Class: Polars::DataFrame
- Inherits:
-
Object
- Object
- Polars::DataFrame
- Defined in:
- lib/polars/data_frame.rb
Overview
Two-dimensional data structure representing data as a table with rows and columns.
Class Method Summary collapse
-
.deserialize(source) ⇒ DataFrame
Read a serialized DataFrame from a file.
Instance Method Summary collapse
-
#!=(other) ⇒ DataFrame
Not equal.
-
#%(other) ⇒ DataFrame
Returns the modulo.
-
#*(other) ⇒ DataFrame
Performs multiplication.
-
#+(other) ⇒ DataFrame
Performs addition.
-
#-(other) ⇒ DataFrame
Performs subtraction.
-
#/(other) ⇒ DataFrame
Performs division.
-
#<(other) ⇒ DataFrame
Less than.
-
#<=(other) ⇒ DataFrame
Less than or equal.
-
#==(other) ⇒ DataFrame
Equal.
-
#>(other) ⇒ DataFrame
Greater than.
-
#>=(other) ⇒ DataFrame
Greater than or equal.
-
#[](*key) ⇒ Object
Returns subset of the DataFrame.
-
#[]=(*key, value) ⇒ Object
Set item.
-
#bottom_k(k, by:, reverse: false) ⇒ DataFrame
Return the
ksmallest rows. -
#cast(dtypes, strict: true) ⇒ DataFrame
Cast DataFrame column(s) to the specified dtype(s).
-
#clear(n = 0) ⇒ DataFrame
Create an empty copy of the current DataFrame.
-
#collect_schema ⇒ Schema
Get an ordered mapping of column names to their data type.
-
#columns ⇒ Array
Get column names.
-
#columns=(columns) ⇒ Object
Change the column names of the DataFrame.
-
#delete(name) ⇒ Series
Drop in place if exists.
-
#describe(percentiles: [0.25, 0.5, 0.75], interpolation: "nearest") ⇒ DataFrame
Summary statistics for a DataFrame.
-
#drop(*columns, strict: true) ⇒ DataFrame
Remove column from DataFrame and return as new.
-
#drop_in_place(name) ⇒ Series
Drop in place.
-
#drop_nans(subset: nil) ⇒ DataFrame
Drop all rows that contain one or more NaN values.
-
#drop_nulls(subset: nil) ⇒ DataFrame
Drop all rows that contain one or more null values.
-
#dtypes ⇒ Array
Get dtypes of columns in DataFrame.
-
#each(&block) ⇒ Object
Returns an enumerator.
-
#each_row(named: true, buffer_size: 500, &block) ⇒ Object
Returns an iterator over the DataFrame of rows of Ruby-native values.
-
#equals(other, null_equal: true) ⇒ Boolean
Check if DataFrame is equal to other.
-
#estimated_size(unit = "b") ⇒ Numeric
Return an estimation of the total (heap) allocated size of the DataFrame.
-
#explode(columns, *more_columns, empty_as_null: true, keep_nulls: true) ⇒ DataFrame
Explode
DataFrameto long format by exploding a column with Lists. -
#extend(other) ⇒ DataFrame
Extend the memory backed by this
DataFramewith the values fromother. -
#fill_nan(value) ⇒ DataFrame
Fill floating point NaN values by an Expression evaluation.
-
#fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: true) ⇒ DataFrame
Fill null values using the specified value or strategy.
-
#filter(*predicates, **constraints) ⇒ DataFrame
Filter the rows in the DataFrame based on a predicate expression.
-
#flags ⇒ Hash
Get flags that are set on the columns of this DataFrame.
-
#fold ⇒ Series
Apply a horizontal reduction on a DataFrame.
-
#gather_every(n, offset = 0) ⇒ DataFrame
Take every nth row in the DataFrame and return as a new DataFrame.
-
#get_column(name, default: NO_DEFAULT) ⇒ Series
Get a single column by name.
-
#get_column_index(name) ⇒ Series
Find the index of a column by name.
-
#get_columns ⇒ Array
Get the DataFrame as a Array of Series.
-
#glimpse(max_items_per_column: 10, max_colname_length: 50, return_type: nil) ⇒ Object
Return a dense preview of the DataFrame.
-
#group_by(*by, maintain_order: false, **named_by) ⇒ GroupBy
Start a group by operation.
-
#group_by_dynamic(index_column, every:, period: nil, offset: nil, include_boundaries: false, closed: "left", label: "left", group_by: nil, start_by: "window") ⇒ DataFrame
Group based on a time value (or index value of type Int32, Int64).
-
#hash_rows(seed: 0, seed_1: nil, seed_2: nil, seed_3: nil) ⇒ Series
Hash and combine the rows in this DataFrame.
-
#head(n = 5) ⇒ DataFrame
Get the first
nrows. -
#height ⇒ Integer
(also: #count, #length, #size)
Get the height of the DataFrame.
-
#hstack(columns, in_place: false) ⇒ DataFrame
Return a new DataFrame grown horizontally by stacking multiple Series to it.
-
#include?(name) ⇒ Boolean
Check if DataFrame includes column.
-
#initialize(data = nil, schema: nil, schema_overrides: nil, strict: true, orient: nil, infer_schema_length: N_INFER_DEFAULT, nan_to_null: false, height: nil) ⇒ DataFrame
constructor
Create a new DataFrame.
-
#insert_column(index, column) ⇒ DataFrame
Insert a Series at a certain column index.
-
#interpolate ⇒ DataFrame
Interpolate intermediate values.
-
#is_duplicated ⇒ Series
Get a mask of all duplicated rows in this DataFrame.
-
#is_empty ⇒ Boolean
(also: #empty?)
Check if the dataframe is empty.
-
#is_unique ⇒ Series
Get a mask of all unique rows in this DataFrame.
-
#item(row = nil, column = nil) ⇒ Object
Return the DataFrame as a scalar, or return the element at the given row/column.
-
#iter_columns ⇒ Object
Returns an iterator over the columns of this DataFrame.
-
#iter_rows(named: false, buffer_size: 512, &block) ⇒ Object
Returns an iterator over the DataFrame of rows of Ruby-native values.
-
#iter_slices(n_rows: 10_000) ⇒ Object
Returns a non-copying iterator of slices over the underlying DataFrame.
-
#join(other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right", validate: "m:m", nulls_equal: false, coalesce: nil, maintain_order: nil) ⇒ DataFrame
Join in SQL-like fashion.
-
#join_asof(other, left_on: nil, right_on: nil, on: nil, by_left: nil, by_right: nil, by: nil, strategy: "backward", suffix: "_right", tolerance: nil, allow_parallel: true, force_parallel: false, coalesce: true, allow_exact_matches: true, check_sortedness: true) ⇒ DataFrame
Perform an asof join.
-
#join_where(other, *predicates, suffix: "_right") ⇒ DataFrame
Perform a join based on one or multiple (in)equality predicates.
-
#lazy ⇒ LazyFrame
Start a lazy query from this point.
-
#limit(n = 5) ⇒ DataFrame
Get the first
nrows. -
#map_columns(column_names, *args, **kwargs, &function) ⇒ DataFrame
Apply eager functions to columns of a DataFrame.
-
#map_rows(return_dtype: nil, inference_size: 256, &function) ⇒ Object
Apply a custom/user-defined function (UDF) over the rows of the DataFrame.
-
#max ⇒ DataFrame
Aggregate the columns of this DataFrame to their maximum value.
-
#max_horizontal ⇒ Series
Get the maximum value horizontally across columns.
-
#mean ⇒ DataFrame
Aggregate the columns of this DataFrame to their mean value.
-
#mean_horizontal(ignore_nulls: true) ⇒ Series
Take the mean of all values horizontally across columns.
-
#median ⇒ DataFrame
Aggregate the columns of this DataFrame to their median value.
-
#merge_sorted(other, key) ⇒ DataFrame
Take two sorted DataFrames and merge them by the sorted key.
-
#min ⇒ DataFrame
Aggregate the columns of this DataFrame to their minimum value.
-
#min_horizontal ⇒ Series
Get the minimum value horizontally across columns.
-
#n_chunks(strategy: "first") ⇒ Object
Get number of chunks used by the ChunkedArrays of this DataFrame.
-
#n_unique(subset: nil) ⇒ DataFrame
Return the number of unique rows, or the number of unique row-subsets.
-
#null_count ⇒ DataFrame
Create a new DataFrame that shows the null counts per column.
-
#partition_by(by, *more_by, maintain_order: true, include_key: true, as_dict: false) ⇒ Object
Split into multiple DataFrames partitioned by groups.
-
#pipe(function, *args, **kwargs, &block) ⇒ Object
Offers a structured way to apply a sequence of user-defined functions (UDFs).
-
#pivot(on, on_columns: nil, index: nil, values: nil, aggregate_function: nil, maintain_order: true, sort_columns: false, separator: "_") ⇒ DataFrame
Create a spreadsheet-style pivot table as a DataFrame.
-
#plot(x = nil, y = nil, type: nil, group: nil, stacked: nil) ⇒ Object
Plot data.
-
#product ⇒ DataFrame
Aggregate the columns of this DataFrame to their product values.
-
#quantile(quantile, interpolation: "nearest") ⇒ DataFrame
Aggregate the columns of this DataFrame to their quantile value.
-
#rechunk ⇒ DataFrame
This will make sure all subsequent operations have optimal and predictable performance.
-
#remove(*predicates, **constraints) ⇒ DataFrame
Remove rows, dropping those that match the given predicate expression(s).
-
#rename(mapping, strict: true) ⇒ DataFrame
Rename column names.
-
#replace_column(index, column) ⇒ DataFrame
Replace a column at an index location.
-
#reverse ⇒ DataFrame
Reverse the DataFrame.
-
#rolling(index_column:, period:, offset: nil, closed: "right", group_by: nil) ⇒ RollingGroupBy
Create rolling groups based on a time column.
-
#row(index = nil, by_predicate: nil, named: false) ⇒ Object
Get a row as tuple, either by index or by predicate.
-
#rows(named: false) ⇒ Array
Convert columnar data to rows as Ruby arrays.
-
#rows_by_key(key, named: false, include_key: false, unique: false) ⇒ Hash
Convert columnar data to rows as Ruby arrays in a hash keyed by some column.
-
#sample(n: nil, fraction: nil, with_replacement: false, shuffle: false, seed: nil) ⇒ DataFrame
Sample from this DataFrame.
-
#schema ⇒ Hash
Get the schema.
-
#select(*exprs, **named_exprs) ⇒ DataFrame
Select columns from this DataFrame.
-
#select_seq(*exprs, **named_exprs) ⇒ DataFrame
Select columns from this DataFrame.
-
#serialize(file = nil) ⇒ Object
Serialize this DataFrame to a file or string.
-
#set_sorted(column, descending: false) ⇒ DataFrame
Flag a column as sorted.
-
#shape ⇒ Array
Get the shape of the DataFrame.
-
#shift(n = 1, fill_value: nil) ⇒ DataFrame
Shift values by the given period.
