subjectid=nil) raise OpenTox::NotFoundError.new "Please submit a dataset_uri." unless params[:dataset_uri] and !params[:dataset_uri].nil? @training_dataset = OpenTox::Dataset.find "#{params[:dataset_uri]}", subjectid unless params[:prediction_feature] # try to read prediction_feature from dataset raise OpenTox::NotFoundError.new "Please provide a prediction_feature parameter" unless @training_dataset.features.size == 1 prediction_feature = OpenTox::Feature.find(@training_dataset.features.keys.first,@subjectid) params[:prediction_feature] = prediction_feature.uri end @prediction_feature = OpenTox::Feature.find params[:prediction_feature], subjectid raise OpenTox::NotFoundError.new "No feature #{params[:prediction_feature]} in dataset #{params[:dataset_uri]}" unless @training_dataset.features and @training_dataset.features.include?(params[:prediction_feature]) unless params[:min_frequency].nil? # check for percentage if params[:min_frequency].include? "pc" per_mil=params[:min_frequency].gsub(/pc/,"") if OpenTox::Algorithm.numeric? per_mil per_mil = per_mil.to_i * 10 else bad_request=true end # check for per-mil elsif params[:min_frequency].include? "pm" per_mil=params[:min_frequency].gsub(/pm/,"") if OpenTox::Algorithm.numeric? per_mil per_mil = per_mil.to_i else bad_request=true end # set minfreq directly else if OpenTox::Algorithm.numeric? params[:min_frequency] @minfreq=params[:min_frequency].to_i LOGGER.debug "min_frequency #{@minfreq}" else bad_request=true end end raise OpenTox::BadRequestError.new "Minimum frequency must be integer [n], or a percentage [n]pc, or a per-mil [n]pm , with n greater 0" if bad_request end if @minfreq.nil? @minfreq=OpenTox::Algorithm.min_frequency(@training_dataset,per_mil) LOGGER.debug "min_frequency #{@minfreq} (input was #{per_mil} per-mil)" end end |