Class: Polars::Series
- Inherits:
-
Object
- Object
- Polars::Series
- Defined in:
- lib/polars/series.rb
Overview
A Series represents a single column in a polars DataFrame.
Instance Method Summary collapse
-
#! ⇒ Series
Performs boolean not.
-
#!=(other) ⇒ Series
Not equal.
-
#%(other) ⇒ Series
Returns the modulo.
-
#&(other) ⇒ Series
Bitwise AND.
-
#*(other) ⇒ Series
Performs multiplication.
-
#**(power) ⇒ Series
Raises to the power of exponent.
-
#+(other) ⇒ Series
Performs addition.
-
#-(other) ⇒ Series
Performs subtraction.
-
#-@ ⇒ Series
Performs negation.
-
#/(other) ⇒ Series
Performs division.
-
#<(other) ⇒ Series
Less than.
-
#<=(other) ⇒ Series
Less than or equal.
-
#==(other) ⇒ Series
Equal.
-
#>(other) ⇒ Series
Greater than.
-
#>=(other) ⇒ Series
Greater than or equal.
-
#[](item) ⇒ Object
Returns elements of the Series.
-
#[]=(key, value) ⇒ Object
Sets an element of the Series.
-
#^(other) ⇒ Series
Bitwise XOR.
-
#_hash(seed = 0, seed_1 = nil, seed_2 = nil, seed_3 = nil) ⇒ Series
Hash the Series.
-
#abs ⇒ Series
Compute absolute values.
-
#alias(name) ⇒ Series
Return a copy of the Series with a new alias/name.
-
#all?(ignore_nulls: true, &block) ⇒ Boolean
(also: #all)
Check if all boolean values in the column are
true
. -
#any?(ignore_nulls: true, &block) ⇒ Boolean
(also: #any)
Check if any boolean value in the column is
true
. -
#append(other, append_chunks: true) ⇒ Series
Append a Series to this one.
-
#arccos ⇒ Series
(also: #acos)
Compute the element-wise value for the inverse cosine.
-
#arccosh ⇒ Series
(also: #acosh)
Compute the element-wise value for the inverse hyperbolic cosine.
-
#arcsin ⇒ Series
(also: #asin)
Compute the element-wise value for the inverse sine.
-
#arcsinh ⇒ Series
(also: #asinh)
Compute the element-wise value for the inverse hyperbolic sine.
-
#arctan ⇒ Series
(also: #atan)
Compute the element-wise value for the inverse tangent.
-
#arctanh ⇒ Series
(also: #atanh)
Compute the element-wise value for the inverse hyperbolic tangent.
-
#arg_max ⇒ Integer?
Get the index of the maximal value.
-
#arg_min ⇒ Integer?
Get the index of the minimal value.
-
#arg_sort(reverse: false, nulls_last: false) ⇒ Series
Get the index values that would sort this Series.
-
#arg_true ⇒ Series
Get index values where Boolean Series evaluate
true
. -
#arg_unique ⇒ Series
Get unique index as Series.
-
#argsort(reverse: false, nulls_last: false) ⇒ Series
Get the index values that would sort this Series.
-
#arr ⇒ ArrayNameSpace
Create an object namespace of all array related methods.
-
#bin ⇒ BinaryNameSpace
Create an object namespace of all binary related methods.
-
#bottom_k(k: 5) ⇒ Boolean
Return the
k
smallest elements. -
#cast(dtype, strict: true) ⇒ Series
Cast between data types.
-
#cat ⇒ CatNameSpace
Create an object namespace of all categorical related methods.
-
#ceil ⇒ Series
Rounds up to the nearest integer value.
-
#chunk_lengths ⇒ Array
Get the length of each individual chunk.
-
#cleared ⇒ Series
Create an empty copy of the current Series.
-
#clip(min_val = nil, max_val = nil) ⇒ Series
Clip (limit) the values in an array to a
min
andmax
boundary. -
#clip_max(max_val) ⇒ Series
Clip (limit) the values in an array to a
max
boundary. -
#clip_min(min_val) ⇒ Series
Clip (limit) the values in an array to a
min
boundary. -
#cos ⇒ Series
Compute the element-wise value for the cosine.
-
#cosh ⇒ Series
Compute the element-wise value for the hyperbolic cosine.
-
#count ⇒ Integer
Return the number of elements in the Series.
-
#cum_max(reverse: false) ⇒ Series
(also: #cummax)
Get an array with the cumulative max computed at every element.
-
#cum_min(reverse: false) ⇒ Series
(also: #cummin)
Get an array with the cumulative min computed at every element.
-
#cum_prod(reverse: false) ⇒ Series
(also: #cumprod)
Get an array with the cumulative product computed at every element.
-
#cum_sum(reverse: false) ⇒ Series
(also: #cumsum)
Get an array with the cumulative sum computed at every element.
-
#cumulative_eval(expr, min_periods: 1, parallel: false) ⇒ Series
Run an expression over a sliding window that increases
1
slot every iteration. -
#cut(breaks, labels: nil, left_closed: false, include_breaks: false) ⇒ Series
Bin continuous values into discrete categories.
-
#describe ⇒ DataFrame
Quick summary statistics of a series.
-
#diff(n: 1, null_behavior: "ignore") ⇒ Series
Calculate the n-th discrete difference.
-
#dot(other) ⇒ Numeric
Compute the dot/inner product between two Series.
-
#drop_nans ⇒ Series
Drop NaN values.
-
#drop_nulls ⇒ Series
Create a new Series that copies data from this Series without null values.
-
#dt ⇒ DateTimeNameSpace
Create an object namespace of all datetime related methods.
-
#dtype ⇒ Symbol
Get the data type of this Series.
-
#each ⇒ Object
Returns an enumerator.
-
#entropy(base: Math::E, normalize: false) ⇒ Float?
Computes the entropy.
-
#eq(other) ⇒ Series
Method equivalent of operator expression
series == other
. -
#eq_missing(other) ⇒ Object
Method equivalent of equality operator
series == other
wherenil == nil
. -
#equals(other, strict: false, check_names: false, null_equal: false) ⇒ Boolean
(also: #series_equal)
Check if series is equal with another Series.
-
#estimated_size(unit = "b") ⇒ Numeric
Return an estimation of the total (heap) allocated size of the Series.
-
#ewm_mean(com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, min_periods: 1, ignore_nulls: true) ⇒ Series
Exponentially-weighted moving average.
-
#ewm_std(com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, bias: false, min_periods: 1, ignore_nulls: true) ⇒ Series
Exponentially-weighted moving standard deviation.
-
#ewm_var(com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, bias: false, min_periods: 1, ignore_nulls: true) ⇒ Series
Exponentially-weighted moving variance.
-
#exp ⇒ Series
Compute the exponential, element-wise.
-
#explode ⇒ Series
Explode a list or utf8 Series.
-
#extend_constant(value, n) ⇒ Series
Extend the Series with given number of values.
-
#fill_nan(fill_value) ⇒ Series
Fill floating point NaN value with a fill value.
-
#fill_null(value = nil, strategy: nil, limit: nil) ⇒ Series
Fill null values using the specified value or strategy.
-
#filter(predicate) ⇒ Series
Filter elements by a boolean mask.
-
#flags ⇒ Hash
Get flags that are set on the Series.
-
#floor ⇒ Series
Rounds down to the nearest integer value.
-
#ge(other) ⇒ Series
Method equivalent of operator expression
series >= other
. -
#gt(other) ⇒ Series
Method equivalent of operator expression
series > other
. -
#has_nulls ⇒ Boolean
(also: #has_validity)
Return
true
if the Series has a validity bitmask. -
#head(n = 10) ⇒ Series
Get the first
n
rows. -
#initialize(name = nil, values = nil, dtype: nil, strict: true, nan_to_null: false, dtype_if_empty: nil) ⇒ Series
constructor
Create a new Series.
-
#inner_dtype ⇒ Symbol
Get the inner dtype in of a List typed Series.
-
#interpolate(method: "linear") ⇒ Series
Interpolate intermediate values.
-
#is_boolean ⇒ Boolean
(also: #boolean?, #is_bool, #bool?)
Check if this Series is a Boolean.
-
#is_datelike ⇒ Boolean
(also: #datelike?, #is_temporal, #temporal?)
Check if this Series datatype is datelike.
-
#is_duplicated ⇒ Series
Get mask of all duplicated values.
-
#is_empty ⇒ Boolean
(also: #empty?)
Check if the Series is empty.
-
#is_finite ⇒ Series
Returns a boolean Series indicating which values are finite.
-
#is_first ⇒ Series
Get a mask of the first unique value.
-
#is_float ⇒ Boolean
(also: #float?)
Check if this Series has floating point numbers.
-
#is_in(other) ⇒ Series
(also: #in?)
Check if elements of this Series are in the other Series.
-
#is_infinite ⇒ Series
Returns a boolean Series indicating which values are infinite.