-
#shrink_to_fit(in_place: false) ⇒ DataFrame
Shrink DataFrame memory usage.
-
#slice(offset, length = nil) ⇒ DataFrame
Get a slice of this DataFrame.
-
#sort(by, *more_by, descending: false, nulls_last: false, multithreaded: true, maintain_order: false) ⇒ DataFrame
Sort the dataframe by the given columns.
-
#sort!(by, descending: false, nulls_last: false) ⇒ DataFrame
Sort the DataFrame by column in-place.
-
#sql(query, table_name: "self") ⇒ DataFrame
Execute a SQL query against the DataFrame.
-
#std(ddof: 1) ⇒ DataFrame
Aggregate the columns of this DataFrame to their standard deviation value.
-
#sum ⇒ DataFrame
Aggregate the columns of this DataFrame to their sum value.
-
#sum_horizontal(ignore_nulls: true) ⇒ Series
Sum all values horizontally across columns.
-
#tail(n = 5) ⇒ DataFrame
Get the last
nrows. -
#to_a ⇒ Array
Returns an array representing the DataFrame.
-
#to_csv(**options) ⇒ String
Write to comma-separated values (CSV) string.
-
#to_dummies(columns: nil, separator: "_", drop_first: false, drop_nulls: false) ⇒ DataFrame
Get one hot encoded dummy variables.
-
#to_h(as_series: true) ⇒ Hash
Convert DataFrame to a hash mapping column name to values.
-
#to_hashes ⇒ Array
Convert every row to a hash.
-
#to_numo ⇒ Numo::NArray
Convert DataFrame to a 2D Numo array.
-
#to_s ⇒ String
(also: #inspect)
Returns a string representing the DataFrame.
-
#to_series(index = 0) ⇒ Series
Select column as Series at index location.
-
#to_struct(name = "") ⇒ Series
Convert a
DataFrameto aSeriesof typeStruct. -
#top_k(k, by:, reverse: false) ⇒ DataFrame
Return the
klargest rows. -
#transpose(include_header: false, header_name: "column", column_names: nil) ⇒ DataFrame
Transpose a DataFrame over the diagonal.
-
#unique(maintain_order: false, subset: nil, keep: "any") ⇒ DataFrame
Drop duplicate rows from this DataFrame.
-
#unnest(columns, *more_columns, separator: nil) ⇒ DataFrame
Decompose a struct into its fields.
-
#unpivot(on = nil, index: nil, variable_name: nil, value_name: nil) ⇒ DataFrame
Unpivot a DataFrame from wide to long format.
-
#unstack(step:, how: "vertical", columns: nil, fill_values: nil) ⇒ DataFrame
Unstack a long table to a wide form without doing an aggregation.
-
#update(other, on: nil, how: "left", left_on: nil, right_on: nil, include_nulls: false, maintain_order: "left") ⇒ DataFrame
Update the values in this
DataFramewith the values inother. -
#upsample(time_column:, every:, group_by: nil, maintain_order: false) ⇒ DataFrame
Upsample a DataFrame at a regular frequency.
-
#var(ddof: 1) ⇒ DataFrame
Aggregate the columns of this DataFrame to their variance value.
-
#vstack(other, in_place: false) ⇒ DataFrame
Grow this DataFrame vertically by stacking a DataFrame to it.
-
#width ⇒ Integer
Get the width of the DataFrame.
-
#with_columns(*exprs, **named_exprs) ⇒ DataFrame
Add columns to this DataFrame.
-
#with_columns_seq(*exprs, **named_exprs) ⇒ DataFrame
Add columns to this DataFrame.
-
#with_row_index(name: "index", offset: 0) ⇒ DataFrame
Add a column at index 0 that counts the rows.
-
#write_avro(file, compression = "uncompressed", name: "") ⇒ nil
Write to Apache Avro file.
-
#write_csv(file = nil, include_bom: false, compression: "uncompressed", compression_level: nil, check_extension: true, include_header: true, separator: ",", line_terminator: "\n", quote_char: '"', batch_size: 1024, datetime_format: nil, date_format: nil, time_format: nil, float_scientific: nil, float_precision: nil, decimal_comma: false, null_value: nil, quote_style: nil, storage_options: nil, credential_provider: "auto", retries: nil) ⇒ String?
Write to comma-separated values (CSV) file.
-
#write_database(table_name, connection = nil, if_table_exists: "fail") ⇒ Integer
Write the data in a Polars DataFrame to a database.
-
#write_delta(target, mode: "error", storage_options: nil, delta_write_options: nil, delta_merge_options: nil) ⇒ nil
Write DataFrame as delta table.
-
#write_iceberg(target, mode:) ⇒ nil
Write DataFrame to an Iceberg table.
-
#write_ipc(file, compression: "uncompressed", compat_level: nil, record_batch_size: nil, storage_options: nil, credential_provider: "auto", retries: nil) ⇒ nil
Write to Arrow IPC binary stream or Feather file.
-
#write_ipc_stream(file, compression: "uncompressed", compat_level: nil) ⇒ Object
Write to Arrow IPC record batch stream.
-
#write_json(file = nil) ⇒ nil
Serialize to JSON representation.
-
#write_ndjson(file = nil, compression: "uncompressed", compression_level: nil, check_extension: true) ⇒ nil
Serialize to newline delimited JSON representation.
-
#write_parquet(file, compression: "zstd", compression_level: nil, statistics: true, row_group_size: nil, data_page_size: nil, partition_by: nil, partition_chunk_size_bytes: 4_294_967_296, storage_options: nil, credential_provider: "auto", retries: nil, metadata: nil, arrow_schema: nil, mkdir: false) ⇒ nil
Write to Apache Parquet file.
Constructor Details
#initialize(data = nil, schema: nil, schema_overrides: nil, strict: true, orient: nil, infer_schema_length: N_INFER_DEFAULT, nan_to_null: false, height: nil) ⇒ DataFrame
Create a new DataFrame.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
# File 'lib/polars/data_frame.rb', line 48 def initialize( data = nil, schema: nil, schema_overrides: nil, strict: true, orient: nil, infer_schema_length: N_INFER_DEFAULT, nan_to_null: false, height: nil ) if defined?(ActiveRecord) && (data.is_a?(ActiveRecord::Relation) || data.is_a?(ActiveRecord::Result)) raise ArgumentError, "Use read_database instead" end if !height.nil? msg = "the `height` parameter of `DataFrame` is considered unstable." Utils.issue_unstable_warning(msg) raise Todo end if data.nil? self._df = Utils.hash_to_rbdf({}, schema: schema, schema_overrides: schema_overrides) elsif data.is_a?(Hash) data = data.transform_keys { |v| v.is_a?(Symbol) ? v.to_s : v } self._df = Utils.hash_to_rbdf(data, schema: schema, schema_overrides: schema_overrides, strict: strict, nan_to_null: nan_to_null) elsif data.is_a?(::Array) self._df = Utils.sequence_to_rbdf(data, schema: schema, schema_overrides: schema_overrides, strict: strict, orient: orient, infer_schema_length: infer_schema_length) elsif data.is_a?(Series) self._df = Utils.series_to_rbdf(data, schema: schema, schema_overrides: schema_overrides, strict: strict) elsif data.respond_to?(:arrow_c_stream) # This uses the fact that RbSeries.from_arrow_c_stream will create a # struct-typed Series. Then we unpack that to a DataFrame. tmp_col_name = "" s = Utils.wrap_s(RbSeries.from_arrow_c_stream(data)) self._df = s.to_frame(tmp_col_name).unnest(tmp_col_name)._df else raise ArgumentError, "DataFrame constructor called with unsupported type; got #{data.class.name}" end end |
Class Method Details
.deserialize(source) ⇒ DataFrame
Serialization is not stable across Polars versions: a LazyFrame serialized in one Polars version may not be deserializable in another Polars version.
Read a serialized DataFrame from a file.
116 117 118 119 120 121 122 123 124 |
# File 'lib/polars/data_frame.rb', line 116 def self.deserialize(source) if Utils.pathlike?(source) source = Utils.normalize_filepath(source) end deserializer = RbDataFrame.method(:deserialize_binary) _from_rbdf(deserializer.(source)) end |
Instance Method Details
#!=(other) ⇒ DataFrame
Not equal.
315 316 317 |
# File 'lib/polars/data_frame.rb', line 315 def !=(other) _comp(other, "neq") end |
#%(other) ⇒ DataFrame
Returns the modulo.
398 399 400 401 402 403 404 405 |
# File 'lib/polars/data_frame.rb', line 398 def %(other) if other.is_a?(DataFrame) return _from_rbdf(_df.rem_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.rem(other._s)) end |
#*(other) ⇒ DataFrame
Performs multiplication.
350 351 352 353 354 355 356 357 |
# File 'lib/polars/data_frame.rb', line 350 def *(other) if other.is_a?(DataFrame) return _from_rbdf(_df.mul_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.mul(other._s)) end |
#+(other) ⇒ DataFrame
Performs addition.
374 375 376 377 378 379 380 381 |
# File 'lib/polars/data_frame.rb', line 374 def +(other) if other.is_a?(DataFrame) return _from_rbdf(_df.add_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.add(other._s)) end |
#-(other) ⇒ DataFrame
Performs subtraction.
386 387 388 389 390 391 392 393 |
# File 'lib/polars/data_frame.rb', line 386 def -(other) if other.is_a?(DataFrame) return _from_rbdf(_df.sub_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.sub(other._s)) end |
#/(other) ⇒ DataFrame
Performs division.
362 363 364 365 366 367 368 369 |
# File 'lib/polars/data_frame.rb', line 362 def /(other) if other.is_a?(DataFrame) return _from_rbdf(_df.div_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.div(other._s)) end |
#<(other) ⇒ DataFrame
Less than.
329 330 331 |
# File 'lib/polars/data_frame.rb', line 329 def <(other) _comp(other, "lt") end |
#<=(other) ⇒ DataFrame
Less than or equal.
343 344 345 |
# File 'lib/polars/data_frame.rb', line 343 def <=(other) _comp(other, "lt_eq") end |
#==(other) ⇒ DataFrame
Equal.
308 309 310 |
# File 'lib/polars/data_frame.rb', line 308 def ==(other) _comp(other, "eq") end |
#>(other) ⇒ DataFrame
Greater than.
322 323 324 |
# File 'lib/polars/data_frame.rb', line 322 def >(other) _comp(other, "gt") end |
#>=(other) ⇒ DataFrame
Greater than or equal.
336 337 338 |
# File 'lib/polars/data_frame.rb', line 336 def >=(other) _comp(other, "gt_eq") end |
#[](*key) ⇒ Object
Returns subset of the DataFrame.
556 557 558 |
# File 'lib/polars/data_frame.rb', line 556 def [](*key) get_df_item_by_key(self, key) end |
#[]=(*key, value) ⇒ Object
Set item.
