Class: PerfectShape::CubicBezierCurve
- Includes:
- MultiPoint
- Defined in:
- lib/perfect_shape/cubic_bezier_curve.rb
Constant Summary collapse
- OUTLINE_MINIMUM_DISTANCE_THRESHOLD =
BigDecimal('0.001')
Instance Attribute Summary
Attributes included from MultiPoint
Class Method Summary collapse
-
.point_crossings(x1, y1, xc1, yc1, xc2, yc2, x2, y2, px, py, level = 0) ⇒ Object
Calculates the number of times the cubic bézier curve from (x1,y1) to (x2,y2) crosses the ray extending to the right from (x,y).
Instance Method Summary collapse
-
#contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) ⇒ Boolean
Checks if cubic bézier curve contains point (two-number Array or x, y args).
-
#curve_center_point ⇒ Object
The center point on the outline of the curve.
-
#curve_center_x ⇒ Object
The center point x on the outline of the curve.
-
#curve_center_y ⇒ Object
The center point y on the outline of the curve.
- #intersect?(rectangle) ⇒ Boolean
-
#point_crossings(x_or_point, y = nil, level = 0) ⇒ Object
Calculates the number of times the cubic bézier curve crosses the ray extending to the right from (x,y).
- #point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD) ⇒ Object
-
#rect_crossings(rxmin, rymin, rxmax, rymax, level, crossings = 0) ⇒ Object
Accumulate the number of times the cubic crosses the shadow extending to the right of the rectangle.
- #rectangle_crossings(rectangle) ⇒ Object
-
#subdivisions(level = 1) ⇒ Object
Subdivides CubicBezierCurve exactly at its curve center returning 2 CubicBezierCurve’s as a two-element Array by default.
Methods included from MultiPoint
#first_point, #initialize, #max_x, #max_y, #min_x, #min_y, normalize_point_array
Methods inherited from Shape
#==, #bounding_box, #center_point, #center_x, #center_y, #height, #max_x, #max_y, #min_x, #min_y, #width
Class Method Details
.point_crossings(x1, y1, xc1, yc1, xc2, yc2, x2, y2, px, py, level = 0) ⇒ Object
Calculates the number of times the cubic bézier curve from (x1,y1) to (x2,y2) crosses the ray extending to the right from (x,y). If the point lies on a part of the curve, then no crossings are counted for that intersection. the level parameter should be 0 at the top-level call and will count up for each recursion level to prevent infinite recursion +1 is added for each crossing where the Y coordinate is increasing -1 is added for each crossing where the Y coordinate is decreasing
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 37 def point_crossings(x1, y1, xc1, yc1, xc2, yc2, x2, y2, px, py, level = 0) return 0 if (py < y1 && py < yc1 && py < yc2 && py < y2) return 0 if (py >= y1 && py >= yc1 && py >= yc2 && py >= y2) # Note y1 could equal yc1... return 0 if (px >= x1 && px >= xc1 && px >= xc2 && px >= x2) if (px < x1 && px < xc1 && px < xc2 && px < x2) if (py >= y1) return 1 if (py < y2) else # py < y1 return -1 if (py >= y2) end # py outside of y12 range, and/or y1==yc1 return 0 end # double precision only has 52 bits of mantissa return PerfectShape::Line.point_crossings(x1, y1, x2, y2, px, py) if (level > 52) xmid = BigDecimal((xc1 + xc2).to_s) / 2 ymid = BigDecimal((yc1 + yc2).to_s) / 2 xc1 = BigDecimal((x1 + xc1).to_s) / 2 yc1 = BigDecimal((y1 + yc1).to_s) / 2 xc2 = BigDecimal((xc2 + x2).to_s) / 2 yc2 = BigDecimal((yc2 + y2).to_s) / 2 xc1m = BigDecimal((xc1 + xmid).to_s) / 2 yc1m = BigDecimal((yc1 + ymid).to_s) / 2 xmc1 = BigDecimal((xmid + xc2).to_s) / 2 ymc1 = BigDecimal((ymid + yc2).to_s) / 2 xmid = BigDecimal((xc1m + xmc1).to_s) / 2 ymid = BigDecimal((yc1m + ymc1).to_s) / 2 # [xy]mid are NaN if any of [xy]c0m or [xy]mc1 are NaN # [xy]c0m or [xy]mc1 are NaN if any of [xy][c][01] are NaN # These values are also NaN if opposing infinities are added return 0 if (xmid.nan? || ymid.nan?) point_crossings(x1, y1, xc1, yc1, xc1m, yc1m, xmid, ymid, px, py, level+1) + point_crossings(xmid, ymid, xmc1, ymc1, xc2, yc2, x2, y2, px, py, level+1) end |
Instance Method Details
#contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) ⇒ Boolean
Checks if cubic bézier curve contains point (two-number Array or x, y args)
