Class: Polars::Series

Inherits:
Object
  • Object
show all
Defined in:
lib/polars/series.rb

Overview

A Series represents a single column in a polars DataFrame.

Instance Method Summary collapse

Constructor Details

#initialize(name = nil, values = nil, dtype: nil, strict: true, nan_to_null: false, dtype_if_empty: nil) ⇒ Series

Create a new Series.

Examples:

Constructing a Series by specifying name and values positionally:

s = Polars::Series.new("a", [1, 2, 3])

Notice that the dtype is automatically inferred as a polars Int64:

s.dtype
# => Polars::Int64

Constructing a Series with a specific dtype:

s2 = Polars::Series.new("a", [1, 2, 3], dtype: :f32)

It is possible to construct a Series with values as the first positional argument. This syntax considered an anti-pattern, but it can be useful in certain scenarios. You must specify any other arguments through keywords.

s3 = Polars::Series.new([1, 2, 3])

Parameters:

  • name (String, Array, nil) (defaults to: nil)

    Name of the series. Will be used as a column name when used in a DataFrame. When not specified, name is set to an empty string.

  • values (Array, nil) (defaults to: nil)

    One-dimensional data in various forms. Supported are: Array and Series.

  • dtype (Symbol, nil) (defaults to: nil)

    Polars dtype of the Series data. If not specified, the dtype is inferred.

  • strict (Boolean) (defaults to: true)

    Throw error on numeric overflow.

  • nan_to_null (Boolean) (defaults to: false)

    Not used.

  • dtype_if_empty (Symbol, nil) (defaults to: nil)

    If no dtype is specified and values contains nil or an empty array, set the Polars dtype of the Series data. If not specified, Float32 is used.



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# File 'lib/polars/series.rb', line 35

def initialize(name = nil, values = nil, dtype: nil, strict: true, nan_to_null: false, dtype_if_empty: nil)
  # Handle case where values are passed as the first argument
  if !name.nil? && !name.is_a?(::String)
    if values.nil?
      values = name
      name = nil
    else
      raise ArgumentError, "Series name must be a string."
    end
  end

  name = "" if name.nil?

  # TODO improve
  if values.is_a?(Range) && values.begin.is_a?(::String)
    values = values.to_a
  end

  if values.nil?
    self._s = sequence_to_rbseries(name, [], dtype: dtype, dtype_if_empty: dtype_if_empty)
  elsif values.is_a?(Series)
    self._s = series_to_rbseries(name, values)
  elsif values.is_a?(Range)
    self._s =
      Polars.arange(
        values.first,
        values.last + (values.exclude_end? ? 0 : 1),
        step: 1,
        eager: true,
        dtype: dtype
      )
      .rename(name, in_place: true)
      ._s
  elsif values.is_a?(::Array)
    self._s = sequence_to_rbseries(name, values, dtype: dtype, strict: strict, dtype_if_empty: dtype_if_empty)
  elsif defined?(Numo::NArray) && values.is_a?(Numo::NArray)
    self._s = numo_to_rbseries(name, values, strict: strict, nan_to_null: nan_to_null)

    if !dtype.nil?
      self._s = self.cast(dtype, strict: true)._s
    end
  else
    raise ArgumentError, "Series constructor called with unsupported type; got #{values.class.name}"
  end
end

Dynamic Method Handling

This class handles dynamic methods through the method_missing method in the class Polars::ExprDispatch

Instance Method Details

#!Series

Performs boolean not.

Returns:

Raises:

  • (NotImplementedError)


402
403
404
405
406
407
# File 'lib/polars/series.rb', line 402

def !
  if dtype == Boolean
    return Utils.wrap_s(_s.not)
  end
  raise NotImplementedError
end

#!=(other) ⇒ Series

Not equal.

Returns:



185
186
187
# File 'lib/polars/series.rb', line 185

def !=(other)
  _comp(other, :neq)
end

#%(other) ⇒ Series

Returns the modulo.

Returns:



382
383
384
385
386
387
# File 'lib/polars/series.rb', line 382

def %(other)
  if is_datelike
    raise ArgumentError, "first cast to integer before applying modulo on datelike dtypes"
  end
  _arithmetic(other, :rem)
end

#&(other) ⇒ Series

Bitwise AND.

Returns:



148
149
150
151
152
153
# File 'lib/polars/series.rb', line 148

def &(other)
  if !other.is_a?(Series)
    other = Series.new([other])
  end
  Utils.wrap_s(_s.bitand(other._s))
end

#*(other) ⇒ Series

Performs multiplication.

Returns:



354
355
356
357
358
359
360
361
362
# File 'lib/polars/series.rb', line 354

def *(other)
  if is_temporal
    raise ArgumentError, "first cast to integer before multiplying datelike dtypes"
  elsif other.is_a?(DataFrame)
    other * self
  else
    _arithmetic(other, :mul)
  end
end

#**(power) ⇒ Series

Raises to the power of exponent.

Returns:



392
393
394
395
396
397
# File 'lib/polars/series.rb', line 392

def **(power)
  if is_datelike
    raise ArgumentError, "first cast to integer before raising datelike dtypes to a power"
  end
  to_frame.select(Polars.col(name).pow(power)).to_series
end

#+(other) ⇒ Series

Performs addition.