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
# File 'lib/polars/data_frame.rb', line 609 def []=(*key, value) if key.empty? || key.length > 2 raise ArgumentError, "wrong number of arguments (given #{key.length + 1}, expected 2..3)" end if key.length == 1 && Utils.strlike?(key[0]) key = key[0] if value.is_a?(::Array) || (defined?(Numo::NArray) && value.is_a?(Numo::NArray)) value = Series.new(value) elsif !value.is_a?(Series) value = Polars.lit(value) end self._df = with_columns(value.alias(key.to_s))._df # df[["C", "D"]] elsif key.length == 1 && key[0].is_a?(::Array) key = key[0] if !value.is_a?(::Array) || !value.all? { |v| v.is_a?(::Array) } msg = "can only set multiple columns with 2D matrix" raise ArgumentError, msg end if value.any? { |v| v.size != key.length } msg = "matrix columns should be equal to list used to determine column names" raise ArgumentError, msg end columns = [] key.each_with_index do |name, i| columns << Series.new(name, value.map { |v| v[i] }) end self._df = with_columns(columns)._df # df[a, b] else row_selection, col_selection = key if (row_selection.is_a?(Series) && row_selection.dtype == Boolean) || Utils.is_bool_sequence(row_selection) msg = ( "not allowed to set DataFrame by boolean mask in the row position" + "\n\nConsider using `DataFrame.with_columns`." ) raise TypeError, msg end # get series column selection if Utils.strlike?(col_selection) s = self[col_selection] elsif col_selection.is_a?(Integer) s = self[0.., col_selection] else msg = "unexpected column selection #{col_selection.inspect}" raise TypeError, msg end # dispatch to []= of Series to do modification s[row_selection] = value # now find the location to place series # df[idx] if col_selection.is_a?(Integer) replace_column(col_selection, s) # df["foo"] elsif Utils.strlike?(col_selection) _replace(col_selection.to_s, s) end end end |
#bottom_k(k, by:, reverse: false) ⇒ DataFrame
Return the k smallest rows.
Non-null elements are always preferred over null elements, regardless of
the value of reverse. The output is not guaranteed to be in any
particular order, call sort after this function if you wish the
output to be sorted.
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 |
# File 'lib/polars/data_frame.rb', line 2430 def bottom_k( k, by:, reverse: false ) lazy .bottom_k(k, by: by, reverse: reverse) .collect( optimizations: QueryOptFlags.new( projection_pushdown: false, predicate_pushdown: false, comm_subplan_elim: false, slice_pushdown: true ) ) end |
#cast(dtypes, strict: true) ⇒ DataFrame
Cast DataFrame column(s) to the specified dtype(s).
4184 4185 4186 |
# File 'lib/polars/data_frame.rb', line 4184 def cast(dtypes, strict: true) lazy.cast(dtypes, strict: strict).collect(optimizations: QueryOptFlags._eager) end |
#clear(n = 0) ⇒ DataFrame
Create an empty copy of the current DataFrame.
Returns a DataFrame with identical schema but no data.
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 |
# File 'lib/polars/data_frame.rb', line 4224 def clear(n = 0) if n == 0 _from_rbdf(_df.clear) elsif n > 0 || len > 0 self.class.new( schema.to_h { |nm, tp| [nm, Series.new(nm, [], dtype: tp).extend_constant(nil, n)] } ) else clone end end |
#collect_schema ⇒ Schema
This method is included to facilitate writing code that is generic for both DataFrame and LazyFrame.
Get an ordered mapping of column names to their data type.
719 720 721 |
# File 'lib/polars/data_frame.rb', line 719 def collect_schema Schema.new(columns.zip(dtypes), check_dtypes: false) end |
#columns ⇒ Array
Get column names.
225 226 227 |
# File 'lib/polars/data_frame.rb', line 225 def columns _df.columns end |
#columns=(columns) ⇒ Object
Change the column names of the DataFrame.
258 259 260 |
# File 'lib/polars/data_frame.rb', line 258 def columns=(columns) _df.set_column_names(columns) end |
#delete(name) ⇒ Series
Drop in place if exists.
4131 4132 4133 |
# File 'lib/polars/data_frame.rb', line 4131 def delete(name) drop_in_place(name) if include?(name) end |
#describe(percentiles: [0.25, 0.5, 0.75], interpolation: "nearest") ⇒ DataFrame
Summary statistics for a DataFrame.
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 |
# File 'lib/polars/data_frame.rb', line 2070 def describe( percentiles: [0.25, 0.5, 0.75], interpolation: "nearest" ) if columns.empty? msg = "cannot describe a DataFrame that has no columns" raise TypeError, msg end lazy.describe( percentiles: percentiles, interpolation: interpolation ) end |
#drop(*columns, strict: true) ⇒ DataFrame
Remove column from DataFrame and return as new.
4071 4072 4073 |
# File 'lib/polars/data_frame.rb', line 4071 def drop(*columns, strict: true) lazy.drop(*columns, strict: strict).collect(optimizations: QueryOptFlags._eager) end |
#drop_in_place(name) ⇒ Series
Drop in place.
4099 4100 4101 |
# File 'lib/polars/data_frame.rb', line 4099 def drop_in_place(name) Utils.wrap_s(_df.drop_in_place(name)) end |
#drop_nans(subset: nil) ⇒ DataFrame
Drop all rows that contain one or more NaN values.
The original order of the remaining rows is preserved.
2649 2650 2651 |
# File 'lib/polars/data_frame.rb', line 2649 def drop_nans(subset: nil) lazy.drop_nans(subset: subset).collect(optimizations: QueryOptFlags._eager) end |
#drop_nulls(subset: nil) ⇒ DataFrame
Drop all rows that contain one or more null values.
The original order of the remaining rows is preserved.
2694 2695 2696 |
# File 'lib/polars/data_frame.rb', line 2694 def drop_nulls(subset: nil) lazy.drop_nulls(subset: subset).collect(optimizations: QueryOptFlags._eager) end |
#dtypes ⇒ Array
Get dtypes of columns in DataFrame. Dtypes can also be found in column headers when printing the DataFrame.
276 277 278 |
# File 'lib/polars/data_frame.rb', line 276 def dtypes _df.dtypes end |
#each(&block) ⇒ Object
Returns an enumerator.
432 433 434 |
# File 'lib/polars/data_frame.rb', line 432 def each(&block) get_columns.each(&block) end |
#each_row(named: true, buffer_size: 500, &block) ⇒ Object
Returns an iterator over the DataFrame of rows of Ruby-native values.
6216 6217 6218 |
# File 'lib/polars/data_frame.rb', line 6216 def each_row(named: true, buffer_size: 500, &block) iter_rows(named: named, buffer_size: buffer_size, &block) end |
#equals(other, null_equal: true) ⇒ Boolean
Check if DataFrame is equal to other.
2475 2476 2477 |
# File 'lib/polars/data_frame.rb', line 2475 def equals(other, null_equal: true) _df.equals(other._df, null_equal) end |
#estimated_size(unit = "b") ⇒ Numeric
Return an estimation of the total (heap) allocated size of the DataFrame.
Estimated size is given in the specified unit (bytes by default).
This estimation is the sum of the size of its buffers, validity, including nested arrays. Multiple arrays may share buffers and bitmaps. Therefore, the size of 2 arrays is not the sum of the sizes computed from this function. In particular, StructArray's size is an upper bound.
When an array is sliced, its allocated size remains constant because the buffer unchanged. However, this function will yield a smaller number. This is because this function returns the visible size of the buffer, not its total capacity.
FFI buffers are included in this estimation.
1563 1564 1565 1566 |
# File 'lib/polars/data_frame.rb', line 1563 def estimated_size(unit = "b") sz = _df.estimated_size Utils.scale_bytes(sz, to: unit) end |
#explode(columns, *more_columns, empty_as_null: true, keep_nulls: true) ⇒ DataFrame
Explode DataFrame to long format by exploding a column with Lists.
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 |
# File 'lib/polars/data_frame.rb', line 4495 def explode( columns, *more_columns, empty_as_null: true, keep_nulls: true ) lazy .explode( columns, *more_columns, empty_as_null: empty_as_null, keep_nulls: keep_nulls ).collect(optimizations: QueryOptFlags._eager) end |
#extend(other) ⇒ DataFrame
Extend the memory backed by this DataFrame with the values from other.
Different from vstack which adds the chunks from other to the chunks of this
DataFrame extend appends the data from other to the underlying memory
locations and thus may cause a reallocation.
If this does not cause a reallocation, the resulting data structure will not have any extra chunks and thus will yield faster queries.
Prefer extend over vstack when you want to do a query after a single append.
For instance during online operations where you add n rows and rerun a query.
Prefer vstack over extend when you want to append many times before doing a
query. For instance when you read in multiple files and when to store them in a
single DataFrame. In the latter case, finish the sequence of vstack
operations with a rechunk.
4008 4009 4010 4011 |
# File 'lib/polars/data_frame.rb', line 4008 def extend(other) _df.extend(other._df) self end |
#fill_nan(value) ⇒ DataFrame
Note that floating point NaNs (Not a Number) are not missing values!
To replace missing values, use fill_null.
Fill floating point NaN values by an Expression evaluation.
4454 4455 4456 |
# File 'lib/polars/data_frame.rb', line 4454 def fill_nan(value) lazy.fill_nan(value).collect(optimizations: QueryOptFlags._eager) end |
#fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: true) ⇒ DataFrame
Fill null values using the specified value or strategy.
4414 4415 4416 4417 4418 4419 4420 4421 |
# File 'lib/polars/data_frame.rb', line 4414 def fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: true) _from_rbdf( lazy .fill_null(value, strategy: strategy, limit: limit, matches_supertype: matches_supertype) .collect(optimizations: QueryOptFlags._eager) ._df ) end |
#filter(*predicates, **constraints) ⇒ DataFrame
Filter the rows in the DataFrame based on a predicate expression.
1789 1790 1791 |
# File 'lib/polars/data_frame.rb', line 1789 def filter(*predicates, **constraints) lazy.filter(*predicates, **constraints).collect(optimizations: QueryOptFlags._eager) end |
#flags ⇒ Hash
Get flags that are set on the columns of this DataFrame.
283 284 285 |
# File 'lib/polars/data_frame.rb', line 283 def flags columns.to_h { |name| [name, self[name].flags] } end |
#fold ⇒ Series
Apply a horizontal reduction on a DataFrame.
This can be used to effectively determine aggregations on a row level, and can be applied to any DataType that can be supercasted (casted to a similar parent type).
An example of the supercast rules when applying an arithmetic operation on two DataTypes are for instance:
i8 + str = str f32 + i64 = f32 f32 + f64 = f64
5946 5947 5948 5949 5950 5951 5952 5953 |
# File 'lib/polars/data_frame.rb', line 5946 def fold acc = to_series(0) 1.upto(width - 1) do |i| acc = yield(acc, to_series(i)) end acc end |
#gather_every(n, offset = 0) ⇒ DataFrame
Take every nth row in the DataFrame and return as a new DataFrame.
6337 6338 6339 |
# File 'lib/polars/data_frame.rb', line 6337 def gather_every(n, offset = 0) select(F.col("*").gather_every(n, offset)) end |
#get_column(name, default: NO_DEFAULT) ⇒ Series
Get a single column by name.