the cubic bézier curve, false if the point lies outside of the cubic bézier curve’s bounds.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 88 def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) x, y = Point.normalize_point(x_or_point, y) return unless x && y if outline distance_tolerance = BigDecimal(distance_tolerance.to_s) minimum_distance_threshold = OUTLINE_MINIMUM_DISTANCE_THRESHOLD + distance_tolerance point_distance(x, y, minimum_distance_threshold: minimum_distance_threshold) < minimum_distance_threshold else # Either x or y was infinite or NaN. # A NaN always produces a negative response to any test # and Infinity values cannot be "inside" any path so # they should return false as well. return false if (!(x * 0.0 + y * 0.0 == 0.0)) # We count the "Y" crossings to determine if the point is # inside the curve bounded by its closing line. x1 = points[0][0] y1 = points[0][1] x2 = points[3][0] y2 = points[3][1] line = PerfectShape::Line.new(points: [[x1, y1], [x2, y2]]) crossings = line.point_crossings(x, y) + point_crossings(x, y) (crossings & 1) == 1 end end |
#curve_center_point ⇒ Object
The center point on the outline of the curve
129 130 131 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 129 def curve_center_point subdivisions.last.points[0] end |
#curve_center_x ⇒ Object
The center point x on the outline of the curve
134 135 136 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 134 def curve_center_x subdivisions.last.points[0][0] end |
#curve_center_y ⇒ Object
The center point y on the outline of the curve
139 140 141 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 139 def curve_center_y subdivisions.last.points[0][1] end |
#intersect?(rectangle) ⇒ Boolean
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 215 def intersect?(rectangle) w = rectangle.width h = rectangle.height # Trivially reject non-existant rectangles return false if w <= 0 || h <= 0 num_crossings = rectangle_crossings(rectangle) # the intended return value is # num_crossings != 0 || num_crossings == PerfectShape::Rectangle::RECT_INTERSECTS # but if (num_crossings != 0) num_crossings == INTERSECTS won't matter # and if !(num_crossings != 0) then num_crossings == 0, so # num_crossings != RECT_INTERSECT num_crossings != 0 end |
#point_crossings(x_or_point, y = nil, level = 0) ⇒ Object
Calculates the number of times the cubic bézier curve crosses the ray extending to the right from (x,y). If the point lies on a part of the curve, then no crossings are counted for that intersection. the level parameter should be 0 at the top-level call and will count up for each recursion level to prevent infinite recursion +1 is added for each crossing where the Y coordinate is increasing -1 is added for each crossing where the Y coordinate is decreasing
122 123 124 125 126 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 122 def point_crossings(x_or_point, y = nil, level = 0) x, y = Point.normalize_point(x_or_point, y) return unless x && y CubicBezierCurve.point_crossings(points[0][0], points[0][1], points[1][0], points[1][1], points[2][0], points[2][1], points[3][0], points[3][1], x, y, level) end |
#point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD) ⇒ Object
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 185 def point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD) x, y = Point.normalize_point(x_or_point, y) return unless x && y point = Point.new(x, y) current_curve = self minimum_distance = point.point_distance(curve_center_point) last_minimum_distance = minimum_distance + 1 # start bigger to ensure going through loop once at least while minimum_distance >= minimum_distance_threshold && minimum_distance < last_minimum_distance curve1, curve2 = current_curve.subdivisions curve1_center_point = curve1.curve_center_point distance1 = point.point_distance(curve1_center_point) curve2_center_point = curve2.curve_center_point distance2 = point.point_distance(curve2_center_point) last_minimum_distance = minimum_distance if distance1 < distance2 minimum_distance = distance1 current_curve = curve1 else minimum_distance = distance2 current_curve = curve2 end end if minimum_distance < minimum_distance_threshold minimum_distance else last_minimum_distance end end |
#rect_crossings(rxmin, rymin, rxmax, rymax, level, crossings = 0) ⇒ Object
Accumulate the number of times the cubic crosses the shadow extending to the right of the rectangle. See the comment for the RECT_INTERSECTS constant for more complete details.
