Method: Polars::Expr#rolling_min_by

Defined in:
lib/polars/expr.rb

#rolling_min_by(by, window_size, min_periods: 1, closed: "right", warn_if_unsorted: nil) ⇒ Expr

Note:

If you want to compute multiple aggregation statistics over the same dynamic window, consider using rolling - this method can cache the window size computation.

Apply a rolling min based on another column.

Examples:

Create a DataFrame with a datetime column and a row number column

start = DateTime.new(2001, 1, 1)
stop = DateTime.new(2001, 1, 2)
df_temporal = Polars::DataFrame.new(
  {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
).with_row_index
# =>
# shape: (25, 2)
# ┌───────┬─────────────────────┐
# │ index ┆ date                │
# │ ---   ┆ ---                 │
# │ u32   ┆ datetime[ns]        │
# ╞═══════╪═════════════════════╡
# │ 0     ┆ 2001-01-01 00:00:00 │
# │ 1     ┆ 2001-01-01 01:00:00 │
# │ 2     ┆ 2001-01-01 02:00:00 │
# │ 3     ┆ 2001-01-01 03:00:00 │
# │ 4     ┆ 2001-01-01 04:00:00 │
# │ …     ┆ …                   │
# │ 20    ┆ 2001-01-01 20:00:00 │
# │ 21    ┆ 2001-01-01 21:00:00 │
# │ 22    ┆ 2001-01-01 22:00:00 │
# │ 23    ┆ 2001-01-01 23:00:00 │
# │ 24    ┆ 2001-01-02 00:00:00 │
# └───────┴─────────────────────┘

Compute the rolling min with the temporal windows closed on the right (default)

df_temporal.with_columns(
  rolling_row_min: Polars.col("index").rolling_min_by("date", "2h")
)
# =>
# shape: (25, 3)
# ┌───────┬─────────────────────┬─────────────────┐
# │ index ┆ date                ┆ rolling_row_min │
# │ ---   ┆ ---                 ┆ ---             │
# │ u32   ┆ datetime[ns]        ┆ u32             │
# ╞═══════╪═════════════════════╪═════════════════╡
# │ 0     ┆ 2001-01-01 00:00:00 ┆ 0               │
# │ 1     ┆ 2001-01-01 01:00:00 ┆ 0               │
# │ 2     ┆ 2001-01-01 02:00:00 ┆ 1               │
# │ 3     ┆ 2001-01-01 03:00:00 ┆ 2               │
# │ 4     ┆ 2001-01-01 04:00:00 ┆ 3               │
# │ …     ┆ …                   ┆ …               │
# │ 20    ┆ 2001-01-01 20:00:00 ┆ 19              │
# │ 21    ┆ 2001-01-01 21:00:00 ┆ 20              │
# │ 22    ┆ 2001-01-01 22:00:00 ┆ 21              │
# │ 23    ┆ 2001-01-01 23:00:00 ┆ 22              │
# │ 24    ┆ 2001-01-02 00:00:00 ┆ 23              │
# └───────┴─────────────────────┴─────────────────┘

Parameters:

  • by (String)

    This column must be of dtype Datetime or Date.

  • window_size (String)

    The length of the window. Can be a dynamic temporal size indicated by a timedelta or the following string language:

    • 1ns (1 nanosecond)
    • 1us (1 microsecond)
    • 1ms (1 millisecond)
    • 1s (1 second)
    • 1m (1 minute)
    • 1h (1 hour)
    • 1d (1 calendar day)
    • 1w (1 calendar week)
    • 1mo (1 calendar month)
    • 1q (1 calendar quarter)
    • 1y (1 calendar year)

    By "calendar day", we mean the corresponding time on the next day (which may not be 24 hours, due to daylight savings). Similarly for "calendar week", "calendar month", "calendar quarter", and "calendar year".

  • min_periods (Integer) (defaults to: 1)

    The number of values in the window that should be non-null before computing a result.

  • closed ('left', 'right', 'both', 'none') (defaults to: "right")

    Define which sides of the temporal interval are closed (inclusive), defaults to 'right'.

  • warn_if_unsorted (Boolean) (defaults to: nil)

    Warn if data is not known to be sorted by by column.

Returns:

[View source]

4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
# File 'lib/polars/expr.rb', line 4086

def rolling_min_by(
  by,
  window_size,
  min_periods: 1,
  closed: "right",
  warn_if_unsorted: nil
)
  window_size = _prepare_rolling_by_window_args(window_size)
  by = Utils.parse_into_expression(by)
  _from_rbexpr(
    _rbexpr.rolling_min_by(by, window_size, min_periods, closed)
  )
end