4328 4329 4330 4331 4332 4333 |
# File 'lib/polars/data_frame.rb', line 4328 def get_column(name, default: NO_DEFAULT) Utils.wrap_s(_df.get_column(name.to_s)) rescue ColumnNotFoundError raise if default.eql?(NO_DEFAULT) default end |
#get_column_index(name) ⇒ Series
Find the index of a column by name.
2097 2098 2099 |
# File 'lib/polars/data_frame.rb', line 2097 def get_column_index(name) _df.get_column_index(name) end |
#get_columns ⇒ Array
Get the DataFrame as a Array of Series.
4292 4293 4294 |
# File 'lib/polars/data_frame.rb', line 4292 def get_columns _df.get_columns.map { |s| Utils.wrap_s(s) } end |
#glimpse(max_items_per_column: 10, max_colname_length: 50, return_type: nil) ⇒ Object
Return a dense preview of the DataFrame.
The formatting shows one line per column so that wide dataframes display cleanly. Each line shows the column name, the data type, and the first few values.
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 |
# File 'lib/polars/data_frame.rb', line 1960 def glimpse( max_items_per_column: 10, max_colname_length: 50, return_type: nil ) if return_type.nil? return_frame = false else return_frame = return_type == "frame" if !return_frame && !["self", "string"].include?(return_type) msg = "invalid `return_type`; found #{return_type.inspect}, expected one of 'string', 'frame', 'self', or nil" raise ArgumentError, msg end end # always print at most this number of values (mainly ensures that # we do not cast long arrays to strings, which would be slow) max_n_values = [max_items_per_column, height].min schema = self.schema _column_to_row_output = lambda do |col_name, dtype| fn = schema[col_name] == String ? :inspect : :to_s values = self[0...max_n_values, col_name].to_a if col_name.length > max_colname_length col_name = col_name[0...(max_colname_length - 1)] + "…" end dtype_str = Plr.dtype_str_repr(dtype) if !return_frame dtype_str = "<#{dtype_str}>" end [col_name, dtype_str, values.map { |v| !v.nil? ? v.send(fn) : nil }] end data = self.schema.map { |s, dtype| _column_to_row_output.(s, dtype) } # output one row per column if return_frame DataFrame.new( data, orient: "row", schema: {"column" => String, "dtype" => String, "values" => List.new(String)} ) else raise Todo end end |
#group_by(*by, maintain_order: false, **named_by) ⇒ GroupBy
Start a group by operation.
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 |
# File 'lib/polars/data_frame.rb', line 2938 def group_by(*by, maintain_order: false, **named_by) named_by.each do |_, value| if !(value.is_a?(::String) || value.is_a?(Expr) || value.is_a?(Series)) msg = "Expected Polars expression or object convertible to one, got #{value.class.name}." raise TypeError, msg end end GroupBy.new( self, *by, **named_by, maintain_order: maintain_order, predicates: nil ) end |
#group_by_dynamic(index_column, every:, period: nil, offset: nil, include_boundaries: false, closed: "left", label: "left", group_by: nil, start_by: "window") ⇒ DataFrame
Group based on a time value (or index value of type Int32, Int64).
Time windows are calculated and rows are assigned to windows. Different from a normal group by is that a row can be member of multiple groups. The time/index window could be seen as a rolling window, with a window size determined by dates/times/values instead of slots in the DataFrame.
A window is defined by:
- every: interval of the window
- period: length of the window
- offset: offset of the window
The every, period and offset arguments are created with
the following string language:
- 1ns (1 nanosecond)
- 1us (1 microsecond)
- 1ms (1 millisecond)
- 1s (1 second)
- 1m (1 minute)
- 1h (1 hour)
- 1d (1 day)
- 1w (1 week)
- 1mo (1 calendar month)
- 1y (1 calendar year)
- 1i (1 index count)
Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
In case of a group_by_dynamic on an integer column, the windows are defined by:
- "1i" # length 1
- "10i" # length 10
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 |
# File 'lib/polars/data_frame.rb', line 3299 def group_by_dynamic( index_column, every:, period: nil, offset: nil, include_boundaries: false, closed: "left", label: "left", group_by: nil, start_by: "window" ) DynamicGroupBy.new( self, index_column, every, period, offset, include_boundaries, closed, label, group_by, start_by, nil ) end |
#hash_rows(seed: 0, seed_1: nil, seed_2: nil, seed_3: nil) ⇒ Series
Hash and combine the rows in this DataFrame.
The hash value is of type UInt64.
6373 6374 6375 6376 6377 6378 6379 |
# File 'lib/polars/data_frame.rb', line 6373 def hash_rows(seed: 0, seed_1: nil, seed_2: nil, seed_3: nil) k0 = seed k1 = seed_1.nil? ? seed : seed_1 k2 = seed_2.nil? ? seed : seed_2 k3 = seed_3.nil? ? seed : seed_3 Utils.wrap_s(_df.hash_rows(k0, k1, k2, k3)) end |
#head(n = 5) ⇒ DataFrame
Get the first n rows.
2572 2573 2574 |
# File 'lib/polars/data_frame.rb', line 2572 def head(n = 5) _from_rbdf(_df.head(n)) end |
#height ⇒ Integer Also known as: count, length, size
Get the height of the DataFrame.
192 193 194 |
# File 'lib/polars/data_frame.rb', line 192 def height _df.height end |
#hstack(columns, in_place: false) ⇒ DataFrame
Return a new DataFrame grown horizontally by stacking multiple Series to it.
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 |
# File 'lib/polars/data_frame.rb', line 3910 def hstack(columns, in_place: false) if !columns.is_a?(::Array) columns = columns.get_columns end if in_place _df.hstack_mut(columns.map(&:_s)) self else _from_rbdf(_df.hstack(columns.map(&:_s))) end end |
#include?(name) ⇒ Boolean
Check if DataFrame includes column.
425 426 427 |
# File 'lib/polars/data_frame.rb', line 425 def include?(name) columns.include?(name) end |
#insert_column(index, column) ⇒ DataFrame
Insert a Series at a certain column index. This operation is in place.
1739 1740 1741 1742 1743 1744 1745 |
# File 'lib/polars/data_frame.rb', line 1739 def insert_column(index, column) if index < 0 index = width + index end _df.insert_column(index, column._s) self end |
#interpolate ⇒ DataFrame
Interpolate intermediate values. The interpolation method is linear.
6406 6407 6408 |
# File 'lib/polars/data_frame.rb', line 6406 def interpolate select(F.col("*").interpolate) end |
#is_duplicated ⇒ Series
Get a mask of all duplicated rows in this DataFrame.
4929 4930 4931 |
# File 'lib/polars/data_frame.rb', line 4929 def is_duplicated Utils.wrap_s(_df.is_duplicated) end |
#is_empty ⇒ Boolean Also known as: empty?
Check if the dataframe is empty.
6420 6421 6422 |
# File 'lib/polars/data_frame.rb', line 6420 def is_empty height == 0 end |
#is_unique ⇒ Series
Get a mask of all unique rows in this DataFrame.
4954 4955 4956 |
# File 'lib/polars/data_frame.rb', line 4954 def is_unique Utils.wrap_s(_df.is_unique) end |
#item(row = nil, column = nil) ⇒ Object
If row/col not provided, this is equivalent to df[0,0], with a check that
the shape is (1,1). With row/col, this is equivalent to df[row,col].
Return the DataFrame as a scalar, or return the element at the given row/column.
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
# File 'lib/polars/data_frame.rb', line 748 def item(row = nil, column = nil) if row.nil? && column.nil? if shape != [1, 1] msg = ( "can only call `.item()` if the dataframe is of shape (1, 1)," + " or if explicit row/col values are provided;" + " frame has shape #{shape.inspect}" ) raise ArgumentError, msg end return _df.to_series(0).get_index(0) elsif row.nil? || column.nil? msg = "cannot call `.item()` with only one of `row` or `column`" raise ArgumentError, msg end s = if column.is_a?(Integer) _df.to_series(column) else _df.get_column(column) end s.get_index_signed(row) end |
#iter_columns ⇒ Object
Consider whether you can use all instead.
If you can, it will be more efficient.
Returns an iterator over the columns of this DataFrame.
6266 6267 6268 6269 6270 6271 6272 |
# File 'lib/polars/data_frame.rb', line 6266 def iter_columns return to_enum(:iter_columns) unless block_given? _df.get_columns.each do |s| yield Utils.wrap_s(s) end end |
#iter_rows(named: false, buffer_size: 512, &block) ⇒ Object
Returns an iterator over the DataFrame of rows of Ruby-native values.
6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 |
# File 'lib/polars/data_frame.rb', line 6169 def iter_rows(named: false, buffer_size: 512, &block) return to_enum(:iter_rows, named: named, buffer_size: buffer_size) unless block_given? # load into the local namespace for a modest performance boost in the hot loops columns = self.columns # note: buffering rows results in a 2-4x speedup over individual calls # to ".row(i)", so it should only be disabled in extremely specific cases. if buffer_size offset = 0 while offset < height zerocopy_slice = slice(offset, buffer_size) rows_chunk = zerocopy_slice.rows(named: false) if named rows_chunk.each do |row| yield columns.zip(row).to_h end else rows_chunk.each(&block) end offset += buffer_size end elsif named height.times do |i| yield columns.zip(row(i)).to_h end else height.times do |i| yield row(i) end end end |
#iter_slices(n_rows: 10_000) ⇒ Object
Returns a non-copying iterator of slices over the underlying DataFrame.
6294 6295 6296 6297 6298 6299 6300 6301 6302 |
# File 'lib/polars/data_frame.rb', line 6294 def iter_slices(n_rows: 10_000) return to_enum(:iter_slices, n_rows: n_rows) unless block_given? offset = 0 while offset < height yield slice(offset, n_rows) offset += n_rows end end |
#join(other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right", validate: "m:m", nulls_equal: false, coalesce: nil, maintain_order: nil) ⇒ DataFrame
Join in SQL-like fashion.
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 |
# File 'lib/polars/data_frame.rb', line 3688 def join( other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right", validate: "m:m", nulls_equal: false, coalesce: nil, maintain_order: nil ) lazy .join( other.lazy, left_on: left_on, right_on: right_on, on: on, how: how, suffix: suffix, validate: validate, nulls_equal: nulls_equal, coalesce: coalesce, maintain_order: maintain_order ) .collect(optimizations: QueryOptFlags._eager) end |
#join_asof(other, left_on: nil, right_on: nil, on: nil, by_left: nil, by_right: nil, by: nil, strategy: "backward", suffix: "_right", tolerance: nil, allow_parallel: true, force_parallel: false, coalesce: true, allow_exact_matches: true, check_sortedness: true) ⇒ DataFrame
Perform an asof join.
This is similar to a left-join except that we match on nearest key rather than equal keys.
Both DataFrames must be sorted by the asof_join key.
For each row in the left DataFrame:
- A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key.
- A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key.
The default is "backward".