Returns:



340
341
342
# File 'lib/polars/series.rb', line 340

def +(other)
  _arithmetic(other, :add)
end

#-(other) ⇒ Series

Performs subtraction.

Returns:



347
348
349
# File 'lib/polars/series.rb', line 347

def -(other)
  _arithmetic(other, :sub)
end

#-@Series

Performs negation.

Returns:



412
413
414
# File 'lib/polars/series.rb', line 412

def -@
  0 - self
end

#/(other) ⇒ Series

Performs division.

Returns:



367
368
369
370
371
372
373
374
375
376
377
# File 'lib/polars/series.rb', line 367

def /(other)
  if is_temporal
    raise ArgumentError, "first cast to integer before dividing datelike dtypes"
  end

  if is_float
    return _arithmetic(other, :div)
  end

  cast(Float64) / other
end

#<(other) ⇒ Series

Less than.

Returns:



199
200
201
# File 'lib/polars/series.rb', line 199

def <(other)
  _comp(other, :lt)
end

#<=(other) ⇒ Series

Less than or equal.

Returns:



213
214
215
# File 'lib/polars/series.rb', line 213

def <=(other)
  _comp(other, :lt_eq)
end

#==(other) ⇒ Series

Equal.

Returns:



178
179
180
# File 'lib/polars/series.rb', line 178

def ==(other)
  _comp(other, :eq)
end

#>(other) ⇒ Series

Greater than.

Returns:



192
193
194
# File 'lib/polars/series.rb', line 192

def >(other)
  _comp(other, :gt)
end

#>=(other) ⇒ Series

Greater than or equal.

Returns:



206
207
208
# File 'lib/polars/series.rb', line 206

def >=(other)
  _comp(other, :gt_eq)
end

#[](item) ⇒ Object

Returns elements of the Series.

Returns:

Raises:

  • (ArgumentError)


430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# File 'lib/polars/series.rb', line 430

def [](item)
  if item.is_a?(Series) && [UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64].include?(item.dtype)
    return Utils.wrap_s(_s.take_with_series(_pos_idxs(item)._s))
  end

  if item.is_a?(Series) && item.bool?
    return filter(item)
  end

  if item.is_a?(Integer)
    if item < 0
      item = len + item
    end

    return _s.get_idx(item)
  end

  if item.is_a?(Range)
    return Slice.new(self).apply(item)
  end

  if Utils.is_int_sequence(item)
    return Utils.wrap_s(_s.take_with_series(_pos_idxs(Series.new("", item))._s))
  end

  raise ArgumentError, "Cannot get item of type: #{item.class.name}"
end

#[]=(key, value) ⇒ Object

Sets an element of the Series.

Returns:



461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# File 'lib/polars/series.rb', line 461

def []=(key, value)
  if value.is_a?(::Array)
    if is_numeric || is_datelike
      scatter(key, value)
      return
    end
    raise ArgumentError, "cannot set Series of dtype: #{dtype} with list/tuple as value; use a scalar value"
  end

  if key.is_a?(Series)
    if key.dtype == Boolean
      self._s = set(key, value)._s
    elsif key.dtype == UInt64
      self._s = scatter(key.cast(UInt32), value)._s
    elsif key.dtype == UInt32
      self._s = scatter(key, value)._s
    else
      raise Todo
    end
  elsif key.is_a?(::Array)
    s = Utils.wrap_s(sequence_to_rbseries("", key, dtype: UInt32))
    self[s] = value
  elsif key.is_a?(Range)
    s = Series.new("", key, dtype: UInt32)
    self[s] = value
  elsif key.is_a?(Integer)
    self[[key]] = value
  else
    raise ArgumentError, "cannot use #{key} for indexing"
  end
end

#^(other) ⇒ Series

Bitwise XOR.

Returns:



168
169
170
171
172
173
# File 'lib/polars/series.rb', line 168

def ^(other)
  if !other.is_a?(Series)
    other = Series.new([other])
  end
  Utils.wrap_s(_s.bitxor(other._s))
end

#_hash(seed = 0, seed_1 = nil, seed_2 = nil, seed_3 = nil) ⇒ Series

Hash the Series.

The hash value is of type :u64.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s._hash(42)
# =>
# shape: (3,)
# Series: 'a' [u64]
# [
#         2374023516666777365
#         10386026231460783898
#         17796317186427479491
# ]

Parameters:

  • seed (Integer) (defaults to: 0)

    Random seed parameter. Defaults to 0.

  • seed_1 (Integer) (defaults to: nil)

    Random seed parameter. Defaults to seed if not set.

  • seed_2 (Integer) (defaults to: nil)

    Random seed parameter. Defaults to seed if not set.

  • seed_3 (Integer) (defaults to: nil)

    Random seed parameter. Defaults to seed if not set.

Returns:



3508
3509
3510
# File 'lib/polars/series.rb', line 3508

def _hash(seed = 0, seed_1 = nil, seed_2 = nil, seed_3 = nil)
  super
end

#absSeries

Compute absolute values.

Returns:



3549
3550
3551
# File 'lib/polars/series.rb', line 3549

def abs
  super
end

#alias(name) ⇒ Series

Return a copy of the Series with a new alias/name.