crossings arg is the initial crossings value to add to (useful in cases where you want to accumulate crossings from multiple shapes)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 259 def rect_crossings(rxmin, rymin, rxmax, rymax, level, crossings = 0) x0 = points[0][0] y0 = points[0][1] xc0 = points[1][0] yc0 = points[1][1] xc1 = points[2][0] yc1 = points[2][1] x1 = points[3][0] y1 = points[3][1] return crossings if y0 >= rymax && yc0 >= rymax && yc1 >= rymax && y1 >= rymax return crossings if y0 <= rymin && yc0 <= rymin && yc1 <= rymin && y1 <= rymin return crossings if x0 <= rxmin && xc0 <= rxmin && xc1 <= rxmin && x1 <= rxmin if x0 >= rxmax && xc0 >= rxmax && xc1 >= rxmax && x1 >= rxmax # Cubic is entirely to the right of the rect # and the vertical range of the 4 Y coordinates of the cubic # overlaps the vertical range of the rect by a non-empty amount # We now judge the crossings solely based on the line segment # connecting the endpoints of the cubic. # Note that we may have 0, 1, or 2 crossings as the control # points may be causing the Y range intersection while the # two endpoints are entirely above or below. if y0 < y1 # y-increasing line segment... crossings += 1 if (y0 <= rymin && y1 > rymin) crossings += 1 if (y0 < rymax && y1 >= rymax) elsif y1 < y0 # y-decreasing line segment... crossings -= 1 if (y1 <= rymin && y0 > rymin) crossings -= 1 if (y1 < rymax && y0 >= rymax) end return crossings end # The intersection of ranges is more complicated # First do trivial INTERSECTS rejection of the cases # where one of the endpoints is inside the rectangle. return PerfectShape::Rectangle::RECT_INTERSECTS if ((x0 > rxmin && x0 < rxmax && y0 > rymin && y0 < rymax) || (x1 > rxmin && x1 < rxmax && y1 > rymin && y1 < rymax)) # Otherwise, subdivide and look for one of the cases above. # double precision only has 52 bits of mantissa return PerfectShape::Line.new(points: [[x0, y0], [x1, y1]]).rect_crossings(rxmin, rymin, rxmax, rymax, crossings) if (level > 52) xmid = BigDecimal((xc0 + xc1).to_s) / 2 ymid = BigDecimal((yc0 + yc1).to_s) / 2 xc0 = BigDecimal((x0 + xc0).to_s) / 2 yc0 = BigDecimal((y0 + yc0).to_s) / 2 xc1 = BigDecimal((xc1 + x1).to_s) / 2 yc1 = BigDecimal((yc1 + y1).to_s) / 2 xc0m = BigDecimal((xc0 + xmid).to_s) / 2 yc0m = BigDecimal((yc0 + ymid).to_s) / 2 xmc1 = BigDecimal((xmid + xc1).to_s) / 2 ymc1 = BigDecimal((ymid + yc1).to_s) / 2 xmid = BigDecimal((xc0m + xmc1).to_s) / 2 ymid = BigDecimal((yc0m + ymc1).to_s) / 2 # [xy]mid are NaN if any of [xy]c0m or [xy]mc1 are NaN # [xy]c0m or [xy]mc1 are NaN if any of [xy][c][01] are NaN # These values are also NaN if opposing infinities are added return 0 if xmid.nan? || ymid.nan? cubic1 = CubicBezierCurve.new(points: [[x0, y0], [xc0, yc0], [xc0m, yc0m], [xmid, ymid]]) crossings = cubic1.rect_crossings(rxmin, rymin, rxmax, rymax, level + 1, crossings) if crossings != PerfectShape::Rectangle::RECT_INTERSECTS cubic2 = CubicBezierCurve.new(points: [[xmid, ymid], [xmc1, ymc1], [xc1, yc1], [x1, y1]]) crossings = cubic2.rect_crossings(rxmin, rymin, rxmax, rymax, level + 1, crossings) end crossings end |