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 |
# File 'lib/polars/data_frame.rb', line 3522 def join_asof( other, left_on: nil, right_on: nil, on: nil, by_left: nil, by_right: nil, by: nil, strategy: "backward", suffix: "_right", tolerance: nil, allow_parallel: true, force_parallel: false, coalesce: true, allow_exact_matches: true, check_sortedness: true ) lazy .join_asof( other.lazy, left_on: left_on, right_on: right_on, on: on, by_left: by_left, by_right: by_right, by: by, strategy: strategy, suffix: suffix, tolerance: tolerance, allow_parallel: allow_parallel, force_parallel: force_parallel, coalesce: coalesce, allow_exact_matches: allow_exact_matches, check_sortedness: check_sortedness ) .collect(optimizations: QueryOptFlags._eager) end |
#join_where(other, *predicates, suffix: "_right") ⇒ DataFrame
The row order of the input DataFrames is not preserved.
This functionality is experimental. It may be changed at any point without it being considered a breaking change.
Perform a join based on one or multiple (in)equality predicates.
This performs an inner join, so only rows where all predicates are true are included in the result, and a row from either DataFrame may be included multiple times in the result.
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 |
# File 'lib/polars/data_frame.rb', line 3795 def join_where( other, *predicates, suffix: "_right" ) Utils.require_same_type(self, other) lazy .join_where( other.lazy, *predicates, suffix: suffix ) .collect(optimizations: QueryOptFlags._eager) end |
#lazy ⇒ LazyFrame
Start a lazy query from this point.
4971 4972 4973 |
# File 'lib/polars/data_frame.rb', line 4971 def lazy wrap_ldf(_df.lazy) end |
#limit(n = 5) ⇒ DataFrame
Get the first n rows.
Alias for #head.
2541 2542 2543 |
# File 'lib/polars/data_frame.rb', line 2541 def limit(n = 5) head(n) end |
#map_columns(column_names, *args, **kwargs, &function) ⇒ DataFrame
Apply eager functions to columns of a DataFrame.
Users should always prefer :meth:with_columns unless they are using
expressions that are only possible on Series and not on Expr. This is almost
never the case, except for a very select few functions that cannot know the
output datatype without looking at the data.
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 |
# File 'lib/polars/data_frame.rb', line 2805 def map_columns( column_names, *args, **kwargs, &function ) if column_names.is_a?(Selector) || column_names.is_a?(Expr) c_names = Array(Utils.(self, column_names)) elsif Utils.strlike?(column_names) c_names = [column_names] else c_names = Array(column_names) end with_columns( c_names.map { |c| function.call(self[c], *args, **kwargs) } ) end |
#map_rows(return_dtype: nil, inference_size: 256, &function) ⇒ Object
The frame-level apply cannot track column names (as the UDF is a black-box
that may arbitrarily drop, rearrange, transform, or add new columns); if you
want to apply a UDF such that column names are preserved, you should use the
expression-level apply syntax instead.
Apply a custom/user-defined function (UDF) over the rows of the DataFrame.
The UDF will receive each row as a tuple of values: udf(row).
Implementing logic using a Ruby function is almost always significantly slower and more memory intensive than implementing the same logic using the native expression API because:
- The native expression engine runs in Rust; UDFs run in Ruby.
- Use of Ruby UDFs forces the DataFrame to be materialized in memory.
- Polars-native expressions can be parallelised (UDFs cannot).
- Polars-native expressions can be logically optimised (UDFs cannot).
Wherever possible you should strongly prefer the native expression API to achieve the best performance.
3871 3872 3873 3874 3875 3876 3877 3878 |
# File 'lib/polars/data_frame.rb', line 3871 def map_rows(return_dtype: nil, inference_size: 256, &function) out, is_df = _df.map_rows(function, return_dtype, inference_size) if is_df _from_rbdf(out) else _from_rbdf(Utils.wrap_s(out).to_frame._df) end end |
#max ⇒ DataFrame
Aggregate the columns of this DataFrame to their maximum value.
5276 5277 5278 |
# File 'lib/polars/data_frame.rb', line 5276 def max lazy.max.collect(optimizations: QueryOptFlags._eager) end |
#max_horizontal ⇒ Series
Get the maximum value horizontally across columns.
5300 5301 5302 |
# File 'lib/polars/data_frame.rb', line 5300 def max_horizontal select(max: F.max_horizontal(F.all)).to_series end |
#mean ⇒ DataFrame
Aggregate the columns of this DataFrame to their mean value.
5432 5433 5434 |
# File 'lib/polars/data_frame.rb', line 5432 def mean lazy.mean.collect(optimizations: QueryOptFlags._eager) end |
#mean_horizontal(ignore_nulls: true) ⇒ Series
Take the mean of all values horizontally across columns.
5460 5461 5462 5463 5464 |
# File 'lib/polars/data_frame.rb', line 5460 def mean_horizontal(ignore_nulls: true) select( mean: F.mean_horizontal(F.all, ignore_nulls: ignore_nulls) ).to_series end |
#median ⇒ DataFrame
Aggregate the columns of this DataFrame to their median value.
5570 5571 5572 |
# File 'lib/polars/data_frame.rb', line 5570 def median lazy.median.collect(optimizations: QueryOptFlags._eager) end |
#merge_sorted(other, key) ⇒ DataFrame
Take two sorted DataFrames and merge them by the sorted key.
The output of this operation will also be sorted. It is the callers responsibility that the frames are sorted by that key otherwise the output will not make sense.
The schemas of both DataFrames must be equal.
6533 6534 6535 |
# File 'lib/polars/data_frame.rb', line 6533 def merge_sorted(other, key) lazy.merge_sorted(other.lazy, key).collect(optimizations: QueryOptFlags._eager) end |
#min ⇒ DataFrame
Aggregate the columns of this DataFrame to their minimum value.
5326 5327 5328 |
# File 'lib/polars/data_frame.rb', line 5326 def min lazy.min.collect(optimizations: QueryOptFlags._eager) end |
#min_horizontal ⇒ Series
Get the minimum value horizontally across columns.
5350 5351 5352 |
# File 'lib/polars/data_frame.rb', line 5350 def min_horizontal select(min: F.min_horizontal(F.all)).to_series end |
#n_chunks(strategy: "first") ⇒ Object
Get number of chunks used by the ChunkedArrays of this DataFrame.
5244 5245 5246 5247 5248 5249 5250 5251 5252 |
# File 'lib/polars/data_frame.rb', line 5244 def n_chunks(strategy: "first") if strategy == "first" _df.n_chunks elsif strategy == "all" get_columns.map(&:n_chunks) else raise ArgumentError, "Strategy: '{strategy}' not understood. Choose one of {{'first', 'all'}}" end end |
#n_unique(subset: nil) ⇒ DataFrame
Return the number of unique rows, or the number of unique row-subsets.
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 |
# File 'lib/polars/data_frame.rb', line 5749 def n_unique(subset: nil) if subset.is_a?(StringIO) subset = [Polars.col(subset)] elsif subset.is_a?(Expr) subset = [subset] end if subset.is_a?(::Array) && subset.length == 1 expr = Utils.wrap_expr(Utils.parse_into_expression(subset[0], str_as_lit: false)) else struct_fields = subset.nil? ? Polars.all : subset expr = Polars.struct(struct_fields) end df = lazy.select(expr.n_unique).collect df.is_empty ? 0 : df.row(0)[0] end |
#null_count ⇒ DataFrame
Create a new DataFrame that shows the null counts per column.
5799 5800 5801 |
# File 'lib/polars/data_frame.rb', line 5799 def null_count _from_rbdf(_df.null_count) end |
#partition_by(by, *more_by, maintain_order: true, include_key: true, as_dict: false) ⇒ Object
Split into multiple DataFrames partitioned by groups.
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 |
# File 'lib/polars/data_frame.rb', line 4839 def partition_by(by, *more_by, maintain_order: true, include_key: true, as_dict: false) by_parsed = Utils.(self, by, *more_by) partitions = _df.partition_by(by_parsed, maintain_order, include_key).map { |df| _from_rbdf(df) } if as_dict if include_key names = partitions.map { |p| p.select(by_parsed).row(0) } else if !maintain_order msg = "cannot use `partition_by` with `maintain_order: false, include_key: false, as_dict: true`" raise ArgumentError, msg end names = select(by_parsed).unique(maintain_order: true).rows end return names.zip(partitions).to_h end partitions end |
#pipe(function, *args, **kwargs, &block) ⇒ Object
It is recommended to use LazyFrame when piping operations, in order to fully take advantage of query optimization and parallelization. See #lazy.
Offers a structured way to apply a sequence of user-defined functions (UDFs).
2734 2735 2736 |
# File 'lib/polars/data_frame.rb', line 2734 def pipe(function, *args, **kwargs, &block) function.(self, *args, **kwargs, &block) end |
#pivot(on, on_columns: nil, index: nil, values: nil, aggregate_function: nil, maintain_order: true, sort_columns: false, separator: "_") ⇒ DataFrame
Create a spreadsheet-style pivot table as a DataFrame.
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 |
# File 'lib/polars/data_frame.rb', line 4552 def pivot( on, on_columns: nil, index: nil, values: nil, aggregate_function: nil, maintain_order: true, sort_columns: false, separator: "_" ) if on_columns.nil? cols = select(on).unique(maintain_order: true) if sort_columns cols = cols.sort(on) end on_cols = cols else on_cols = on_columns end lazy .pivot( on, on_columns: on_cols, index: index, values: values, aggregate_function: aggregate_function, maintain_order: maintain_order, separator: separator ) .collect(optimizations: QueryOptFlags._eager) end |
#plot(x = nil, y = nil, type: nil, group: nil, stacked: nil) ⇒ Object
Plot data.
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# File 'lib/polars/data_frame.rb', line 136 def plot(x = nil, y = nil, type: nil, group: nil, stacked: nil) plot = DataFramePlot.new(self) return plot if x.nil? && y.nil? raise ArgumentError, "Must specify columns" if x.nil? || y.nil? type ||= begin if self[x].dtype.numeric? && self[y].dtype.numeric? "scatter" elsif self[x].dtype == String && self[y].dtype.numeric? "column" elsif (self[x].dtype == Date || self[x].dtype == Datetime) && self[y].dtype.numeric? "line" else raise "Cannot determine type. Use the type option." end end case type when "line" plot.line(x, y, color: group) when "area" plot.area(x, y, color: group) when "pie" raise ArgumentError, "Cannot use group option with pie chart" unless group.nil? plot.pie(x, y) when "column" plot.column(x, y, color: group, stacked: stacked) when "bar" plot.(x, y, color: group, stacked: stacked) when "scatter" plot.scatter(x, y, color: group) else raise ArgumentError, "Invalid type: #{type}" end end |
#product ⇒ DataFrame
Aggregate the columns of this DataFrame to their product values.
5596 5597 5598 |
# File 'lib/polars/data_frame.rb', line 5596 def product select(Polars.all.product) end |
#quantile(quantile, interpolation: "nearest") ⇒ DataFrame
Aggregate the columns of this DataFrame to their quantile value.