Examples:

s = Polars::Series.new("x", [1, 2, 3])
s.alias("y")

Parameters:

Returns:



1196
1197
1198
1199
1200
# File 'lib/polars/series.rb', line 1196

def alias(name)
  s = dup
  s._s.rename(name)
  s
end

#all?(ignore_nulls: true, &block) ⇒ Boolean Also known as: all

Check if all boolean values in the column are true.

Returns:



546
547
548
549
550
551
552
# File 'lib/polars/series.rb', line 546

def all?(ignore_nulls: true, &block)
  if block_given?
    apply(skip_nulls: ignore_nulls, &block).all?
  else
    _s.all(ignore_nulls)
  end
end

#any?(ignore_nulls: true, &block) ⇒ Boolean Also known as: any

Check if any boolean value in the column is true.

Returns:



534
535
536
537
538
539
540
# File 'lib/polars/series.rb', line 534

def any?(ignore_nulls: true, &block)
  if block_given?
    apply(skip_nulls: ignore_nulls, &block).any?
  else
    _s.any(ignore_nulls)
  end
end

#append(other, append_chunks: true) ⇒ Series

Append a Series to this one.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s2 = Polars::Series.new("b", [4, 5, 6])
s.append(s2)
# =>
# shape: (6,)
# Series: 'a' [i64]
# [
#         1
#         2
#         3
#         4
#         5
#         6
# ]

Parameters:

  • other (Series)

    Series to append.

  • append_chunks (Boolean) (defaults to: true)

    If set to true the append operation will add the chunks from other to self. This is super cheap.

    If set to false the append operation will do the same as DataFrame#extend which extends the memory backed by this Series with the values from other.

    Different from append_chunks, extend appends the data from other to the underlying memory locations and thus may cause a reallocation (which is expensive).

    If this does not cause a reallocation, the resulting data structure will not have any extra chunks and thus will yield faster queries.

    Prefer extend over append_chunks when you want to do a query after a single append. For instance during online operations where you add n rows and rerun a query.

    Prefer append_chunks over extend when you want to append many times before doing a query. For instance, when you read in multiple files and when to store them in a single Series. In the latter case, finish the sequence of append_chunks operations with a rechunk.

Returns:



1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
# File 'lib/polars/series.rb', line 1453

def append(other, append_chunks: true)
  begin
    if append_chunks
      _s.append(other._s)
    else
      _s.extend(other._s)
    end
  rescue => e
    if e.message == "Already mutably borrowed"
      append(other.clone, append_chunks)
    else
      raise e
    end
  end
  self
end

#arccosSeries Also known as: acos

Compute the element-wise value for the inverse cosine.

Examples:

s = Polars::Series.new("a", [1.0, 0.0, -1.0])
s.arccos
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         0.0
#         1.570796
#         3.141593
# ]

Returns:



2713
2714
2715
# File 'lib/polars/series.rb', line 2713

def arccos
  super
end

#arccoshSeries Also known as: acosh

Compute the element-wise value for the inverse hyperbolic cosine.

Examples:

s = Polars::Series.new("a", [5.0, 1.0, 0.0, -1.0])
s.arccosh
# =>
# shape: (4,)
# Series: 'a' [f64]
# [
#         2.292432
#         0.0
#         NaN
#         NaN
# ]

Returns:



2774
2775
2776
# File 'lib/polars/series.rb', line 2774

def arccosh
  super
end

#arcsinSeries Also known as: asin

Compute the element-wise value for the inverse sine.

Examples:

s = Polars::Series.new("a", [1.0, 0.0, -1.0])
s.arcsin
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         1.570796
#         0.0
#         -1.570796
# ]

Returns:



2693
2694
2695
# File 'lib/polars/series.rb', line 2693

def arcsin
  super
end

#arcsinhSeries Also known as: asinh

Compute the element-wise value for the inverse hyperbolic sine.

Examples:

s = Polars::Series.new("a", [1.0, 0.0, -1.0])
s.arcsinh
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         0.881374
#         0.0
#         -0.881374
# ]

Returns:



2753
2754
2755
# File 'lib/polars/series.rb', line 2753

def arcsinh
  super
end

#arctanSeries Also known as: atan

Compute the element-wise value for the inverse tangent.

Examples:

s = Polars::Series.new("a", [1.0, 0.0, -1.0])
s.arctan
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         0.785398
#         0.0
#         -0.785398
# ]

Returns:



2733
2734
2735
# File 'lib/polars/series.rb', line 2733

def arctan
  super
end

#arctanhSeries Also known as: atanh

Compute the element-wise value for the inverse hyperbolic tangent.

Examples:

s = Polars::Series.new("a", [2.0, 1.0, 0.5, 0.0, -0.5, -1.0, -1.1])
s.arctanh
# =>
# shape: (7,)
# Series: 'a' [f64]
# [
#         NaN
#         inf
#         0.549306
#         0.0
#         -0.549306
#         -inf
#         NaN
# ]

Returns:



2798
2799
2800
# File 'lib/polars/series.rb', line 2798

def arctanh
  super
end

#arg_maxInteger?

Get the index of the maximal value.

Examples:

s = Polars::Series.new("a", [3, 2, 1])
s.arg_max
# => 0

Returns:

  • (Integer, nil)


1718
1719
1720
# File 'lib/polars/series.rb', line 1718

def arg_max
  _s.arg_max
end

#arg_minInteger?