-
#is_nan ⇒ Series
Returns a boolean Series indicating which values are NaN.
-
#is_not_nan ⇒ Series
Returns a boolean Series indicating which values are not NaN.
-
#is_not_null ⇒ Series
Returns a boolean Series indicating which values are not null.
-
#is_null ⇒ Series
Returns a boolean Series indicating which values are null.
-
#is_numeric ⇒ Boolean
(also: #numeric?)
Check if this Series datatype is numeric.
-
#is_unique ⇒ Series
Get mask of all unique values.
-
#is_utf8 ⇒ Boolean
(also: #utf8?)
Check if this Series datatype is a Utf8.
-
#kurtosis(fisher: true, bias: true) ⇒ Float?
Compute the kurtosis (Fisher or Pearson) of a dataset.
-
#le(other) ⇒ Series
Method equivalent of operator expression
series <= other
. -
#len ⇒ Integer
(also: #length, #size)
Return the number of elements in the Series.
-
#limit(n = 10) ⇒ Series
Get the first
n
rows. -
#list ⇒ ListNameSpace
Create an object namespace of all list related methods.
-
#log(base = Math::E) ⇒ Series
Compute the logarithm to a given base.
-
#log10 ⇒ Series
Compute the base 10 logarithm of the input array, element-wise.
-
#lt(other) ⇒ Series
Method equivalent of operator expression
series < other
. -
#map_elements(return_dtype: nil, skip_nulls: true, &func) ⇒ Series
(also: #map, #apply)
Apply a custom/user-defined function (UDF) over elements in this Series and return a new Series.
-
#max ⇒ Object
Get the maximum value in this Series.
-
#mean ⇒ Float?
Reduce this Series to the mean value.
-
#median ⇒ Float?
Get the median of this Series.
-
#min ⇒ Object
Get the minimal value in this Series.
-
#mode ⇒ Series
Compute the most occurring value(s).
-
#n_chunks ⇒ Integer
Get the number of chunks that this Series contains.
-
#n_unique ⇒ Integer
Count the number of unique values in this Series.
-
#name ⇒ String
Get the name of this Series.
-
#nan_max ⇒ Object
Get maximum value, but propagate/poison encountered NaN values.
-
#nan_min ⇒ Object
Get minimum value, but propagate/poison encountered NaN values.
-
#ne(other) ⇒ Series
Method equivalent of operator expression
series != other
. -
#ne_missing(other) ⇒ Object
Method equivalent of equality operator
series != other
whereNone == None
. -
#new_from_index(index, length) ⇒ Series
Create a new Series filled with values from the given index.
-
#none?(&block) ⇒ Boolean
(also: #none)
Check if all boolean values in the column are
false
. -
#null_count ⇒ Integer
Count the null values in this Series.
-
#pct_change(n: 1) ⇒ Series
Computes percentage change between values.
-
#peak_max ⇒ Series
Get a boolean mask of the local maximum peaks.
-
#peak_min ⇒ Series
Get a boolean mask of the local minimum peaks.
-
#product ⇒ Numeric
Reduce this Series to the product value.
-
#qcut(quantiles, labels: nil, left_closed: false, allow_duplicates: false, include_breaks: false) ⇒ Series
Bin continuous values into discrete categories based on their quantiles.
-
#quantile(quantile, interpolation: "nearest") ⇒ Float?
Get the quantile value of this Series.
-
#rank(method: "average", reverse: false, seed: nil) ⇒ Series
Assign ranks to data, dealing with ties appropriately.
-
#rechunk(in_place: false) ⇒ Series
Create a single chunk of memory for this Series.
-
#reinterpret(signed: true) ⇒ Series
Reinterpret the underlying bits as a signed/unsigned integer.
-
#rename(name, in_place: false) ⇒ Series
Rename this Series.
-
#replace(old, new = Expr::NO_DEFAULT, default: Expr::NO_DEFAULT, return_dtype: nil) ⇒ Series
Replace values by different values.
-
#reshape(dims) ⇒ Series
Reshape this Series to a flat Series or a Series of Lists.
-
#reverse ⇒ Series
Return Series in reverse order.
-
#rle ⇒ Series
Get the lengths of runs of identical values.
-
#rle_id ⇒ Series
Map values to run IDs.
-
#rolling_max(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Apply a rolling max (moving max) over the values in this array.
-
#rolling_mean(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Apply a rolling mean (moving mean) over the values in this array.
-
#rolling_median(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Compute a rolling median.
-
#rolling_min(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Apply a rolling min (moving min) over the values in this array.
-
#rolling_quantile(quantile, interpolation: "nearest", window_size: 2, weights: nil, min_periods: nil, center: false) ⇒ Series
Compute a rolling quantile.
-
#rolling_skew(window_size, bias: true) ⇒ Series
Compute a rolling skew.
-
#rolling_std(window_size, weights: nil, min_periods: nil, center: false, ddof: 1) ⇒ Series
Compute a rolling std dev.
-
#rolling_sum(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Apply a rolling sum (moving sum) over the values in this array.
-
#rolling_var(window_size, weights: nil, min_periods: nil, center: false, ddof: 1) ⇒ Series
Compute a rolling variance.
-
#round(decimals = 0) ⇒ Series
Round underlying floating point data by
decimals
digits. -
#sample(n: nil, frac: nil, with_replacement: false, shuffle: false, seed: nil) ⇒ Series
Sample from this Series.
-
#scatter(idx, value) ⇒ Series
(also: #set_at_idx)
Set values at the index locations.
-
#search_sorted(element, side: "any") ⇒ Integer
Find indices where elements should be inserted to maintain order.
-
#set(filter, value) ⇒ Series
Set masked values.
-
#set_sorted(reverse: false) ⇒ Series
Flags the Series as sorted.
-
#shape ⇒ Array
Shape of this Series.
-
#shift(periods = 1) ⇒ Series
Shift the values by a given period.
-
#shift_and_fill(periods, fill_value) ⇒ Series
Shift the values by a given period and fill the resulting null values.
-
#shrink_dtype ⇒ Series
Shrink numeric columns to the minimal required datatype.
-
#shrink_to_fit(in_place: false) ⇒ Series
Shrink Series memory usage.
-
#shuffle(seed: nil) ⇒ Series
Shuffle the contents of this Series.
-
#sign ⇒ Series
Compute the element-wise indication of the sign.
-
#sin ⇒ Series
Compute the element-wise value for the sine.
-
#sinh ⇒ Series
Compute the element-wise value for the hyperbolic sine.
-
#skew(bias: true) ⇒ Float?
Compute the sample skewness of a data set.
-
#slice(offset, length = nil) ⇒ Series
Get a slice of this Series.
-
#sort(reverse: false, nulls_last: false, multithreaded: true, in_place: false) ⇒ Series
Sort this Series.
-
#sqrt ⇒ Series
Compute the square root of the elements.
-
#std(ddof: 1) ⇒ Float?
Get the standard deviation of this Series.
-
#str ⇒ StringNameSpace
Create an object namespace of all string related methods.
-
#struct ⇒ StructNameSpace
Create an object namespace of all struct related methods.
-
#sum ⇒ Numeric
Reduce this Series to the sum value.
-
#tail(n = 10) ⇒ Series
Get the last
n
rows. -
#take(indices) ⇒ Series
Take values by index.
-
#take_every(n) ⇒ Series
Take every nth value in the Series and return as new Series.
-
#tan ⇒ Series
Compute the element-wise value for the tangent.
-
#tanh ⇒ Series
Compute the element-wise value for the hyperbolic tangent.
-
#time_unit ⇒ String
Get the time unit of underlying Datetime Series as
"ns"
,"us"
, or"ms"
. -
#to_a ⇒ Array
Convert this Series to a Ruby Array.
-
#to_dummies(separator: "_", drop_first: false) ⇒ DataFrame
Get dummy variables.
-
#to_frame ⇒ DataFrame
Cast this Series to a DataFrame.
-
#to_numo ⇒ Numo::NArray
Convert this Series to a Numo array.
-
#to_physical ⇒ Series
Cast to physical representation of the logical dtype.
-
#to_s ⇒ String
(also: #inspect)
Returns a string representing the Series.
-
#top_k(k: 5) ⇒ Boolean
Return the
k
largest elements. -
#unique(maintain_order: false) ⇒ Series
(also: #uniq)
Get unique elements in series.
-
#unique_counts ⇒ Series
Return a count of the unique values in the order of appearance.
-
#value_counts(sort: false, parallel: false, name: nil, normalize: false) ⇒ DataFrame
Count the unique values in a Series.
-
#var(ddof: 1) ⇒ Float?
Get variance of this Series.
-
#zip_with(mask, other) ⇒ Series
Take values from self or other based on the given mask.
-
#|(other) ⇒ Series
Bitwise OR.