5627 5628 5629 |
# File 'lib/polars/data_frame.rb', line 5627 def quantile(quantile, interpolation: "nearest") lazy.quantile(quantile, interpolation: interpolation).collect(optimizations: QueryOptFlags._eager) end |
#rechunk ⇒ DataFrame
This will make sure all subsequent operations have optimal and predictable performance.
5773 5774 5775 |
# File 'lib/polars/data_frame.rb', line 5773 def rechunk _from_rbdf(_df.rechunk) end |
#remove(*predicates, **constraints) ⇒ DataFrame
Remove rows, dropping those that match the given predicate expression(s).
The original order of the remaining rows is preserved.
Rows where the filter predicate does not evaluate to true are retained
(this includes rows where the predicate evaluates as null).
1904 1905 1906 1907 1908 1909 1910 1911 |
# File 'lib/polars/data_frame.rb', line 1904 def remove( *predicates, **constraints ) lazy .remove(*predicates, **constraints) .collect(optimizations: QueryOptFlags._eager) end |
#rename(mapping, strict: true) ⇒ DataFrame
Rename column names.
1688 1689 1690 |
# File 'lib/polars/data_frame.rb', line 1688 def rename(mapping, strict: true) lazy.rename(mapping, strict: strict).collect(optimizations: QueryOptFlags._eager) end |
#replace_column(index, column) ⇒ DataFrame
Replace a column at an index location.
2131 2132 2133 2134 2135 2136 2137 |
# File 'lib/polars/data_frame.rb', line 2131 def replace_column(index, column) if index < 0 index = width + index end _df.replace_column(index, column._s) self end |
#reverse ⇒ DataFrame
Reverse the DataFrame.
1653 1654 1655 |
# File 'lib/polars/data_frame.rb', line 1653 def reverse select(Polars.col("*").reverse) end |
#rolling(index_column:, period:, offset: nil, closed: "right", group_by: nil) ⇒ RollingGroupBy
Create rolling groups based on a time column.
Different from a dynamic_group_by the windows are now determined by the
individual values and are not of constant intervals. For constant intervals use
group_by_dynamic
The period and offset arguments are created either from a timedelta, or
by using the following string language:
- 1ns (1 nanosecond)
- 1us (1 microsecond)
- 1ms (1 millisecond)
- 1s (1 second)
- 1m (1 minute)
- 1h (1 hour)
- 1d (1 day)
- 1w (1 week)
- 1mo (1 calendar month)
- 1y (1 calendar year)
- 1i (1 index count)
Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
In case of a group_by_rolling on an integer column, the windows are defined by:
- "1i" # length 1
- "10i" # length 10
3036 3037 3038 3039 3040 3041 3042 3043 3044 |
# File 'lib/polars/data_frame.rb', line 3036 def rolling( index_column:, period:, offset: nil, closed: "right", group_by: nil ) RollingGroupBy.new(self, index_column, period, offset, closed, group_by, nil) end |
#row(index = nil, by_predicate: nil, named: false) ⇒ Object
The index and by_predicate params are mutually exclusive. Additionally,
to ensure clarity, the by_predicate parameter must be supplied by keyword.
When using by_predicate it is an error condition if anything other than
one row is returned; more than one row raises TooManyRowsReturned, and
zero rows will raise NoRowsReturned (both inherit from RowsException).
Get a row as tuple, either by index or by predicate.
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 |
# File 'lib/polars/data_frame.rb', line 5994 def row(index = nil, by_predicate: nil, named: false) if !index.nil? && !by_predicate.nil? raise ArgumentError, "Cannot set both 'index' and 'by_predicate'; mutually exclusive" elsif index.is_a?(Expr) raise TypeError, "Expressions should be passed to the 'by_predicate' param" end if !index.nil? row = _df.row_tuple(index) if named columns.zip(row).to_h else row end elsif !by_predicate.nil? if !by_predicate.is_a?(Expr) raise TypeError, "Expected by_predicate to be an expression; found #{by_predicate.class.name}" end rows = filter(by_predicate).rows n_rows = rows.length if n_rows > 1 raise TooManyRowsReturned, "Predicate #{by_predicate} returned #{n_rows} rows" elsif n_rows == 0 raise NoRowsReturned, "Predicate #{by_predicate} returned no rows" end row = rows[0] if named columns.zip(row).to_h else row end else raise ArgumentError, "One of 'index' or 'by_predicate' must be set" end end |
#rows(named: false) ⇒ Array
Convert columnar data to rows as Ruby arrays.
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 |
# File 'lib/polars/data_frame.rb', line 6051 def rows(named: false) if named columns = self.columns _df.row_tuples.map do |v| columns.zip(v).to_h end else _df.row_tuples end end |
#rows_by_key(key, named: false, include_key: false, unique: false) ⇒ Hash
Convert columnar data to rows as Ruby arrays in a hash keyed by some column.
This method is like rows, but instead of returning rows in a flat list, rows
are grouped by the values in the key column(s) and returned as a hash.
Note that this method should not be used in place of native operations, due to the high cost of materializing all frame data out into a hash; it should be used only when you need to move the values out into a Ruby data structure or other object that cannot operate directly with Polars/Arrow.
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 |
# File 'lib/polars/data_frame.rb', line 6118 def rows_by_key(key, named: false, include_key: false, unique: false) key = Utils.(self, key) keys = key.size == 1 ? get_column(key[0]) : select(key).iter_rows if include_key values = self else data_cols = schema.names - key values = select(data_cols) end zipped = keys.each.zip(values.iter_rows(named: named)) # if unique, we expect to write just one entry per key; otherwise, we're # returning a list of rows for each key, so append into a hash of arrays. if unique zipped.to_h else zipped.each_with_object({}) { |(key, data), h| (h[key] ||= []) << data } end end |
#sample(n: nil, fraction: nil, with_replacement: false, shuffle: false, seed: nil) ⇒ DataFrame
Sample from this DataFrame.
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 |
# File 'lib/polars/data_frame.rb', line 5839 def sample( n: nil, fraction: nil, with_replacement: false, shuffle: false, seed: nil ) if !n.nil? && !fraction.nil? raise ArgumentError, "cannot specify both `n` and `fraction`" end if n.nil? && !fraction.nil? fraction = Series.new("fraction", [fraction]) unless fraction.is_a?(Series) return _from_rbdf( _df.sample_frac(fraction._s, with_replacement, shuffle, seed) ) end if n.nil? n = 1 end n = Series.new("", [n]) unless n.is_a?(Series) _from_rbdf(_df.sample_n(n._s, with_replacement, shuffle, seed)) end |
#schema ⇒ Hash
Get the schema.
301 302 303 |
# File 'lib/polars/data_frame.rb', line 301 def schema Schema.new(columns.zip(dtypes).to_h) end |
#select(*exprs, **named_exprs) ⇒ DataFrame
Select columns from this DataFrame.
5063 5064 5065 |
# File 'lib/polars/data_frame.rb', line 5063 def select(*exprs, **named_exprs) lazy.select(*exprs, **named_exprs).collect(optimizations: QueryOptFlags._eager) end |
#select_seq(*exprs, **named_exprs) ⇒ DataFrame
Select columns from this DataFrame.
This will run all expression sequentially instead of in parallel. Use this when the work per expression is cheap.
5081 5082 5083 5084 5085 |
# File 'lib/polars/data_frame.rb', line 5081 def select_seq(*exprs, **named_exprs) lazy .select_seq(*exprs, **named_exprs) .collect(optimizations: QueryOptFlags._eager) end |
#serialize(file = nil) ⇒ Object
Serialization is not stable across Polars versions: a LazyFrame serialized in one Polars version may not be deserializable in another Polars version.
Serialize this DataFrame to a file or string.
886 887 888 889 890 |
# File 'lib/polars/data_frame.rb', line 886 def serialize(file = nil) serializer = _df.method(:serialize_binary) Utils.serialize_polars_object(serializer, file) end |
#set_sorted(column, descending: false) ⇒ DataFrame
This can lead to incorrect results if the data is NOT sorted! Use with care!
Flag a column as sorted.
This can speed up future operations.
6550 6551 6552 6553 6554 6555 6556 6557 |
# File 'lib/polars/data_frame.rb', line 6550 def set_sorted( column, descending: false ) lazy .set_sorted(column, descending: descending) .collect(optimizations: QueryOptFlags._eager) end |
#shape ⇒ Array
Get the shape of the DataFrame.
180 181 182 |
# File 'lib/polars/data_frame.rb', line 180 def shape _df.shape end |
#shift(n = 1, fill_value: nil) ⇒ DataFrame
Shift values by the given period.
4904 4905 4906 |
# File 'lib/polars/data_frame.rb', line 4904 def shift(n = 1, fill_value: nil) lazy.shift(n, fill_value: fill_value).collect(optimizations: QueryOptFlags._eager) end |
#shrink_to_fit(in_place: false) ⇒ DataFrame
Shrink DataFrame memory usage.
Shrinks to fit the exact capacity needed to hold the data.
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 |
# File 'lib/polars/data_frame.rb', line 6309 def shrink_to_fit(in_place: false) if in_place _df.shrink_to_fit self else df = clone df._df.shrink_to_fit df end end |
#slice(offset, length = nil) ⇒ DataFrame
Get a slice of this DataFrame.
2508 2509 2510 2511 2512 2513 |
# File 'lib/polars/data_frame.rb', line 2508 def slice(offset, length = nil) if !length.nil? && length < 0 length = height - offset + length end _from_rbdf(_df.slice(offset, length)) end |
#sort(by, *more_by, descending: false, nulls_last: false, multithreaded: true, maintain_order: false) ⇒ DataFrame
Sort the dataframe by the given columns.
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 |
# File 'lib/polars/data_frame.rb', line 2196 def sort( by, *more_by, descending: false, nulls_last: false, multithreaded: true, maintain_order: false ) lazy .sort( by, *more_by, descending: descending, nulls_last: nulls_last, multithreaded: multithreaded, maintain_order: maintain_order ) .collect(optimizations: QueryOptFlags._eager) end |
#sort!(by, descending: false, nulls_last: false) ⇒ DataFrame
Sort the DataFrame by column in-place.
2226 2227 2228 |
# File 'lib/polars/data_frame.rb', line 2226 def sort!(by, descending: false, nulls_last: false) self._df = sort(by, descending: descending, nulls_last: nulls_last)._df end |
#sql(query, table_name: "self") ⇒ DataFrame
This functionality is considered unstable, although it is close to being considered stable. It may be changed at any point without it being considered a breaking change.
- The calling frame is automatically registered as a table in the SQL context
under the name "self". If you want access to the DataFrames and LazyFrames
found in the current globals, use the top-level :meth:
pl.sql <polars.sql>. - More control over registration and execution behaviour is available by
using the :class:
SQLContextobject. - The SQL query executes in lazy mode before being collected and returned as a DataFrame.
Execute a SQL query against the DataFrame.
2298 2299 2300 2301 2302 2303 |
# File 'lib/polars/data_frame.rb', line 2298 def sql(query, table_name: "self") ctx = SQLContext.new(eager: true) name = table_name || "self" ctx.register(name, self) ctx.execute(query) end |
#std(ddof: 1) ⇒ DataFrame
Aggregate the columns of this DataFrame to their standard deviation value.