Get the index of the minimal value.

Examples:

s = Polars::Series.new("a", [3, 2, 1])
s.arg_min
# => 2

Returns:

  • (Integer, nil)


1706
1707
1708
# File 'lib/polars/series.rb', line 1706

def arg_min
  _s.arg_min
end

#arg_sort(reverse: false, nulls_last: false) ⇒ Series

Get the index values that would sort this Series.

Examples:

s = Polars::Series.new("a", [5, 3, 4, 1, 2])
s.arg_sort
# =>
# shape: (5,)
# Series: 'a' [u32]
# [
#         3
#         4
#         1
#         2
#         0
# ]

Parameters:

  • reverse (Boolean) (defaults to: false)

    Sort in reverse (descending) order.

  • nulls_last (Boolean) (defaults to: false)

    Place null values last instead of first.

Returns:



1661
1662
1663
# File 'lib/polars/series.rb', line 1661

def arg_sort(reverse: false, nulls_last: false)
  super
end

#arg_trueSeries

Get index values where Boolean Series evaluate true.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
(s == 2).arg_true
# =>
# shape: (1,)
# Series: 'a' [u32]
# [
#         1
# ]

Returns:



1995
1996
1997
# File 'lib/polars/series.rb', line 1995

def arg_true
  Polars.arg_where(self, eager: true)
end

#arg_uniqueSeries

Get unique index as Series.

Examples:

s = Polars::Series.new("a", [1, 2, 2, 3])
s.arg_unique
# =>
# shape: (3,)
# Series: 'a' [u32]
# [
#         0
#         1
#         3
# ]

Returns:



1694
1695
1696
# File 'lib/polars/series.rb', line 1694

def arg_unique
  super
end

#argsort(reverse: false, nulls_last: false) ⇒ Series

Get the index values that would sort this Series.

Alias for #arg_sort.

Parameters:

  • reverse (Boolean) (defaults to: false)

    Sort in reverse (descending) order.

  • nulls_last (Boolean) (defaults to: false)

    Place null values last instead of first.

Returns:



1675
1676
1677
# File 'lib/polars/series.rb', line 1675

def argsort(reverse: false, nulls_last: false)
  super
end

#arrArrayNameSpace

Create an object namespace of all array related methods.

Returns:



3996
3997
3998
# File 'lib/polars/series.rb', line 3996

def arr
  ArrayNameSpace.new(self)
end

#binBinaryNameSpace

Create an object namespace of all binary related methods.

Returns:



4003
4004
4005
# File 'lib/polars/series.rb', line 4003

def bin
  BinaryNameSpace.new(self)
end

#bottom_k(k: 5) ⇒ Boolean

Return the k smallest elements.

Examples:

s = Polars::Series.new("a", [2, 5, 1, 4, 3])
s.bottom_k(k: 3)
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         1
#         2
#         3
# ]

Parameters:

  • k (Integer) (defaults to: 5)

    Number of elements to return.

Returns:



1635
1636
1637
# File 'lib/polars/series.rb', line 1635

def bottom_k(k: 5)
  super
end

#cast(dtype, strict: true) ⇒ Series

Cast between data types.

Examples:

s = Polars::Series.new("a", [true, false, true])
s.cast(:u32)
# =>
# shape: (3,)
# Series: 'a' [u32]
# [
#         1
#         0
#         1
# ]

Parameters:

  • dtype (Symbol)

    DataType to cast to

  • strict (Boolean) (defaults to: true)

    Throw an error if a cast could not be done for instance due to an overflow

Returns:



2141
2142
2143
# File 'lib/polars/series.rb', line 2141

def cast(dtype, strict: true)
  super
end

#catCatNameSpace

Create an object namespace of all categorical related methods.

Returns:



4010
4011
4012
# File 'lib/polars/series.rb', line 4010

def cat
  CatNameSpace.new(self)
end

#ceilSeries

Rounds up to the nearest integer value.

Only works on floating point Series.

Examples:

s = Polars::Series.new("a", [1.12345, 2.56789, 3.901234])
s.ceil
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         2.0
#         3.0
#         4.0
# ]

Returns:



2532
2533
2534
# File 'lib/polars/series.rb', line 2532

def ceil
  super
end

#chunk_lengthsArray

Get the length of each individual chunk.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s2 = Polars::Series.new("b", [4, 5, 6])

Concatenate Series with rechunk: true

Polars.concat([s, s2]).chunk_lengths
# => [6]

Concatenate Series with rechunk: false

Polars.concat([s, s2], rechunk: false).chunk_lengths
# => [3, 3]

Returns:



1238
1239
1240
# File 'lib/polars/series.rb', line 1238

def chunk_lengths
  _s.chunk_lengths
end

#clearedSeries

Create an empty copy of the current Series.

The copy has identical name/dtype but no data.

Examples:

s = Polars::Series.new("a", [nil, true, false])
s.cleared
# =>
# shape: (0,)
# Series: 'a' [bool]
# [
# ]

Returns:



2413
2414
2415
# File 'lib/polars/series.rb', line 2413

def cleared
  len > 0 ? limit(0) : clone
end

#clip(min_val = nil, max_val = nil) ⇒ Series

Clip (limit) the values in an array to a min and max boundary.

Only works for numerical types.