Constructor Details
#initialize(name = nil, values = nil, dtype: nil, strict: true, nan_to_null: false, dtype_if_empty: nil) ⇒ Series
Create a new Series.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/polars/series.rb', line 35 def initialize(name = nil, values = nil, dtype: nil, strict: true, nan_to_null: false, dtype_if_empty: nil) # Handle case where values are passed as the first argument if !name.nil? && !name.is_a?(::String) if values.nil? values = name name = nil else raise ArgumentError, "Series name must be a string." end end name = "" if name.nil? # TODO improve if values.is_a?(Range) && values.begin.is_a?(::String) values = values.to_a end if values.nil? self._s = sequence_to_rbseries(name, [], dtype: dtype, dtype_if_empty: dtype_if_empty) elsif values.is_a?(Series) self._s = series_to_rbseries(name, values) elsif values.is_a?(Range) self._s = Polars.arange( values.first, values.last + (values.exclude_end? ? 0 : 1), step: 1, eager: true, dtype: dtype ) .rename(name, in_place: true) ._s elsif values.is_a?(::Array) self._s = sequence_to_rbseries(name, values, dtype: dtype, strict: strict, dtype_if_empty: dtype_if_empty) elsif defined?(Numo::NArray) && values.is_a?(Numo::NArray) self._s = numo_to_rbseries(name, values, strict: strict, nan_to_null: nan_to_null) if !dtype.nil? self._s = self.cast(dtype, strict: true)._s end else raise ArgumentError, "Series constructor called with unsupported type; got #{values.class.name}" end end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class Polars::ExprDispatch
Instance Method Details
#! ⇒ Series
Performs boolean not.
402 403 404 405 406 407 |
# File 'lib/polars/series.rb', line 402 def ! if dtype == Boolean return Utils.wrap_s(_s.not) end raise NotImplementedError end |
#!=(other) ⇒ Series
Not equal.
185 186 187 |
# File 'lib/polars/series.rb', line 185 def !=(other) _comp(other, :neq) end |
#%(other) ⇒ Series
Returns the modulo.
382 383 384 385 386 387 |
# File 'lib/polars/series.rb', line 382 def %(other) if is_datelike raise ArgumentError, "first cast to integer before applying modulo on datelike dtypes" end _arithmetic(other, :rem) end |
#&(other) ⇒ Series
Bitwise AND.
148 149 150 151 152 153 |
# File 'lib/polars/series.rb', line 148 def &(other) if !other.is_a?(Series) other = Series.new([other]) end Utils.wrap_s(_s.bitand(other._s)) end |
#*(other) ⇒ Series
Performs multiplication.
354 355 356 357 358 359 360 361 362 |
# File 'lib/polars/series.rb', line 354 def *(other) if is_temporal raise ArgumentError, "first cast to integer before multiplying datelike dtypes" elsif other.is_a?(DataFrame) other * self else _arithmetic(other, :mul) end end |
#**(power) ⇒ Series
Raises to the power of exponent.
392 393 394 395 396 397 |
# File 'lib/polars/series.rb', line 392 def **(power) if is_datelike raise ArgumentError, "first cast to integer before raising datelike dtypes to a power" end to_frame.select(Polars.col(name).pow(power)).to_series end |
#+(other) ⇒ Series
Performs addition.
340 341 342 |
# File 'lib/polars/series.rb', line 340 def +(other) _arithmetic(other, :add) end |
#-(other) ⇒ Series
Performs subtraction.
347 348 349 |
# File 'lib/polars/series.rb', line 347 def -(other) _arithmetic(other, :sub) end |
#-@ ⇒ Series
Performs negation.
412 413 414 |
# File 'lib/polars/series.rb', line 412 def -@ 0 - self end |
#/(other) ⇒ Series
Performs division.
367 368 369 370 371 372 373 374 375 376 377 |
# File 'lib/polars/series.rb', line 367 def /(other) if is_temporal raise ArgumentError, "first cast to integer before dividing datelike dtypes" end if is_float return _arithmetic(other, :div) end cast(Float64) / other end |
#<(other) ⇒ Series
Less than.
199 200 201 |
# File 'lib/polars/series.rb', line 199 def <(other) _comp(other, :lt) end |
#<=(other) ⇒ Series
Less than or equal.
213 214 215 |
# File 'lib/polars/series.rb', line 213 def <=(other) _comp(other, :lt_eq) end |
#==(other) ⇒ Series
Equal.
178 179 180 |
# File 'lib/polars/series.rb', line 178 def ==(other) _comp(other, :eq) end |
#>(other) ⇒ Series
Greater than.
192 193 194 |
# File 'lib/polars/series.rb', line 192 def >(other) _comp(other, :gt) end |
#>=(other) ⇒ Series
Greater than or equal.
206 207 208 |
# File 'lib/polars/series.rb', line 206 def >=(other) _comp(other, :gt_eq) end |
#[](item) ⇒ Object
Returns elements of the Series.
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
# File 'lib/polars/series.rb', line 430 def [](item) if item.is_a?(Series) && [UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64].include?(item.dtype) return Utils.wrap_s(_s.take_with_series(_pos_idxs(item)._s)) end if item.is_a?(Series) && item.bool? return filter(item) end if item.is_a?(Integer) if item < 0 item = len + item end return _s.get_idx(item) end if item.is_a?(Range) return Slice.new(self).apply(item) end if Utils.is_int_sequence(item) return Utils.wrap_s(_s.take_with_series(_pos_idxs(Series.new("", item))._s)) end raise ArgumentError, "Cannot get item of type: #{item.class.name}" end |
#[]=(key, value) ⇒ Object
Sets an element of the Series.
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
# File 'lib/polars/series.rb', line 461 def []=(key, value) if value.is_a?(::Array) if is_numeric || is_datelike scatter(key, value) return end raise ArgumentError, "cannot set Series of dtype: #{dtype} with list/tuple as value; use a scalar value" end if key.is_a?(Series) if key.dtype == Boolean self._s = set(key, value)._s elsif key.dtype == UInt64 self._s = scatter(key.cast(UInt32), value)._s elsif key.dtype == UInt32 self._s = scatter(key, value)._s else raise Todo end elsif key.is_a?(::Array) s = Utils.wrap_s(sequence_to_rbseries("", key, dtype: UInt32)) self[s] = value elsif key.is_a?(Range) s = Series.new("", key, dtype: UInt32) self[s] = value elsif key.is_a?(Integer) self[[key]] = value else raise ArgumentError, "cannot use #{key} for indexing" end end |
#^(other) ⇒ Series
Bitwise XOR.
168 169 170 171 172 173 |
# File 'lib/polars/series.rb', line 168 def ^(other) if !other.is_a?(Series) other = Series.new([other]) end Utils.wrap_s(_s.bitxor(other._s)) end |
#_hash(seed = 0, seed_1 = nil, seed_2 = nil, seed_3 = nil) ⇒ Series
Hash the Series.
The hash value is of type :u64
.
3508 3509 3510 |
# File 'lib/polars/series.rb', line 3508 def _hash(seed = 0, seed_1 = nil, seed_2 = nil, seed_3 = nil) super end |
#abs ⇒ Series
Compute absolute values.
3549 3550 3551 |
# File 'lib/polars/series.rb', line 3549 def abs super end |
#alias(name) ⇒ Series
Return a copy of the Series with a new alias/name.
1196 1197 1198 1199 1200 |
# File 'lib/polars/series.rb', line 1196 def alias(name) s = dup s._s.rename(name) s end |
#all?(ignore_nulls: true, &block) ⇒ Boolean Also known as: all
Check if all boolean values in the column are true
.
546 547 548 549 550 551 552 |
# File 'lib/polars/series.rb', line 546 def all?(ignore_nulls: true, &block) if block_given? apply(skip_nulls: ignore_nulls, &block).all? else _s.all(ignore_nulls) end end |
#any?(ignore_nulls: true, &block) ⇒ Boolean Also known as: any
Check if any boolean value in the column is true
.
534 535 536 537 538 539 540 |
# File 'lib/polars/series.rb', line 534 def any?(ignore_nulls: true, &block) if block_given? apply(skip_nulls: ignore_nulls, &block).any? else _s.any(ignore_nulls) end end |
#append(other, append_chunks: true) ⇒ Series
Append a Series to this one.
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 |
# File 'lib/polars/series.rb', line 1453 def append(other, append_chunks: true) begin if append_chunks _s.append(other._s) else _s.extend(other._s) end rescue => e if e. == "Already mutably borrowed" append(other.clone, append_chunks) else raise e end end self end |
#arccos ⇒ Series Also known as: acos
Compute the element-wise value for the inverse cosine.
2713 2714 2715 |
# File 'lib/polars/series.rb', line 2713 def arccos super end |
#arccosh ⇒ Series Also known as: acosh
Compute the element-wise value for the inverse hyperbolic cosine.
2774 2775 2776 |
# File 'lib/polars/series.rb', line 2774 def arccosh super end |
#arcsin ⇒ Series Also known as: asin
Compute the element-wise value for the inverse sine.