5503 5504 5505 |
# File 'lib/polars/data_frame.rb', line 5503 def std(ddof: 1) lazy.std(ddof: ddof).collect(optimizations: QueryOptFlags._eager) end |
#sum ⇒ DataFrame
Aggregate the columns of this DataFrame to their sum value.
5376 5377 5378 |
# File 'lib/polars/data_frame.rb', line 5376 def sum lazy.sum.collect(optimizations: QueryOptFlags._eager) end |
#sum_horizontal(ignore_nulls: true) ⇒ Series
Sum all values horizontally across columns.
5404 5405 5406 5407 5408 |
# File 'lib/polars/data_frame.rb', line 5404 def sum_horizontal(ignore_nulls: true) select( sum: F.sum_horizontal(F.all, ignore_nulls: ignore_nulls) ).to_series end |
#tail(n = 5) ⇒ DataFrame
Get the last n rows.
2603 2604 2605 |
# File 'lib/polars/data_frame.rb', line 2603 def tail(n = 5) _from_rbdf(_df.tail(n)) end |
#to_a ⇒ Array
Returns an array representing the DataFrame
418 419 420 |
# File 'lib/polars/data_frame.rb', line 418 def to_a rows(named: true) end |
#to_csv(**options) ⇒ String
Write to comma-separated values (CSV) string.
1099 1100 1101 |
# File 'lib/polars/data_frame.rb', line 1099 def to_csv(**) write_csv(**) end |
#to_dummies(columns: nil, separator: "_", drop_first: false, drop_nulls: false) ⇒ DataFrame
Get one hot encoded dummy variables.
5664 5665 5666 5667 5668 5669 |
# File 'lib/polars/data_frame.rb', line 5664 def to_dummies(columns: nil, separator: "_", drop_first: false, drop_nulls: false) if columns.is_a?(::String) columns = [columns] end _from_rbdf(_df.to_dummies(columns, separator, drop_first, drop_nulls)) end |
#to_h(as_series: true) ⇒ Hash
Convert DataFrame to a hash mapping column name to values.
779 780 781 782 783 784 785 |
# File 'lib/polars/data_frame.rb', line 779 def to_h(as_series: true) if as_series get_columns.to_h { |s| [s.name, s] } else get_columns.to_h { |s| [s.name, s.to_a] } end end |
#to_hashes ⇒ Array
Convert every row to a hash.
796 797 798 |
# File 'lib/polars/data_frame.rb', line 796 def to_hashes rows(named: true) end |
#to_numo ⇒ Numo::NArray
Convert DataFrame to a 2D Numo array.
This operation clones data.
812 813 814 815 816 817 818 819 |
# File 'lib/polars/data_frame.rb', line 812 def to_numo out = _df.to_numo if out.nil? Numo::NArray.vstack(width.times.map { |i| to_series(i).to_numo }).transpose else out end end |
#to_s ⇒ String Also known as: inspect
Returns a string representing the DataFrame.
410 411 412 |
# File 'lib/polars/data_frame.rb', line 410 def to_s _df.to_s end |
#to_series(index = 0) ⇒ Series
Select column as Series at index location.
847 848 849 850 851 852 |
# File 'lib/polars/data_frame.rb', line 847 def to_series(index = 0) if index < 0 index = columns.length + index end Utils.wrap_s(_df.to_series(index)) end |
#to_struct(name = "") ⇒ Series
Convert a DataFrame to a Series of type Struct.
6450 6451 6452 |
# File 'lib/polars/data_frame.rb', line 6450 def to_struct(name = "") Utils.wrap_s(_df.to_struct(name)) end |
#top_k(k, by:, reverse: false) ⇒ DataFrame
Return the k largest rows.
Non-null elements are always preferred over null elements, regardless of
the value of reverse. The output is not guaranteed to be in any
particular order, call sort after this function if you wish the
output to be sorted.
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 |
# File 'lib/polars/data_frame.rb', line 2359 def top_k( k, by:, reverse: false ) lazy .top_k(k, by: by, reverse: reverse) .collect( optimizations: QueryOptFlags.new( projection_pushdown: false, predicate_pushdown: false, comm_subplan_elim: false, slice_pushdown: true ) ) end |
#transpose(include_header: false, header_name: "column", column_names: nil) ⇒ DataFrame
This is a very expensive operation. Perhaps you can do it differently.
Transpose a DataFrame over the diagonal.
1625 1626 1627 1628 |
# File 'lib/polars/data_frame.rb', line 1625 def transpose(include_header: false, header_name: "column", column_names: nil) keep_names_as = include_header ? header_name : nil _from_rbdf(_df.transpose(keep_names_as, column_names)) end |
#unique(maintain_order: false, subset: nil, keep: "any") ⇒ DataFrame
Note that this fails if there is a column of type List in the DataFrame or
subset.
Drop duplicate rows from this DataFrame.
5709 5710 5711 5712 5713 5714 5715 5716 |
# File 'lib/polars/data_frame.rb', line 5709 def unique(maintain_order: false, subset: nil, keep: "any") self._from_rbdf( lazy .unique(maintain_order: maintain_order, subset: subset, keep: keep) .collect(optimizations: QueryOptFlags._eager) ._df ) end |
#unnest(columns, *more_columns, separator: nil) ⇒ DataFrame
Decompose a struct into its fields.
The fields will be inserted into the DataFrame on the location of the
struct type.
6491 6492 6493 |
# File 'lib/polars/data_frame.rb', line 6491 def unnest(columns, *more_columns, separator: nil) lazy.unnest(columns, *more_columns, separator: separator).collect(optimizations: QueryOptFlags._eager) end |
#unpivot(on = nil, index: nil, variable_name: nil, value_name: nil) ⇒ DataFrame
Unpivot a DataFrame from wide to long format.
Optionally leaves identifiers set.
This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (index) while all other columns, considered measured variables (on), are "unpivoted" to the row axis leaving just two non-identifier columns, 'variable' and 'value'.
4629 4630 4631 4632 4633 4634 |
# File 'lib/polars/data_frame.rb', line 4629 def unpivot(on = nil, index: nil, variable_name: nil, value_name: nil) on = on.nil? ? [] : Utils.(self, on) index = index.nil? ? [] : Utils.(self, index) _from_rbdf(_df.unpivot(on, index, value_name, variable_name)) end |
#unstack(step:, how: "vertical", columns: nil, fill_values: nil) ⇒ DataFrame
This functionality is experimental and may be subject to changes without it being considered a breaking change.
Unstack a long table to a wide form without doing an aggregation.
This can be much faster than a pivot, because it can skip the grouping phase.
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 |
# File 'lib/polars/data_frame.rb', line 4707 def unstack(step:, how: "vertical", columns: nil, fill_values: nil) if !columns.nil? df = select(columns) else df = self end height = df.height if how == "vertical" n_rows = step n_cols = (height / n_rows.to_f).ceil else n_cols = step n_rows = (height / n_cols.to_f).ceil end n_fill = n_cols * n_rows - height if n_fill > 0 if !fill_values.is_a?(::Array) fill_values = [fill_values] * df.width end df = df.select( df.get_columns.zip(fill_values).map do |s, next_fill| s.extend_constant(next_fill, n_fill) end ) end if how == "horizontal" df = ( df.with_columns( (Polars.arange(0, n_cols * n_rows, eager: true) % n_cols).alias( "__sort_order" ) ) .sort("__sort_order") .drop("__sort_order") ) end zfill_val = Math.log10(n_cols).floor + 1 slices = df.get_columns.flat_map do |s| n_cols.times.map do |slice_nbr| s.slice(slice_nbr * n_rows, n_rows).alias("%s_%0#{zfill_val}d" % [s.name, slice_nbr]) end end _from_rbdf(DataFrame.new(slices)._df) end |
#update(other, on: nil, how: "left", left_on: nil, right_on: nil, include_nulls: false, maintain_order: "left") ⇒ DataFrame
This functionality is considered unstable. It may be changed at any point without it being considered a breaking change.
This is syntactic sugar for a left/inner join that preserves the order
of the left DataFrame by default, with an optional coalesce when
include_nulls: false.
Update the values in this DataFrame with the values in other.
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 |
# File 'lib/polars/data_frame.rb', line 6667 def update( other, on: nil, how: "left", left_on: nil, right_on: nil, include_nulls: false, maintain_order: "left" ) Utils.require_same_type(self, other) lazy .update( other.lazy, on: on, how: how, left_on: left_on, right_on: right_on, include_nulls: include_nulls, maintain_order: maintain_order ) .collect(optimizations: QueryOptFlags._eager) end |
#upsample(time_column:, every:, group_by: nil, maintain_order: false) ⇒ DataFrame
Upsample a DataFrame at a regular frequency.
The every and offset arguments are created with
the following string language:
- 1ns (1 nanosecond)
- 1us (1 microsecond)
- 1ms (1 millisecond)
- 1s (1 second)
- 1m (1 minute)
- 1h (1 hour)
- 1d (1 day)
- 1w (1 week)
- 1mo (1 calendar month)
- 1y (1 calendar year)
- 1i (1 index count)
Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 |
# File 'lib/polars/data_frame.rb', line 3388 def upsample( time_column:, every:, group_by: nil, maintain_order: false ) if group_by.nil? group_by = [] end if group_by.is_a?(::String) group_by = [group_by] end every = Utils.parse_as_duration_string(every) _from_rbdf( _df.upsample(group_by, time_column, every, maintain_order) ) end |
#var(ddof: 1) ⇒ DataFrame
Aggregate the columns of this DataFrame to their variance value.
5544 5545 5546 |
# File 'lib/polars/data_frame.rb', line 5544 def var(ddof: 1) lazy.var(ddof: ddof).collect(optimizations: QueryOptFlags._eager) end |
#vstack(other, in_place: false) ⇒ DataFrame
Grow this DataFrame vertically by stacking a DataFrame to it.
3959 3960 3961 3962 3963 3964 3965 3966 |
# File 'lib/polars/data_frame.rb', line 3959 def vstack(other, in_place: false) if in_place _df.vstack_mut(other._df) self else _from_rbdf(_df.vstack(other._df)) end end |
#width ⇒ Integer
Get the width of the DataFrame.
207 208 209 |
# File 'lib/polars/data_frame.rb', line 207 def width _df.width end |
#with_columns(*exprs, **named_exprs) ⇒ DataFrame
Add columns to this DataFrame.
Added columns will replace existing columns with the same name.
5195 5196 5197 |
# File 'lib/polars/data_frame.rb', line 5195 def with_columns(*exprs, **named_exprs) lazy.with_columns(*exprs, **named_exprs).collect(optimizations: QueryOptFlags._eager) end |
#with_columns_seq(*exprs, **named_exprs) ⇒ DataFrame
Add columns to this DataFrame.
Added columns will replace existing columns with the same name.
This will run all expression sequentially instead of in parallel. Use this when the work per expression is cheap.