If you want to clip other dtypes, consider writing a "when, then, otherwise" expression. See Functions#when for more information.

Examples:

s = Polars::Series.new("foo", [-50, 5, nil, 50])
s.clip(1, 10)
# =>
# shape: (4,)
# Series: 'foo' [i64]
# [
#         1
#         5
#         null
#         10
# ]

Parameters:

  • min_val (Numeric) (defaults to: nil)

    Minimum value.

  • max_val (Numeric) (defaults to: nil)

    Maximum value.

Returns:



3735
3736
3737
# File 'lib/polars/series.rb', line 3735

def clip(min_val = nil, max_val = nil)
  super
end

#clip_max(max_val) ⇒ Series

Clip (limit) the values in an array to a max boundary.

Only works for numerical types.

If you want to clip other dtypes, consider writing a "when, then, otherwise" expression. See Functions#when for more information.

Parameters:

  • max_val (Numeric)

    Maximum value.

Returns:



3765
3766
3767
# File 'lib/polars/series.rb', line 3765

def clip_max(max_val)
  super
end

#clip_min(min_val) ⇒ Series

Clip (limit) the values in an array to a min boundary.

Only works for numerical types.

If you want to clip other dtypes, consider writing a "when, then, otherwise" expression. See Functions#when for more information.

Parameters:

  • min_val (Numeric)

    Minimum value.

Returns:



3750
3751
3752
# File 'lib/polars/series.rb', line 3750

def clip_min(min_val)
  super
end

#cosSeries

Compute the element-wise value for the cosine.

Examples:

s = Polars::Series.new("a", [0.0, Math::PI / 2.0, Math::PI])
s.cos
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         1.0
#         6.1232e-17
#         -1.0
# ]

Returns:



2655
2656
2657
# File 'lib/polars/series.rb', line 2655

def cos
  super
end

#coshSeries

Compute the element-wise value for the hyperbolic cosine.

Examples:

s = Polars::Series.new("a", [1.0, 0.0, -1.0])
s.cosh
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         1.543081
#         1.0
#         1.543081
# ]

Returns:



2837
2838
2839
# File 'lib/polars/series.rb', line 2837

def cosh
  super
end

#countInteger

Return the number of elements in the Series.

Examples:

s = Polars::Series.new("a", [1, 2, nil])
s.count
# => 2

Returns:

  • (Integer)


2103
2104
2105
# File 'lib/polars/series.rb', line 2103

def count
  len - null_count
end

#cum_max(reverse: false) ⇒ Series Also known as: cummax

Get an array with the cumulative max computed at every element.

Examples:

s = Polars::Series.new("a", [3, 5, 1])
s.cum_max
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         3
#         5
#         5
# ]

Parameters:

  • reverse (Boolean) (defaults to: false)

    reverse the operation.

Returns:



1329
1330
1331
# File 'lib/polars/series.rb', line 1329

def cum_max(reverse: false)
  super
end

#cum_min(reverse: false) ⇒ Series Also known as: cummin

Get an array with the cumulative min computed at every element.

Examples:

s = Polars::Series.new("a", [3, 5, 1])
s.cum_min
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         3
#         3
#         1
# ]

Parameters:

  • reverse (Boolean) (defaults to: false)

    reverse the operation.

Returns:



1306
1307
1308
# File 'lib/polars/series.rb', line 1306

def cum_min(reverse: false)
  super
end

#cum_prod(reverse: false) ⇒ Series Also known as: cumprod

Note:

Dtypes :i8, :u8, :i16, and :u16 are cast to :i64 before multiplying to prevent overflow issues.

Get an array with the cumulative product computed at every element.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.cum_prod
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         1
#         2
#         6
# ]

Parameters:

  • reverse (Boolean) (defaults to: false)

    reverse the operation.

Returns:



1356
1357
1358
# File 'lib/polars/series.rb', line 1356

def cum_prod(reverse: false)
  super
end

#cum_sum(reverse: false) ⇒ Series Also known as: cumsum

Note:

Dtypes :i8, :u8, :i16, and :u16 are cast to :i64 before summing to prevent overflow issues.

Get an array with the cumulative sum computed at every element.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.cum_sum
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         1
#         3
#         6
# ]

Parameters:

  • reverse (Boolean) (defaults to: false)

    reverse the operation.

Returns:



1283
1284
1285
# File 'lib/polars/series.rb', line 1283

def cum_sum(reverse: false)
  super
end

#cumulative_eval(expr, min_periods: 1, parallel: false) ⇒ Series

Note:

This functionality is experimental and may change without it being considered a breaking change.

Note:

This can be really slow as it can have O(n^2) complexity. Don't use this for operations that visit all elements.

Run an expression over a sliding window that increases 1 slot every iteration.

Examples:

s = Polars::Series.new("values", [1, 2, 3, 4, 5])
s.cumulative_eval(Polars.element.first - Polars.element.last ** 2)
# =>
# shape: (5,)
# Series: 'values' [i64]
# [
#         0
#         -3
#         -8
#         -15
#         -24
# ]

Parameters:

  • expr (Expr)

    Expression to evaluate

  • min_periods (Integer) (defaults to: 1)

    Number of valid values there should be in the window before the expression is evaluated. valid values = length - null_count

  • parallel (Boolean) (defaults to: false)

    Run in parallel. Don't do this in a group by or another operation that already has much parallelization.