2693 2694 2695 |
# File 'lib/polars/series.rb', line 2693 def arcsin super end |
#arcsinh ⇒ Series Also known as: asinh
Compute the element-wise value for the inverse hyperbolic sine.
2753 2754 2755 |
# File 'lib/polars/series.rb', line 2753 def arcsinh super end |
#arctan ⇒ Series Also known as: atan
Compute the element-wise value for the inverse tangent.
2733 2734 2735 |
# File 'lib/polars/series.rb', line 2733 def arctan super end |
#arctanh ⇒ Series Also known as: atanh
Compute the element-wise value for the inverse hyperbolic tangent.
2798 2799 2800 |
# File 'lib/polars/series.rb', line 2798 def arctanh super end |
#arg_max ⇒ Integer?
Get the index of the maximal value.
1718 1719 1720 |
# File 'lib/polars/series.rb', line 1718 def arg_max _s.arg_max end |
#arg_min ⇒ Integer?
Get the index of the minimal value.
1706 1707 1708 |
# File 'lib/polars/series.rb', line 1706 def arg_min _s.arg_min end |
#arg_sort(reverse: false, nulls_last: false) ⇒ Series
Get the index values that would sort this Series.
1661 1662 1663 |
# File 'lib/polars/series.rb', line 1661 def arg_sort(reverse: false, nulls_last: false) super end |
#arg_true ⇒ Series
Get index values where Boolean Series evaluate true
.
1995 1996 1997 |
# File 'lib/polars/series.rb', line 1995 def arg_true Polars.arg_where(self, eager: true) end |
#arg_unique ⇒ Series
Get unique index as Series.
1694 1695 1696 |
# File 'lib/polars/series.rb', line 1694 def arg_unique super end |
#argsort(reverse: false, nulls_last: false) ⇒ Series
Get the index values that would sort this Series.
Alias for #arg_sort.
1675 1676 1677 |
# File 'lib/polars/series.rb', line 1675 def argsort(reverse: false, nulls_last: false) super end |
#arr ⇒ ArrayNameSpace
Create an object namespace of all array related methods.
3996 3997 3998 |
# File 'lib/polars/series.rb', line 3996 def arr ArrayNameSpace.new(self) end |
#bin ⇒ BinaryNameSpace
Create an object namespace of all binary related methods.
4003 4004 4005 |
# File 'lib/polars/series.rb', line 4003 def bin BinaryNameSpace.new(self) end |
#bottom_k(k: 5) ⇒ Boolean
Return the k
smallest elements.
1635 1636 1637 |
# File 'lib/polars/series.rb', line 1635 def bottom_k(k: 5) super end |
#cast(dtype, strict: true) ⇒ Series
Cast between data types.
2141 2142 2143 |
# File 'lib/polars/series.rb', line 2141 def cast(dtype, strict: true) super end |
#cat ⇒ CatNameSpace
Create an object namespace of all categorical related methods.
4010 4011 4012 |
# File 'lib/polars/series.rb', line 4010 def cat CatNameSpace.new(self) end |
#ceil ⇒ Series
Rounds up to the nearest integer value.
Only works on floating point Series.
2532 2533 2534 |
# File 'lib/polars/series.rb', line 2532 def ceil super end |
#chunk_lengths ⇒ Array
Get the length of each individual chunk.
1238 1239 1240 |
# File 'lib/polars/series.rb', line 1238 def chunk_lengths _s.chunk_lengths end |
#cleared ⇒ Series
Create an empty copy of the current Series.
The copy has identical name/dtype but no data.
2413 2414 2415 |
# File 'lib/polars/series.rb', line 2413 def cleared len > 0 ? limit(0) : clone end |
#clip(min_val = nil, max_val = nil) ⇒ Series
Clip (limit) the values in an array to a min
and max
boundary.
Only works for numerical types.
If you want to clip other dtypes, consider writing a "when, then, otherwise" expression. See Functions#when for more information.
3735 3736 3737 |
# File 'lib/polars/series.rb', line 3735 def clip(min_val = nil, max_val = nil) super end |
#clip_max(max_val) ⇒ Series
Clip (limit) the values in an array to a max
boundary.
Only works for numerical types.
If you want to clip other dtypes, consider writing a "when, then, otherwise" expression. See Functions#when for more information.
3765 3766 3767 |
# File 'lib/polars/series.rb', line 3765 def clip_max(max_val) super end |
#clip_min(min_val) ⇒ Series
Clip (limit) the values in an array to a min
boundary.
Only works for numerical types.
If you want to clip other dtypes, consider writing a "when, then, otherwise" expression. See Functions#when for more information.
3750 3751 3752 |
# File 'lib/polars/series.rb', line 3750 def clip_min(min_val) super end |
#cos ⇒ Series
Compute the element-wise value for the cosine.
2655 2656 2657 |
# File 'lib/polars/series.rb', line 2655 def cos super end |
#cosh ⇒ Series
Compute the element-wise value for the hyperbolic cosine.
2837 2838 2839 |
# File 'lib/polars/series.rb', line 2837 def cosh super end |
#count ⇒ Integer
Return the number of elements in the Series.
2103 2104 2105 |
# File 'lib/polars/series.rb', line 2103 def count len - null_count end |
#cum_max(reverse: false) ⇒ Series Also known as: cummax
Get an array with the cumulative max computed at every element.
1329 1330 1331 |
# File 'lib/polars/series.rb', line 1329 def cum_max(reverse: false) super end |
#cum_min(reverse: false) ⇒ Series Also known as: cummin
Get an array with the cumulative min computed at every element.
1306 1307 1308 |
# File 'lib/polars/series.rb', line 1306 def cum_min(reverse: false) super end |
#cum_prod(reverse: false) ⇒ Series Also known as: cumprod
Dtypes :i8
, :u8
, :i16
, and :u16
are cast to
:i64
before multiplying to prevent overflow issues.
Get an array with the cumulative product computed at every element.
1356 1357 1358 |
# File 'lib/polars/series.rb', line 1356 def cum_prod(reverse: false) super end |
#cum_sum(reverse: false) ⇒ Series Also known as: cumsum
Dtypes :i8
, :u8
, :i16
, and :u16
are cast to
:i64
before summing to prevent overflow issues.
Get an array with the cumulative sum computed at every element.
1283 1284 1285 |
# File 'lib/polars/series.rb', line 1283 def cum_sum(reverse: false) super end |
#cumulative_eval(expr, min_periods: 1, parallel: false) ⇒ Series
This functionality is experimental and may change without it being considered a breaking change.
This can be really slow as it can have O(n^2)
complexity. Don't use this
for operations that visit all elements.
Run an expression over a sliding window that increases 1
slot every iteration.
1182 1183 1184 |
# File 'lib/polars/series.rb', line 1182 def cumulative_eval(expr, min_periods: 1, parallel: false) super end |
#cut(breaks, labels: nil, left_closed: false, include_breaks: false) ⇒ Series
Bin continuous values into discrete categories.
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 |
# File 'lib/polars/series.rb', line 904 def cut(breaks, labels: nil, left_closed: false, include_breaks: false) result = ( to_frame .select( Polars.col(name).cut( breaks, labels: labels, left_closed: left_closed, include_breaks: include_breaks ) ) .to_series ) if include_breaks result = result.struct.rename_fields(["break_point", "category"]) end result end |
#describe ⇒ DataFrame
Quick summary statistics of a series.
Series with mixed datatypes will return summary statistics for the datatype of the first value.
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
# File 'lib/polars/series.rb', line 651 def describe if len == 0 raise ArgumentError, "Series must contain at least one value" elsif is_numeric s = cast(:f64) stats = { "min" => s.min, "max" => s.max, "null_count" => s.null_count, "mean" => s.mean, "std" => s.std, "count" => s.len } elsif is_boolean stats = { "sum" => sum, "null_count" => null_count, "count" => len } elsif is_utf8 stats = { "unique" => unique.length, "null_count" => null_count, "count" => len } elsif is_datelike # we coerce all to string, because a polars column # only has a single dtype and dates: datetime and count: int don't match stats = { "min" => dt.min.to_s, "max" => dt.max.to_s, "null_count" => null_count.to_s, "count" => len.to_s } else raise TypeError, "This type is not supported" end Polars::DataFrame.new( {"statistic" => stats.keys, "value" => stats.values} ) end |
#diff(n: 1, null_behavior: "ignore") ⇒ Series
Calculate the n-th discrete difference.
3619 3620 3621 |
# File 'lib/polars/series.rb', line 3619 def diff(n: 1, null_behavior: "ignore") super end |
#dot(other) ⇒ Numeric
Compute the dot/inner product between two Series.
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 |
# File 'lib/polars/series.rb', line 2570 def dot(other) if !other.is_a?(Series) other = Series.new(other) end if len != other.len n, m = len, other.len raise ArgumentError, "Series length mismatch: expected #{n}, found #{m}" end _s.dot(other._s) end |
#drop_nans ⇒ Series
Drop NaN values.