5215 5216 5217 5218 5219 5220 5221 5222 |
# File 'lib/polars/data_frame.rb', line 5215 def with_columns_seq( *exprs, **named_exprs ) lazy .with_columns_seq(*exprs, **named_exprs) .collect(optimizations: QueryOptFlags._eager) end |
#with_row_index(name: "index", offset: 0) ⇒ DataFrame
Add a column at index 0 that counts the rows.
2852 2853 2854 |
# File 'lib/polars/data_frame.rb', line 2852 def with_row_index(name: "index", offset: 0) _from_rbdf(_df.with_row_index(name, offset)) end |
#write_avro(file, compression = "uncompressed", name: "") ⇒ nil
Write to Apache Avro file.
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 |
# File 'lib/polars/data_frame.rb', line 1113 def write_avro(file, compression = "uncompressed", name: "") if compression.nil? compression = "uncompressed" end if Utils.pathlike?(file) file = Utils.normalize_filepath(file) end if name.nil? name = "" end _df.write_avro(file, compression, name) end |
#write_csv(file = nil, include_bom: false, compression: "uncompressed", compression_level: nil, check_extension: true, include_header: true, separator: ",", line_terminator: "\n", quote_char: '"', batch_size: 1024, datetime_format: nil, date_format: nil, time_format: nil, float_scientific: nil, float_precision: nil, decimal_comma: false, null_value: nil, quote_style: nil, storage_options: nil, credential_provider: "auto", retries: nil) ⇒ String?
Write to comma-separated values (CSV) file.
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 |
# File 'lib/polars/data_frame.rb', line 1026 def write_csv( file = nil, include_bom: false, compression: "uncompressed", compression_level: nil, check_extension: true, include_header: true, separator: ",", line_terminator: "\n", quote_char: '"', batch_size: 1024, datetime_format: nil, date_format: nil, time_format: nil, float_scientific: nil, float_precision: nil, decimal_comma: false, null_value: nil, quote_style: nil, storage_options: nil, credential_provider: "auto", retries: nil ) Utils._check_arg_is_1byte("separator", separator, false) Utils._check_arg_is_1byte("quote_char", quote_char, true) if null_value == "" null_value = nil end should_return_buffer = false if file.nil? target = StringIO.new target.set_encoding(Encoding::BINARY) should_return_buffer = true else target = file end engine = "in-memory" lazy.sink_csv( target, include_bom: include_bom, include_header: include_header, separator: separator, line_terminator: line_terminator, quote_char: quote_char, batch_size: batch_size, datetime_format: datetime_format, date_format: date_format, time_format: time_format, float_scientific: float_scientific, float_precision: float_precision, decimal_comma: decimal_comma, null_value: null_value, quote_style: quote_style, storage_options: , credential_provider: credential_provider, retries: retries, optimizations: QueryOptFlags._eager, engine: engine ) if should_return_buffer return target.string.force_encoding(Encoding::UTF_8) end nil end |
#write_database(table_name, connection = nil, if_table_exists: "fail") ⇒ Integer
This functionality is experimental. It may be changed at any point without it being considered a breaking change.
Write the data in a Polars DataFrame to a database.
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 |
# File 'lib/polars/data_frame.rb', line 1326 def write_database(table_name, connection = nil, if_table_exists: "fail") if !defined?(ActiveRecord) raise Error, "Active Record not available" elsif ActiveRecord::VERSION::MAJOR < 7 raise Error, "Requires Active Record 7+" end valid_write_modes = ["append", "replace", "fail"] if !valid_write_modes.include?(if_table_exists) msg = "write_database `if_table_exists` must be one of #{valid_write_modes.inspect}, got #{if_table_exists.inspect}" raise ArgumentError, msg end with_connection(connection) do |connection| table_exists = connection.table_exists?(table_name) if table_exists && if_table_exists == "fail" raise ArgumentError, "Table already exists" end create_table = !table_exists || if_table_exists == "replace" maybe_transaction(connection, create_table) do if create_table mysql = connection.adapter_name.match?(/mysql|trilogy/i) force = if_table_exists == "replace" connection.create_table(table_name, id: false, force: force) do |t| schema.each do |c, dtype| = {} column_type = case dtype when Binary :binary when Boolean :boolean when Date :date when Datetime :datetime when Decimal if mysql [:precision] = dtype.precision || 65 [:scale] = dtype.scale || 30 end :decimal when Float32 [:limit] = 24 :float when Float64 [:limit] = 53 :float when Int8 [:limit] = 1 :integer when Int16 [:limit] = 2 :integer when Int32 [:limit] = 4 :integer when Int64 [:limit] = 8 :integer when UInt8 if mysql [:limit] = 1 [:unsigned] = true else [:limit] = 2 end :integer when UInt16 if mysql [:limit] = 2 [:unsigned] = true else [:limit] = 4 end :integer when UInt32 if mysql [:limit] = 4 [:unsigned] = true else [:limit] = 8 end :integer when UInt64 if mysql [:limit] = 8 [:unsigned] = true :integer else [:precision] = 20 [:scale] = 0 :decimal end when String :text when Time :time else raise ArgumentError, "column type not supported yet: #{dtype}" end t.column c, column_type, ** end end end quoted_table = connection.quote_table_name(table_name) quoted_columns = columns.map { |c| connection.quote_column_name(c) } rows = cast({Polars::UInt64 => Polars::String}).rows(named: false).map { |row| "(#{row.map { |v| connection.quote(v) }.join(", ")})" } connection.exec_update("INSERT INTO #{quoted_table} (#{quoted_columns.join(", ")}) VALUES #{rows.join(", ")}") end end end |
#write_delta(target, mode: "error", storage_options: nil, delta_write_options: nil, delta_merge_options: nil) ⇒ nil
Write DataFrame as delta table.
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 |
# File 'lib/polars/data_frame.rb', line 1489 def write_delta( target, mode: "error", storage_options: nil, delta_write_options: nil, delta_merge_options: nil ) Polars.send(:_check_if_delta_available) if Utils.pathlike?(target) target = Polars.send(:_resolve_delta_lake_uri, target.to_s, strict: false) end data = self if mode == "merge" if .nil? msg = "You need to pass delta_merge_options with at least a given predicate for `MERGE` to work." raise ArgumentError, msg end if target.is_a?(::String) dt = DeltaLake::Table.new(target, storage_options: ) else dt = target end predicate = .delete(:predicate) dt.merge(data, predicate, **) else ||= {} DeltaLake.write( target, data, mode: mode, storage_options: , ** ) end end |
#write_iceberg(target, mode:) ⇒ nil
This functionality is currently considered unstable. It may be changed at any point without it being considered a breaking change.
Write DataFrame to an Iceberg table.
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 |
# File 'lib/polars/data_frame.rb', line 1456 def write_iceberg(target, mode:) require "iceberg" table = if target.is_a?(Iceberg::Table) target else raise Todo end data = self if mode == "append" table.append(data) else raise Todo end end |
#write_ipc(file, compression: "uncompressed", compat_level: nil, record_batch_size: nil, storage_options: nil, credential_provider: "auto", retries: nil) ⇒ nil
Write to Arrow IPC binary stream or Feather file.
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 |
# File 'lib/polars/data_frame.rb', line 1157 def write_ipc( file, compression: "uncompressed", compat_level: nil, record_batch_size: nil, storage_options: nil, credential_provider: "auto", retries: nil ) return_bytes = file.nil? if file.nil? target = StringIO.new target.set_encoding(Encoding::BINARY) else target = file end lazy.sink_ipc( target, compression: compression, compat_level: compat_level, record_batch_size: record_batch_size, storage_options: , credential_provider: credential_provider, retries: retries, optimizations: QueryOptFlags._eager, engine: "streaming" ) return_bytes ? target.string : nil end |
#write_ipc_stream(file, compression: "uncompressed", compat_level: nil) ⇒ Object
Write to Arrow IPC record batch stream.
See "Streaming format" in https://arrow.apache.org/docs/python/ipc.html.
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 |
# File 'lib/polars/data_frame.rb', line 1212 def write_ipc_stream( file, compression: "uncompressed", compat_level: nil ) return_bytes = file.nil? if return_bytes file = StringIO.new file.set_encoding(Encoding::BINARY) elsif Utils.pathlike?(file) file = Utils.normalize_filepath(file) end if compat_level.nil? compat_level = true end if compression.nil? compression = "uncompressed" end _df.write_ipc_stream(file, compression, compat_level) return_bytes ? file.string : nil end |
#write_json(file = nil) ⇒ nil
Serialize to JSON representation.
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
# File 'lib/polars/data_frame.rb', line 908 def write_json(file = nil) if Utils.pathlike?(file) file = Utils.normalize_filepath(file) end to_string_io = !file.nil? && file.is_a?(StringIO) if file.nil? || to_string_io buf = StringIO.new buf.set_encoding(Encoding::BINARY) _df.write_json(buf) json_bytes = buf.string json_str = json_bytes.force_encoding(Encoding::UTF_8) if to_string_io file.write(json_str) else return json_str end else _df.write_json(file) end nil end |
#write_ndjson(file = nil, compression: "uncompressed", compression_level: nil, check_extension: true) ⇒ nil
Serialize to newline delimited JSON representation.
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 |
# File 'lib/polars/data_frame.rb', line 947 def write_ndjson( file = nil, compression: "uncompressed", compression_level: nil, check_extension: true ) should_return_buffer = false if file.nil? target = StringIO.new target.set_encoding(Encoding::BINARY) should_return_buffer = true elsif Utils.pathlike?(file) target = Utils.normalize_filepath(file) else target = file end engine = "in-memory" lazy.sink_ndjson( target, compression: compression, compression_level: compression_level, check_extension: check_extension, optimizations: QueryOptFlags._eager, engine: engine ) if should_return_buffer return target.string.force_encoding(Encoding::UTF_8) end nil end |
#write_parquet(file, compression: "zstd", compression_level: nil, statistics: true, row_group_size: nil, data_page_size: nil, partition_by: nil, partition_chunk_size_bytes: 4_294_967_296, storage_options: nil, credential_provider: "auto", retries: nil, metadata: nil, arrow_schema: nil, mkdir: false) ⇒ nil
Write to Apache Parquet file.
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 |
# File 'lib/polars/data_frame.rb', line 1261 def write_parquet( file, compression: "zstd", compression_level: nil, statistics: true, row_group_size: nil, data_page_size: nil, partition_by: nil, partition_chunk_size_bytes: 4_294_967_296, storage_options: nil, credential_provider: "auto", retries: nil, metadata: nil, arrow_schema: nil, mkdir: false ) if compression.nil? compression = "uncompressed" end if Utils.pathlike?(file) file = Utils.normalize_filepath(file) end target = file engine = "streaming" if !partition_by.nil? raise Todo end lazy.sink_parquet( target, compression: compression, compression_level: compression_level, statistics: statistics, row_group_size: row_group_size, data_page_size: data_page_size, storage_options: , credential_provider: credential_provider, retries: retries, metadata: , arrow_schema: arrow_schema, engine: engine, mkdir: mkdir, optimizations: QueryOptFlags._eager ) end |