#rectangle_crossings(rectangle) ⇒ Object
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 231 def rectangle_crossings(rectangle) x = rectangle.x y = rectangle.y w = rectangle.width h = rectangle.height x1 = points[0][0] y1 = points[0][1] x2 = points[3][0] y2 = points[3][1] crossings = 0 if !(x1 == x2 && y1 == y2) line = PerfectShape::Line.new(points: [[x1, y1], [x2, y2]]) crossings = line.rect_crossings(x, y, x+w, y+h, crossings) return crossings if crossings == PerfectShape::Rectangle::RECT_INTERSECTS end # we call this with the curve's direction reversed, because we wanted # to call rectCrossingsForLine first, because it's cheaper. rect_crossings(x, y, x+w, y+h, 0, crossings) end |
#subdivisions(level = 1) ⇒ Object
Subdivides CubicBezierCurve exactly at its curve center returning 2 CubicBezierCurve’s as a two-element Array by default
Optional ‘level` parameter specifies the level of recursions to perform to get more subdivisions. The number of resulting subdivisions is 2 to the power of `level` (e.g. 2 subdivisions for level=1, 4 subdivisions for level=2, and 8 subdivisions for level=3)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# File 'lib/perfect_shape/cubic_bezier_curve.rb', line 150 def subdivisions(level = 1) level -= 1 # consume 1 level x1 = points[0][0] y1 = points[0][1] ctrlx1 = points[1][0] ctrly1 = points[1][1] ctrlx2 = points[2][0] ctrly2 = points[2][1] x2 = points[3][0] y2 = points[3][1] centerx = BigDecimal((ctrlx1 + ctrlx2).to_s) / 2 centery = BigDecimal((ctrly1 + ctrly2).to_s) / 2 ctrlx1 = BigDecimal((x1 + ctrlx1).to_s) / 2 ctrly1 = BigDecimal((y1 + ctrly1).to_s) / 2 ctrlx2 = BigDecimal((x2 + ctrlx2).to_s) / 2 ctrly2 = BigDecimal((y2 + ctrly2).to_s) / 2 ctrlx12 = BigDecimal((ctrlx1 + centerx).to_s) / 2 ctrly12 = BigDecimal((ctrly1 + centery).to_s) / 2 ctrlx21 = BigDecimal((ctrlx2 + centerx).to_s) / 2 ctrly21 = BigDecimal((ctrly2 + centery).to_s) / 2 centerx = BigDecimal((ctrlx12 + ctrlx21).to_s) / 2 centery = BigDecimal((ctrly12 + ctrly21).to_s) / 2 first_curve = CubicBezierCurve.new(points: [x1, y1, ctrlx1, ctrly1, ctrlx12, ctrly12, centerx, centery]) second_curve = CubicBezierCurve.new(points: [centerx, centery, ctrlx21, ctrly21, ctrlx2, ctrly2, x2, y2]) default_subdivisions = [first_curve, second_curve] if level == 0 default_subdivisions else default_subdivisions.map { |curve| curve.subdivisions(level) }.flatten end end |