601 602 603 |
# File 'lib/polars/series.rb', line 601 def drop_nans super end |
#drop_nulls ⇒ Series
Create a new Series that copies data from this Series without null values.
594 595 596 |
# File 'lib/polars/series.rb', line 594 def drop_nulls super end |
#dt ⇒ DateTimeNameSpace
Create an object namespace of all datetime related methods.
4017 4018 4019 |
# File 'lib/polars/series.rb', line 4017 def dt DateTimeNameSpace.new(self) end |
#dtype ⇒ Symbol
Get the data type of this Series.
91 92 93 |
# File 'lib/polars/series.rb', line 91 def dtype _s.dtype end |
#each ⇒ Object
Returns an enumerator.
419 420 421 422 423 424 425 |
# File 'lib/polars/series.rb', line 419 def each return to_enum(:each) unless block_given? length.times do |i| yield self[i] end end |
#entropy(base: Math::E, normalize: false) ⇒ Float?
Computes the entropy.
Uses the formula -sum(pk * log(pk)
where pk
are discrete probabilities.
1144 1145 1146 |
# File 'lib/polars/series.rb', line 1144 def entropy(base: Math::E, normalize: false) Polars.select(Polars.lit(self).entropy(base: base, normalize: normalize)).to_series[0] end |
#eq(other) ⇒ Series
Method equivalent of operator expression series == other
.
234 235 236 |
# File 'lib/polars/series.rb', line 234 def eq(other) self == other end |
#eq_missing(other) ⇒ Object
Method equivalent of equality operator series == other
where nil == nil
.
This differs from the standard ne
where null values are propagated.
270 271 272 273 274 275 |
# File 'lib/polars/series.rb', line 270 def eq_missing(other) if other.is_a?(Expr) return Polars.lit(self).eq_missing(other) end to_frame.select(Polars.col(name).eq_missing(other)).to_series end |
#equals(other, strict: false, check_names: false, null_equal: false) ⇒ Boolean Also known as: series_equal
Check if series is equal with another Series.
2090 2091 2092 |
# File 'lib/polars/series.rb', line 2090 def equals(other, strict: false, check_names: false, null_equal: false) _s.equals(other._s, strict, check_names, null_equal) end |
#estimated_size(unit = "b") ⇒ Numeric
Return an estimation of the total (heap) allocated size of the Series.
Estimated size is given in the specified unit (bytes by default).
This estimation is the sum of the size of its buffers, validity, including nested arrays. Multiple arrays may share buffers and bitmaps. Therefore, the size of 2 arrays is not the sum of the sizes computed from this function. In particular, StructArray's size is an upper bound.
When an array is sliced, its allocated size remains constant because the buffer unchanged. However, this function will yield a smaller number. This is because this function returns the visible size of the buffer, not its total capacity.
FFI buffers are included in this estimation.
519 520 521 522 |
# File 'lib/polars/series.rb', line 519 def estimated_size(unit = "b") sz = _s.estimated_size Utils.scale_bytes(sz, to: unit) end |
#ewm_mean(com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, min_periods: 1, ignore_nulls: true) ⇒ Series
Exponentially-weighted moving average.
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 |
# File 'lib/polars/series.rb', line 3877 def ewm_mean( com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, min_periods: 1, ignore_nulls: true ) super end |
#ewm_std(com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, bias: false, min_periods: 1, ignore_nulls: true) ⇒ Series
Exponentially-weighted moving standard deviation.
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 |
# File 'lib/polars/series.rb', line 3892 def ewm_std( com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, bias: false, min_periods: 1, ignore_nulls: true ) super end |
#ewm_var(com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, bias: false, min_periods: 1, ignore_nulls: true) ⇒ Series
Exponentially-weighted moving variance.
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 |
# File 'lib/polars/series.rb', line 3908 def ewm_var( com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, bias: false, min_periods: 1, ignore_nulls: true ) super end |
#exp ⇒ Series
Compute the exponential, element-wise.
587 588 589 |
# File 'lib/polars/series.rb', line 587 def exp super end |
#explode ⇒ Series
Explode a list or utf8 Series.
This means that every item is expanded to a new row.
2066 2067 2068 |
# File 'lib/polars/series.rb', line 2066 def explode super end |
#extend_constant(value, n) ⇒ Series
Extend the Series with given number of values.
3944 3945 3946 |
# File 'lib/polars/series.rb', line 3944 def extend_constant(value, n) Utils.wrap_s(_s.extend_constant(value, n)) end |
#fill_nan(fill_value) ⇒ Series
Fill floating point NaN value with a fill value.
2438 2439 2440 |
# File 'lib/polars/series.rb', line 2438 def fill_nan(fill_value) super end |
#fill_null(value = nil, strategy: nil, limit: nil) ⇒ Series
Fill null values using the specified value or strategy.
2490 2491 2492 |
# File 'lib/polars/series.rb', line 2490 def fill_null(value = nil, strategy: nil, limit: nil) super end |
#filter(predicate) ⇒ Series
Filter elements by a boolean mask.
1488 1489 1490 1491 1492 1493 |
# File 'lib/polars/series.rb', line 1488 def filter(predicate) if predicate.is_a?(::Array) predicate = Series.new("", predicate) end Utils.wrap_s(_s.filter(predicate._s)) end |
#flags ⇒ Hash
Get flags that are set on the Series.
98 99 100 101 102 103 104 105 106 107 |
# File 'lib/polars/series.rb', line 98 def flags out = { "SORTED_ASC" => _s.is_sorted_flag, "SORTED_DESC" => _s.is_sorted_reverse_flag } if dtype.is_a?(List) out["FAST_EXPLODE"] = _s.can_fast_explode_flag end out end |
#floor ⇒ Series
Rounds down to the nearest integer value.
Only works on floating point Series.
2511 2512 2513 |
# File 'lib/polars/series.rb', line 2511 def floor Utils.wrap_s(_s.floor) end |
#ge(other) ⇒ Series
Method equivalent of operator expression series >= other
.
326 327 328 |
# File 'lib/polars/series.rb', line 326 def ge(other) self >= other end |
#gt(other) ⇒ Series
Method equivalent of operator expression series > other
.
333 334 335 |
# File 'lib/polars/series.rb', line 333 def gt(other) self > other end |
#has_nulls ⇒ Boolean Also known as: has_validity
Return true
if the Series has a validity bitmask.
If there is none, it means that there are no null values. Use this to swiftly assert a Series does not have null values.
1793 1794 1795 |
# File 'lib/polars/series.rb', line 1793 def has_nulls _s.has_nulls end |
#head(n = 10) ⇒ Series
Get the first n
rows.
1512 1513 1514 |
# File 'lib/polars/series.rb', line 1512 def head(n = 10) to_frame.select(F.col(name).head(n)).to_series end |
#inner_dtype ⇒ Symbol
Get the inner dtype in of a List typed Series.
112 113 114 |
# File 'lib/polars/series.rb', line 112 def inner_dtype _s.inner_dtype end |
#interpolate(method: "linear") ⇒ Series
Interpolate intermediate values. The interpolation method is linear.
3542 3543 3544 |
# File 'lib/polars/series.rb', line 3542 def interpolate(method: "linear") super end |
#is_boolean ⇒ Boolean Also known as: boolean?, is_bool, bool?
Check if this Series is a Boolean.
2263 2264 2265 |
# File 'lib/polars/series.rb', line 2263 def is_boolean dtype == Boolean end |
#is_datelike ⇒ Boolean Also known as: datelike?, is_temporal, temporal?
Check if this Series datatype is datelike.
2235 2236 2237 |
# File 'lib/polars/series.rb', line 2235 def is_datelike [Date, Time].include?(dtype) || dtype.is_a?(Datetime) || dtype.is_a?(Duration) end |
#is_duplicated ⇒ Series
Get mask of all duplicated values.
2042 2043 2044 |
# File 'lib/polars/series.rb', line 2042 def is_duplicated super end |
#is_empty ⇒ Boolean Also known as: empty?
Check if the Series is empty.
1806 1807 1808 |
# File 'lib/polars/series.rb', line 1806 def is_empty len == 0 end |
#is_finite ⇒ Series
Returns a boolean Series indicating which values are finite.
1866 1867 1868 |
# File 'lib/polars/series.rb', line 1866 def is_finite super end |
#is_first ⇒ Series
Get a mask of the first unique value.
2022 2023 2024 |
# File 'lib/polars/series.rb', line 2022 def is_first super end |
#is_float ⇒ Boolean Also known as: float?
Check if this Series has floating point numbers.
2250 2251 2252 |
# File 'lib/polars/series.rb', line 2250 def is_float [Float32, Float64].include?(dtype) end |
#is_in(other) ⇒ Series Also known as: in?
Check if elements of this Series are in the other Series.