Returns:



1182
1183
1184
# File 'lib/polars/series.rb', line 1182

def cumulative_eval(expr, min_periods: 1, parallel: false)
  super
end

#cut(breaks, labels: nil, left_closed: false, include_breaks: false) ⇒ Series

Bin continuous values into discrete categories.

Examples:

Divide the column into three categories.

s = Polars::Series.new("foo", [-2, -1, 0, 1, 2])
s.cut([-1, 1], labels: ["a", "b", "c"])
# =>
# shape: (5,)
# Series: 'foo' [cat]
# [
#         "a"
#         "a"
#         "b"
#         "b"
#         "c"
# ]

Create a DataFrame with the breakpoint and category for each value.

cut = s.cut([-1, 1], include_breaks: true).alias("cut")
s.to_frame.with_columns(cut).unnest("cut")
# =>
# shape: (5, 3)
# ┌─────┬─────────────┬────────────┐
# │ foo ┆ break_point ┆ category   │
# │ --- ┆ ---         ┆ ---        │
# │ i64 ┆ f64         ┆ cat        │
# ╞═════╪═════════════╪════════════╡
# │ -2  ┆ -1.0        ┆ (-inf, -1] │
# │ -1  ┆ -1.0        ┆ (-inf, -1] │
# │ 0   ┆ 1.0         ┆ (-1, 1]    │
# │ 1   ┆ 1.0         ┆ (-1, 1]    │
# │ 2   ┆ inf         ┆ (1, inf]   │
# └─────┴─────────────┴────────────┘

Parameters:

  • breaks (Array)

    List of unique cut points.

  • labels (Array) (defaults to: nil)

    Names of the categories. The number of labels must be equal to the number of cut points plus one.

  • left_closed (Boolean) (defaults to: false)

    Set the intervals to be left-closed instead of right-closed.

  • include_breaks (Boolean) (defaults to: false)

    Include a column with the right endpoint of the bin each observation falls in. This will change the data type of the output from a Categorical to a Struct.

Returns:



904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
# File 'lib/polars/series.rb', line 904

def cut(breaks, labels: nil, left_closed: false, include_breaks: false)
  result = (
    to_frame
    .select(
      Polars.col(name).cut(
        breaks,
        labels: labels,
        left_closed: left_closed,
        include_breaks: include_breaks
      )
    )
    .to_series
  )

  if include_breaks
    result = result.struct.rename_fields(["break_point", "category"])
  end

  result
end

#describeDataFrame

Quick summary statistics of a series.

Series with mixed datatypes will return summary statistics for the datatype of the first value.

Examples:

series_num = Polars::Series.new([1, 2, 3, 4, 5])
series_num.describe
# =>
# shape: (6, 2)
# ┌────────────┬──────────┐
# │ statistic  ┆ value    │
# │ ---        ┆ ---      │
# │ str        ┆ f64      │
# ╞════════════╪══════════╡
# │ min        ┆ 1.0      │
# │ max        ┆ 5.0      │
# │ null_count ┆ 0.0      │
# │ mean       ┆ 3.0      │
# │ std        ┆ 1.581139 │
# │ count      ┆ 5.0      │
# └────────────┴──────────┘
series_str = Polars::Series.new(["a", "a", nil, "b", "c"])
series_str.describe
# =>
# shape: (3, 2)
# ┌────────────┬───────┐
# │ statistic  ┆ value │
# │ ---        ┆ ---   │
# │ str        ┆ i64   │
# ╞════════════╪═══════╡
# │ unique     ┆ 4     │
# │ null_count ┆ 1     │
# │ count      ┆ 5     │
# └────────────┴───────┘

Returns:



651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
# File 'lib/polars/series.rb', line 651

def describe
  if len == 0
    raise ArgumentError, "Series must contain at least one value"
  elsif is_numeric
    s = cast(:f64)
    stats = {
      "min" => s.min,
      "max" => s.max,
      "null_count" => s.null_count,
      "mean" => s.mean,
      "std" => s.std,
      "count" => s.len
    }
  elsif is_boolean
    stats = {
      "sum" => sum,
      "null_count" => null_count,
      "count" => len
    }
  elsif is_utf8
    stats = {
      "unique" => unique.length,
      "null_count" => null_count,
      "count" => len
    }
  elsif is_datelike
    # we coerce all to string, because a polars column
    # only has a single dtype and dates: datetime and count: int don't match
    stats = {
      "min" => dt.min.to_s,
      "max" => dt.max.to_s,
      "null_count" => null_count.to_s,
      "count" => len.to_s
    }
  else
    raise TypeError, "This type is not supported"
  end

  Polars::DataFrame.new(
    {"statistic" => stats.keys, "value" => stats.values}
  )
end

#diff(n: 1, null_behavior: "ignore") ⇒ Series

Calculate the n-th discrete difference.

Parameters:

  • n (Integer) (defaults to: 1)

    Number of slots to shift.

  • null_behavior ("ignore", "drop") (defaults to: "ignore")

    How to handle null values.

Returns:



3619
3620
3621
# File 'lib/polars/series.rb', line 3619

def diff(n: 1, null_behavior: "ignore")
  super
end

#dot(other) ⇒ Numeric

Compute the dot/inner product between two Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s2 = Polars::Series.new("b", [4.0, 5.0, 6.0])
s.dot(s2)
# => 32.0

Parameters:

  • other (Object)

    Series (or array) to compute dot product with.