1977 1978 1979 |
# File 'lib/polars/series.rb', line 1977 def is_in(other) super end |
#is_infinite ⇒ Series
Returns a boolean Series indicating which values are infinite.
1885 1886 1887 |
# File 'lib/polars/series.rb', line 1885 def is_infinite super end |
#is_nan ⇒ Series
Returns a boolean Series indicating which values are NaN.
1905 1906 1907 |
# File 'lib/polars/series.rb', line 1905 def is_nan super end |
#is_not_nan ⇒ Series
Returns a boolean Series indicating which values are not NaN.
1925 1926 1927 |
# File 'lib/polars/series.rb', line 1925 def is_not_nan super end |
#is_not_null ⇒ Series
Returns a boolean Series indicating which values are not null.
1847 1848 1849 |
# File 'lib/polars/series.rb', line 1847 def is_not_null super end |
#is_null ⇒ Series
Returns a boolean Series indicating which values are null.
1827 1828 1829 |
# File 'lib/polars/series.rb', line 1827 def is_null super end |
#is_numeric ⇒ Boolean Also known as: numeric?
Check if this Series datatype is numeric.
2222 2223 2224 |
# File 'lib/polars/series.rb', line 2222 def is_numeric [Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64, Float32, Float64].include?(dtype) end |
#is_unique ⇒ Series
Get mask of all unique values.
2015 2016 2017 |
# File 'lib/polars/series.rb', line 2015 def is_unique super end |
#is_utf8 ⇒ Boolean Also known as: utf8?
Check if this Series datatype is a Utf8.
2278 2279 2280 |
# File 'lib/polars/series.rb', line 2278 def is_utf8 dtype == String end |
#kurtosis(fisher: true, bias: true) ⇒ Float?
Compute the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is false, then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators
3705 3706 3707 |
# File 'lib/polars/series.rb', line 3705 def kurtosis(fisher: true, bias: true) _s.kurtosis(fisher, bias) end |
#le(other) ⇒ Series
Method equivalent of operator expression series <= other
.
220 221 222 |
# File 'lib/polars/series.rb', line 220 def le(other) self <= other end |
#len ⇒ Integer Also known as: length, size
Return the number of elements in the Series.
2115 2116 2117 |
# File 'lib/polars/series.rb', line 2115 def len _s.len end |
#limit(n = 10) ⇒ Series
Get the first n
rows.
Alias for #head.
1380 1381 1382 |
# File 'lib/polars/series.rb', line 1380 def limit(n = 10) to_frame.select(F.col(name).limit(n)).to_series end |
#list ⇒ ListNameSpace
Create an object namespace of all list related methods.
3989 3990 3991 |
# File 'lib/polars/series.rb', line 3989 def list ListNameSpace.new(self) end |
#log(base = Math::E) ⇒ Series
Compute the logarithm to a given base.
573 574 575 |
# File 'lib/polars/series.rb', line 573 def log(base = Math::E) super end |
#log10 ⇒ Series
Compute the base 10 logarithm of the input array, element-wise.
580 581 582 |
# File 'lib/polars/series.rb', line 580 def log10 super end |
#lt(other) ⇒ Series
Method equivalent of operator expression series < other
.
227 228 229 |
# File 'lib/polars/series.rb', line 227 def lt(other) self < other end |
#map_elements(return_dtype: nil, skip_nulls: true, &func) ⇒ Series Also known as: map, apply
Apply a custom/user-defined function (UDF) over elements in this Series and return a new Series.
If the function returns another datatype, the return_dtype arg should be set, otherwise the method will fail.
2887 2888 2889 2890 2891 2892 2893 2894 |
# File 'lib/polars/series.rb', line 2887 def map_elements(return_dtype: nil, skip_nulls: true, &func) if return_dtype.nil? pl_return_dtype = nil else pl_return_dtype = Utils.rb_type_to_dtype(return_dtype) end Utils.wrap_s(_s.apply_lambda(func, pl_return_dtype, skip_nulls)) end |
#max ⇒ Object
Get the maximum value in this Series.
749 750 751 |
# File 'lib/polars/series.rb', line 749 def max _s.max end |
#mean ⇒ Float?
Reduce this Series to the mean value.
718 719 720 |
# File 'lib/polars/series.rb', line 718 def mean _s.mean end |
#median ⇒ Float?
Get the median of this Series.
815 816 817 |
# File 'lib/polars/series.rb', line 815 def median _s.median end |
#min ⇒ Object
Get the minimal value in this Series.
737 738 739 |
# File 'lib/polars/series.rb', line 737 def min _s.min end |
#mode ⇒ Series
Compute the most occurring value(s).
Can return multiple Values.
2596 2597 2598 |
# File 'lib/polars/series.rb', line 2596 def mode super end |
#n_chunks ⇒ Integer
Get the number of chunks that this Series contains.
1257 1258 1259 |
# File 'lib/polars/series.rb', line 1257 def n_chunks _s.n_chunks end |
#n_unique ⇒ Integer
Count the number of unique values in this Series.
3461 3462 3463 |
# File 'lib/polars/series.rb', line 3461 def n_unique _s.n_unique end |
#name ⇒ String
Get the name of this Series.
119 120 121 |
# File 'lib/polars/series.rb', line 119 def name _s.name end |
#nan_max ⇒ Object
Get maximum value, but propagate/poison encountered NaN values.
756 757 758 |
# File 'lib/polars/series.rb', line 756 def nan_max to_frame.select(Polars.col(name).nan_max)[0, 0] end |
#nan_min ⇒ Object
Get minimum value, but propagate/poison encountered NaN values.
763 764 765 |
# File 'lib/polars/series.rb', line 763 def nan_min to_frame.select(Polars.col(name).nan_min)[0, 0] end |
#ne(other) ⇒ Series
Method equivalent of operator expression series != other
.
280 281 282 |
# File 'lib/polars/series.rb', line 280 def ne(other) self != other end |
#ne_missing(other) ⇒ Object
Method equivalent of equality operator series != other
where None == None
.
This differs from the standard ne
where null values are propagated.
316 317 318 319 320 321 |
# File 'lib/polars/series.rb', line 316 def ne_missing(other) if other.is_a?(Expr) return Polars.lit(self).ne_missing(other) end to_frame.select(Polars.col(name).ne_missing(other)).to_series end |
#new_from_index(index, length) ⇒ Series
Create a new Series filled with values from the given index.
3972 3973 3974 |
# File 'lib/polars/series.rb', line 3972 def new_from_index(index, length) Utils.wrap_s(_s.new_from_index(index, length)) end |
#none?(&block) ⇒ Boolean Also known as: none
Check if all boolean values in the column are false
.
558 559 560 561 562 563 564 |
# File 'lib/polars/series.rb', line 558 def none?(&block) if block_given? apply(&block).none? else to_frame.select(Polars.col(name).is_not.all).to_series[0] end end |
#null_count ⇒ Integer
Count the null values in this Series.
1783 1784 1785 |
# File 'lib/polars/series.rb', line 1783 def null_count _s.null_count end |
#pct_change(n: 1) ⇒ Series
Computes percentage change between values.
Percentage change (as fraction) between current element and most-recent
non-null element at least n
period(s) before the current element.
Computes the change from the previous row by default.
3670 3671 3672 |
# File 'lib/polars/series.rb', line 3670 def pct_change(n: 1) super end |
#peak_max ⇒ Series
Get a boolean mask of the local maximum peaks.
3428 3429 3430 |
# File 'lib/polars/series.rb', line 3428 def peak_max super end |
#peak_min ⇒ Series
Get a boolean mask of the local minimum peaks.
3449 3450 3451 |
# File 'lib/polars/series.rb', line 3449 def peak_min super end |
#product ⇒ Numeric
Reduce this Series to the product value.
725 726 727 |
# File 'lib/polars/series.rb', line 725 def product to_frame.select(Polars.col(name).product).to_series[0] end |
#qcut(quantiles, labels: nil, left_closed: false, allow_duplicates: false, include_breaks: false) ⇒ Series
Bin continuous values into discrete categories based on their quantiles.
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
# File 'lib/polars/series.rb', line 989 def qcut(quantiles, labels: nil, left_closed: false, allow_duplicates: false, include_breaks: false) result = ( to_frame .select( Polars.col(name).qcut( quantiles, labels: labels, left_closed: left_closed, allow_duplicates: allow_duplicates, include_breaks: include_breaks ) ) .to_series ) if include_breaks result = result.struct.rename_fields(["break_point", "category"]) end result end |
#quantile(quantile, interpolation: "nearest") ⇒ Float?
Get the quantile value of this Series.
832 833 834 |
# File 'lib/polars/series.rb', line 832 def quantile(quantile, interpolation: "nearest") _s.quantile(quantile, interpolation) end |
#rank(method: "average", reverse: false, seed: nil) ⇒ Series
Assign ranks to data, dealing with ties appropriately.
3607 3608 3609 |
# File 'lib/polars/series.rb', line 3607 def rank(method: "average", reverse: false, seed: nil) super end |
#rechunk(in_place: false) ⇒ Series
Create a single chunk of memory for this Series.
2190 2191 2192 2193 |
# File 'lib/polars/series.rb', line 2190 def rechunk(in_place: false) opt_s = _s.rechunk(in_place) in_place ? self : Utils.wrap_s(opt_s) end |
#reinterpret(signed: true) ⇒ Series
Reinterpret the underlying bits as a signed/unsigned integer.
This operation is only allowed for 64bit integers. For lower bits integers, you can safely use that cast operation.
3521 3522 3523 |
# File 'lib/polars/series.rb', line 3521 def reinterpret(signed: true) super end |
#rename(name, in_place: false) ⇒ Series
Rename this Series.
1214 1215 1216 1217 1218 1219 1220 1221 |
# File 'lib/polars/series.rb', line 1214 def rename(name, in_place: false) if in_place _s.rename(name) self else self.alias(name) end end |
#replace(old, new = Expr::NO_DEFAULT, default: Expr::NO_DEFAULT, return_dtype: nil) ⇒ Series
Replace values by different values.
3837 3838 3839 |
# File 'lib/polars/series.rb', line 3837 def replace(old, new = Expr::NO_DEFAULT, default: Expr::NO_DEFAULT, return_dtype: nil) super end |
#reshape(dims) ⇒ Series
Reshape this Series to a flat Series or a Series of Lists.
3848 3849 3850 |
# File 'lib/polars/series.rb', line 3848 def reshape(dims) super end |
#reverse ⇒ Series
Return Series in reverse order.
2210 2211 2212 |
# File 'lib/polars/series.rb', line 2210 def reverse super end |
#rle ⇒ Series
Get the lengths of runs of identical values.
1032 1033 1034 |
# File 'lib/polars/series.rb', line 1032 def rle super end |
#rle_id ⇒ Series
Map values to run IDs.
Similar to RLE, but it maps each value to an ID corresponding to the run into which it falls. This is especially useful when you want to define groups by runs of identical values rather than the values themselves.
1060 1061 1062 |
# File 'lib/polars/series.rb', line 1060 def rle_id super end |
#rolling_max(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Apply a rolling max (moving max) over the values in this array.
A window of length window_size
will traverse the array. The values that fill
this window will (optionally) be multiplied with the weights given by the
weight
vector. The resulting values will be aggregated to their sum.
3060 3061 3062 3063 3064 3065 3066 3067 |
# File 'lib/polars/series.rb', line 3060 def rolling_max( window_size, weights: nil, min_periods: nil, center: false ) super end |
#rolling_mean(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Apply a rolling mean (moving mean) over the values in this array.
A window of length window_size
will traverse the array. The values that fill
this window will (optionally) be multiplied with the weights given by the
weight
vector. The resulting values will be aggregated to their sum.
3101 3102 3103 3104 3105 3106 3107 3108 |
# File 'lib/polars/series.rb', line 3101 def rolling_mean( window_size, weights: nil, min_periods: nil, center: false ) super end |
#rolling_median(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Compute a rolling median.
3269 3270 3271 3272 3273 3274 3275 3276 |
# File 'lib/polars/series.rb', line 3269 def rolling_median( window_size, weights: nil, min_periods: nil, center: false ) super end |
#rolling_min(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Apply a rolling min (moving min) over the values in this array.
A window of length window_size
will traverse the array. The values that fill
this window will (optionally) be multiplied with the weights given by the
weight
vector. The resulting values will be aggregated to their sum.
3019 3020 3021 3022 3023 3024 3025 3026 |
# File 'lib/polars/series.rb', line 3019 def rolling_min( window_size, weights: nil, min_periods: nil, center: false ) super end |
#rolling_quantile(quantile, interpolation: "nearest", window_size: 2, weights: nil, min_periods: nil, center: false) ⇒ Series
Compute a rolling quantile.
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 |
# File 'lib/polars/series.rb', line 3325 def rolling_quantile( quantile, interpolation: "nearest", window_size: 2, weights: nil, min_periods: nil, center: false ) super end |
#rolling_skew(window_size, bias: true) ⇒ Series
Compute a rolling skew.
3359 3360 3361 |
# File 'lib/polars/series.rb', line 3359 def rolling_skew(window_size, bias: true) super end |
#rolling_std(window_size, weights: nil, min_periods: nil, center: false, ddof: 1) ⇒ Series
Compute a rolling std dev.
A window of length window_size
will traverse the array. The values that fill
this window will (optionally) be multiplied with the weights given by the
weight
vector. The resulting values will be aggregated to their sum.
3184 3185 3186 3187 3188 3189 3190 3191 3192 |
# File 'lib/polars/series.rb', line 3184 def rolling_std( window_size, weights: nil, min_periods: nil, center: false, ddof: 1 ) super end |
#rolling_sum(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series
Apply a rolling sum (moving sum) over the values in this array.
A window of length window_size
will traverse the array. The values that fill
this window will (optionally) be multiplied with the weights given by the
weight
vector. The resulting values will be aggregated to their sum.
3142 3143 3144 3145 3146 3147 3148 3149 |
# File 'lib/polars/series.rb', line 3142 def rolling_sum( window_size, weights: nil, min_periods: nil, center: false ) super end |
#rolling_var(window_size, weights: nil, min_periods: nil, center: false, ddof: 1) ⇒ Series
Compute a rolling variance.
A window of length window_size
will traverse the array. The values that fill
this window will (optionally) be multiplied with the weights given by the
weight
vector. The resulting values will be aggregated to their sum.
3227 3228 3229 3230 3231 3232 3233 3234 3235 |
# File 'lib/polars/series.rb', line 3227 def rolling_var( window_size, weights: nil, min_periods: nil, center: false, ddof: 1 ) super end |
#round(decimals = 0) ⇒ Series
Round underlying floating point data by decimals
digits.
2554 2555 2556 |
# File 'lib/polars/series.rb', line 2554 def round(decimals = 0) super end |
#sample(n: nil, frac: nil, with_replacement: false, shuffle: false, seed: nil) ⇒ Series
Sample from this Series.
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 |
# File 'lib/polars/series.rb', line 3390 def sample( n: nil, frac: nil, with_replacement: false, shuffle: false, seed: nil ) if !n.nil? && !frac.nil? raise ArgumentError, "cannot specify both `n` and `frac`" end if n.nil? && !frac.nil? return Utils.wrap_s(_s.sample_frac(frac, with_replacement, shuffle, seed)) end if n.nil? n = 1 end Utils.wrap_s(_s.sample_n(n, with_replacement, shuffle, seed)) end |
#scatter(idx, value) ⇒ Series Also known as: set_at_idx
Set values at the index locations.
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 |
# File 'lib/polars/series.rb', line 2375 def scatter(idx, value) if idx.is_a?(Integer) idx = [idx] end if idx.length == 0 return self end idx = Series.new("", idx) if value.is_a?(Integer) || value.is_a?(Float) || Utils.bool?(value) || value.is_a?(::String) || value.nil? value = Series.new("", [value]) # if we need to set more than a single value, we extend it if idx.length > 0 value = value.extend_constant(value[0], idx.length - 1) end elsif !value.is_a?(Series) value = Series.new("", value) end _s.scatter(idx._s, value._s) self end |
#search_sorted(element, side: "any") ⇒ Integer
Find indices where elements should be inserted to maintain order.
1728 1729 1730 1731 1732 1733 1734 |
# File 'lib/polars/series.rb', line 1728 def search_sorted(element, side: "any") if element.is_a?(Integer) || element.is_a?(Float) return Polars.select(Polars.lit(self).search_sorted(element, side: side)).item end element = Series.new(element) Polars.select(Polars.lit(self).search_sorted(element, side: side)).to_series end |
#set(filter, value) ⇒ Series
Use of this function is frequently an anti-pattern, as it can
block optimization (predicate pushdown, etc). Consider using
Polars.when(predicate).then(value).otherwise(self)
instead.
Set masked values.
2351 2352 2353 |
# File 'lib/polars/series.rb', line 2351 def set(filter, value) Utils.wrap_s(_s.send("set_with_mask_#{DTYPE_TO_FFINAME.fetch(dtype.class)}", filter._s, value)) end |
#set_sorted(reverse: false) ⇒ Series
This can lead to incorrect results if this Series is not sorted!! Use with care!
Flags the Series as sorted.
Enables downstream code to user fast paths for sorted arrays.
3965 3966 3967 |
# File 'lib/polars/series.rb', line 3965 def set_sorted(reverse: false) Utils.wrap_s(_s.set_sorted(reverse)) end |
#shape ⇒ Array
Shape of this Series.
126 127 128 |
# File 'lib/polars/series.rb', line 126 def shape [_s.len] end |
#shift(periods = 1) ⇒ Series
Shift the values by a given period.