Returns:

  • (Numeric)


2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
# File 'lib/polars/series.rb', line 2570

def dot(other)
  if !other.is_a?(Series)
    other = Series.new(other)
  end
  if len != other.len
    n, m = len, other.len
    raise ArgumentError, "Series length mismatch: expected #{n}, found #{m}"
  end
  _s.dot(other._s)
end

#drop_nansSeries

Drop NaN values.

Returns:



601
602
603
# File 'lib/polars/series.rb', line 601

def drop_nans
  super
end

#drop_nullsSeries

Create a new Series that copies data from this Series without null values.

Returns:



594
595
596
# File 'lib/polars/series.rb', line 594

def drop_nulls
  super
end

#dtDateTimeNameSpace

Create an object namespace of all datetime related methods.

Returns:



4017
4018
4019
# File 'lib/polars/series.rb', line 4017

def dt
  DateTimeNameSpace.new(self)
end

#dtypeSymbol

Get the data type of this Series.

Returns:

  • (Symbol)


91
92
93
# File 'lib/polars/series.rb', line 91

def dtype
  _s.dtype
end

#eachObject

Returns an enumerator.

Returns:



419
420
421
422
423
424
425
# File 'lib/polars/series.rb', line 419

def each
  return to_enum(:each) unless block_given?

  length.times do |i|
    yield self[i]
  end
end

#entropy(base: Math::E, normalize: false) ⇒ Float?

Computes the entropy.

Uses the formula -sum(pk * log(pk) where pk are discrete probabilities.

Examples:

a = Polars::Series.new([0.99, 0.005, 0.005])
a.entropy(normalize: true)
# => 0.06293300616044681
b = Polars::Series.new([0.65, 0.10, 0.25])
b.entropy(normalize: true)
# => 0.8568409950394724

Parameters:

  • base (Float) (defaults to: Math::E)

    Given base, defaults to e

  • normalize (Boolean) (defaults to: false)

    Normalize pk if it doesn't sum to 1.

Returns:

  • (Float, nil)


1144
1145
1146
# File 'lib/polars/series.rb', line 1144

def entropy(base: Math::E, normalize: false)
  Polars.select(Polars.lit(self).entropy(base: base, normalize: normalize)).to_series[0]
end

#eq(other) ⇒ Series

Method equivalent of operator expression series == other.

Returns:



234
235
236
# File 'lib/polars/series.rb', line 234

def eq(other)
  self == other
end

#eq_missing(other) ⇒ Object

Method equivalent of equality operator series == other where nil == nil.

This differs from the standard ne where null values are propagated.

Examples:

s1 = Polars::Series.new("a", [333, 200, nil])
s2 = Polars::Series.new("a", [100, 200, nil])
s1.eq(s2)
# =>
# shape: (3,)
# Series: 'a' [bool]
# [
#         false
#         true
#         null
# ]
s1.eq_missing(s2)
# =>
# shape: (3,)
# Series: 'a' [bool]
# [
#         false
#         true
#         true
# ]

Parameters:

  • other (Object)

    A literal or expression value to compare with.

Returns:



270
271
272
273
274
275
# File 'lib/polars/series.rb', line 270

def eq_missing(other)
  if other.is_a?(Expr)
    return Polars.lit(self).eq_missing(other)
  end
  to_frame.select(Polars.col(name).eq_missing(other)).to_series
end

#equals(other, strict: false, check_names: false, null_equal: false) ⇒ Boolean Also known as: series_equal

Check if series is equal with another Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s2 = Polars::Series.new("b", [4, 5, 6])
s.equals(s)
# => true
s.equals(s2)
# => false

Parameters:

  • other (Series)

    Series to compare with.

  • strict (Boolean) (defaults to: false)

    Require data types to match.

  • check_names (Boolean) (defaults to: false)

    Require names to match.

  • null_equal (Boolean) (defaults to: false)

    Consider null values as equal.

Returns:



2090
2091
2092
# File 'lib/polars/series.rb', line 2090

def equals(other, strict: false, check_names: false, null_equal: false)
  _s.equals(other._s, strict, check_names, null_equal)
end

#estimated_size(unit = "b") ⇒ Numeric

Return an estimation of the total (heap) allocated size of the Series.

Estimated size is given in the specified unit (bytes by default).

This estimation is the sum of the size of its buffers, validity, including nested arrays. Multiple arrays may share buffers and bitmaps. Therefore, the size of 2 arrays is not the sum of the sizes computed from this function. In particular, StructArray's size is an upper bound.

When an array is sliced, its allocated size remains constant because the buffer unchanged. However, this function will yield a smaller number. This is because this function returns the visible size of the buffer, not its total capacity.

FFI buffers are included in this estimation.

Examples:

s = Polars::Series.new("values", 1..1_000_000, dtype: :u32)
s.estimated_size
# => 4000000
s.estimated_size("mb")
# => 3.814697265625

Parameters:

  • unit ("b", "kb", "mb", "gb", "tb") (defaults to: "b")

    Scale the returned size to the given unit.