2927 2928 2929 |
# File 'lib/polars/series.rb', line 2927 def shift(periods = 1) super end |
#shift_and_fill(periods, fill_value) ⇒ Series
Shift the values by a given period and fill the resulting null values.
2939 2940 2941 |
# File 'lib/polars/series.rb', line 2939 def shift_and_fill(periods, fill_value) super end |
#shrink_dtype ⇒ Series
Shrink numeric columns to the minimal required datatype.
Shrink to the dtype needed to fit the extrema of this Series. This can be used to reduce memory pressure.
3982 3983 3984 |
# File 'lib/polars/series.rb', line 3982 def shrink_dtype super end |
#shrink_to_fit(in_place: false) ⇒ Series
Shrink Series memory usage.
Shrinks the underlying array capacity to exactly fit the actual data. (Note that this function does not change the Series data type).
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 |
# File 'lib/polars/series.rb', line 3471 def shrink_to_fit(in_place: false) if in_place _s.shrink_to_fit self else series = clone series._s.shrink_to_fit series end end |
#shuffle(seed: nil) ⇒ Series
Shuffle the contents of this Series.
3870 3871 3872 |
# File 'lib/polars/series.rb', line 3870 def shuffle(seed: nil) super end |
#sign ⇒ Series
Compute the element-wise indication of the sign.
2617 2618 2619 |
# File 'lib/polars/series.rb', line 2617 def sign super end |
#sin ⇒ Series
Compute the element-wise value for the sine.
2636 2637 2638 |
# File 'lib/polars/series.rb', line 2636 def sin super end |
#sinh ⇒ Series
Compute the element-wise value for the hyperbolic sine.
2818 2819 2820 |
# File 'lib/polars/series.rb', line 2818 def sinh super end |
#skew(bias: true) ⇒ Float?
Compute the sample skewness of a data set.
For normally distributed data, the skewness should be about zero. For
unimodal continuous distributions, a skewness value greater than zero means
that there is more weight in the right tail of the distribution. The
function skewtest
can be used to determine if the skewness value
is close enough to zero, statistically speaking.
3686 3687 3688 |
# File 'lib/polars/series.rb', line 3686 def skew(bias: true) _s.skew(bias) end |
#slice(offset, length = nil) ⇒ Series
Get a slice of this Series.
1404 1405 1406 |
# File 'lib/polars/series.rb', line 1404 def slice(offset, length = nil) self.class._from_rbseries(_s.slice(offset, length)) end |
#sort(reverse: false, nulls_last: false, multithreaded: true, in_place: false) ⇒ Series
Sort this Series.
1586 1587 1588 1589 1590 1591 1592 1593 |
# File 'lib/polars/series.rb', line 1586 def sort(reverse: false, nulls_last: false, multithreaded: true, in_place: false) if in_place self._s = _s.sort(reverse, nulls_last, multithreaded) self else Utils.wrap_s(_s.sort(reverse, nulls_last, multithreaded)) end end |
#sqrt ⇒ Series
Compute the square root of the elements.
527 528 529 |
# File 'lib/polars/series.rb', line 527 def sqrt self**0.5 end |
#std(ddof: 1) ⇒ Float?
Get the standard deviation of this Series.
779 780 781 782 783 784 785 |
# File 'lib/polars/series.rb', line 779 def std(ddof: 1) if !is_numeric nil else to_frame.select(Polars.col(name).std(ddof: ddof)).to_series[0] end end |
#str ⇒ StringNameSpace
Create an object namespace of all string related methods.
4024 4025 4026 |
# File 'lib/polars/series.rb', line 4024 def str StringNameSpace.new(self) end |
#struct ⇒ StructNameSpace
Create an object namespace of all struct related methods.
4031 4032 4033 |
# File 'lib/polars/series.rb', line 4031 def struct StructNameSpace.new(self) end |
#sum ⇒ Numeric
Dtypes :i8
, :u8
, :i16
, and :u16
are cast to
:i64
before summing to prevent overflow issues.
Reduce this Series to the sum value.
706 707 708 |
# File 'lib/polars/series.rb', line 706 def sum _s.sum end |
#tail(n = 10) ⇒ Series
Get the last n
rows.
1533 1534 1535 |
# File 'lib/polars/series.rb', line 1533 def tail(n = 10) to_frame.select(F.col(name).tail(n)).to_series end |
#take(indices) ⇒ Series
Take values by index.
1776 1777 1778 |
# File 'lib/polars/series.rb', line 1776 def take(indices) to_frame.select(Polars.col(name).take(indices)).to_series end |
#take_every(n) ⇒ Series
Take every nth value in the Series and return as new Series.
1551 1552 1553 |
# File 'lib/polars/series.rb', line 1551 def take_every(n) super end |
#tan ⇒ Series
Compute the element-wise value for the tangent.
2674 2675 2676 |
# File 'lib/polars/series.rb', line 2674 def tan super end |
#tanh ⇒ Series
Compute the element-wise value for the hyperbolic tangent.
2856 2857 2858 |
# File 'lib/polars/series.rb', line 2856 def tanh super end |
#time_unit ⇒ String
Get the time unit of underlying Datetime Series as "ns"
, "us"
, or "ms"
.
133 134 135 |
# File 'lib/polars/series.rb', line 133 def time_unit _s.time_unit end |
#to_a ⇒ Array
Convert this Series to a Ruby Array. This operation clones data.
2180 2181 2182 |
# File 'lib/polars/series.rb', line 2180 def to_a _s.to_a end |
#to_dummies(separator: "_", drop_first: false) ⇒ DataFrame
Get dummy variables.
854 855 856 |
# File 'lib/polars/series.rb', line 854 def to_dummies(separator: "_", drop_first: false) Utils.wrap_df(_s.to_dummies(separator, drop_first)) end |
#to_frame ⇒ DataFrame
Cast this Series to a DataFrame.
608 609 610 |
# File 'lib/polars/series.rb', line 608 def to_frame Utils.wrap_df(RbDataFrame.new([_s])) end |
#to_numo ⇒ Numo::NArray
Convert this Series to a Numo array. This operation clones data but is completely safe.
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 |
# File 'lib/polars/series.rb', line 2296 def to_numo if !has_validity if is_datelike Numo::RObject.cast(to_a) elsif is_numeric # TODO make more efficient { UInt8 => Numo::UInt8, UInt16 => Numo::UInt16, UInt32 => Numo::UInt32, UInt64 => Numo::UInt64, Int8 => Numo::Int8, Int16 => Numo::Int16, Int32 => Numo::Int32, Int64 => Numo::Int64, Float32 => Numo::SFloat, Float64 => Numo::DFloat }.fetch(dtype.class).cast(to_a) elsif is_boolean Numo::Bit.cast(to_a) else _s.to_numo end elsif is_datelike Numo::RObject.cast(to_a) else _s.to_numo end end |
#to_physical ⇒ Series
Cast to physical representation of the logical dtype.
:date
->:i32
:datetime
->:i64
:time
->:i64
:duration
->:i64
:cat
->:u32
- other data types will be left unchanged.
2168 2169 2170 |
# File 'lib/polars/series.rb', line 2168 def to_physical super end |
#to_s ⇒ String Also known as: inspect
Returns a string representing the Series.
140 141 142 |
# File 'lib/polars/series.rb', line 140 def to_s _s.to_s end |
#top_k(k: 5) ⇒ Boolean
Return the k
largest elements.
1613 1614 1615 |
# File 'lib/polars/series.rb', line 1613 def top_k(k: 5) super end |
#unique(maintain_order: false) ⇒ Series Also known as: uniq
Get unique elements in series.
1754 1755 1756 |
# File 'lib/polars/series.rb', line 1754 def unique(maintain_order: false) super end |
#unique_counts ⇒ Series
Return a count of the unique values in the order of appearance.
1120 1121 1122 |
# File 'lib/polars/series.rb', line 1120 def unique_counts super end |
#value_counts(sort: false, parallel: false, name: nil, normalize: false) ⇒ DataFrame
Count the unique values in a Series.
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 |
# File 'lib/polars/series.rb', line 1085 def value_counts( sort: false, parallel: false, name: nil, normalize: false ) if name.nil? if normalize name = "proportion" else name = "count" end end DataFrame._from_rbdf( self._s.value_counts( sort, parallel, name, normalize ) ) end |
#var(ddof: 1) ⇒ Float?
Get variance of this Series.
799 800 801 802 803 804 805 |
# File 'lib/polars/series.rb', line 799 def var(ddof: 1) if !is_numeric nil else to_frame.select(Polars.col(name).var(ddof: ddof)).to_series[0] end end |
#zip_with(mask, other) ⇒ Series
Take values from self or other based on the given mask.
Where mask evaluates true, take values from self. Where mask evaluates false, take values from other.
2983 2984 2985 |
# File 'lib/polars/series.rb', line 2983 def zip_with(mask, other) Utils.wrap_s(_s.zip_with(mask._s, other._s)) end |