Returns:

  • (Numeric)


519
520
521
522
# File 'lib/polars/series.rb', line 519

def estimated_size(unit = "b")
  sz = _s.estimated_size
  Utils.scale_bytes(sz, to: unit)
end

#ewm_mean(com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, min_periods: 1, ignore_nulls: true) ⇒ Series

Exponentially-weighted moving average.

Returns:



3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
# File 'lib/polars/series.rb', line 3877

def ewm_mean(
  com: nil,
  span: nil,
  half_life: nil,
  alpha: nil,
  adjust: true,
  min_periods: 1,
  ignore_nulls: true
)
  super
end

#ewm_std(com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, bias: false, min_periods: 1, ignore_nulls: true) ⇒ Series

Exponentially-weighted moving standard deviation.

Returns:



3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
# File 'lib/polars/series.rb', line 3892

def ewm_std(
  com: nil,
  span: nil,
  half_life: nil,
  alpha: nil,
  adjust: true,
  bias: false,
  min_periods: 1,
  ignore_nulls: true
)
  super
end

#ewm_var(com: nil, span: nil, half_life: nil, alpha: nil, adjust: true, bias: false, min_periods: 1, ignore_nulls: true) ⇒ Series

Exponentially-weighted moving variance.

Returns:



3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
# File 'lib/polars/series.rb', line 3908

def ewm_var(
  com: nil,
  span: nil,
  half_life: nil,
  alpha: nil,
  adjust: true,
  bias: false,
  min_periods: 1,
  ignore_nulls: true
)
  super
end

#expSeries

Compute the exponential, element-wise.

Returns:



587
588
589
# File 'lib/polars/series.rb', line 587

def exp
  super
end

#explodeSeries

Explode a list or utf8 Series.

This means that every item is expanded to a new row.

Examples:

s = Polars::Series.new("a", [[1, 2], [3, 4], [9, 10]])
s.explode
# =>
# shape: (6,)
# Series: 'a' [i64]
# [
#         1
#         2
#         3
#         4
#         9
#         10
# ]

Returns:



2066
2067
2068
# File 'lib/polars/series.rb', line 2066

def explode
  super
end

#extend_constant(value, n) ⇒ Series

Extend the Series with given number of values.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.extend_constant(99, 2)
# =>
# shape: (5,)
# Series: 'a' [i64]
# [
#         1
#         2
#         3
#         99
#         99
# ]

Parameters:

  • value (Object)

    The value to extend the Series with. This value may be nil to fill with nulls.

  • n (Integer)

    The number of values to extend.

Returns:



3944
3945
3946
# File 'lib/polars/series.rb', line 3944

def extend_constant(value, n)
  Utils.wrap_s(_s.extend_constant(value, n))
end

#fill_nan(fill_value) ⇒ Series

Fill floating point NaN value with a fill value.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, Float::NAN])
s.fill_nan(0)
# =>
# shape: (4,)
# Series: 'a' [f64]
# [
#         1.0
#         2.0
#         3.0
#         0.0
# ]

Parameters:

  • fill_value (Object)

    Value used to fill nan values.

Returns:



2438
2439
2440
# File 'lib/polars/series.rb', line 2438

def fill_nan(fill_value)
  super
end

#fill_null(value = nil, strategy: nil, limit: nil) ⇒ Series

Fill null values using the specified value or strategy.

Examples:

s = Polars::Series.new("a", [1, 2, 3, nil])
s.fill_null(strategy: "forward")
# =>
# shape: (4,)
# Series: 'a' [i64]
# [
#         1
#         2
#         3
#         3
# ]
s.fill_null(strategy: "min")
# =>
# shape: (4,)
# Series: 'a' [i64]
# [
#         1
#         2
#         3
#         1
# ]
s = Polars::Series.new("b", ["x", nil, "z"])
s.fill_null(Polars.lit(""))
# =>
# shape: (3,)
# Series: 'b' [str]
# [
#         "x"
#         ""
#         "z"
# ]

Parameters:

  • value (Object) (defaults to: nil)

    Value used to fill null values.

  • strategy (nil, "forward", "backward", "min", "max", "mean", "zero", "one") (defaults to: nil)

    Strategy used to fill null values.

  • limit (defaults to: nil)

    Number of consecutive null values to fill when using the "forward" or "backward" strategy.

Returns:



2490
2491
2492
# File 'lib/polars/series.rb', line 2490

def fill_null(value = nil, strategy: nil, limit: nil)
  super
end

#filter(predicate) ⇒ Series

Filter elements by a boolean mask.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
mask = Polars::Series.new("", [true, false, true])
s.filter(mask)
# =>
# shape: (2,)
# Series: 'a' [i64]
# [
#         1
#         3
# ]

Parameters:

Returns:



1488
1489
1490
1491
1492
1493
# File 'lib/polars/series.rb', line 1488

def filter(predicate)
  if predicate.is_a?(::Array)
    predicate = Series.new("", predicate)
  end
  Utils.wrap_s(_s.filter(predicate._s))
end

#flagsHash

Get flags that are set on the Series.

Returns:

  • (Hash)


98
99
100
101
102
103
104
105
106
107
# File 'lib/polars/series.rb', line 98

def flags
  out = {
    "SORTED_ASC" => _s.is_sorted_flag,
    "SORTED_DESC" => _s.is_sorted_reverse_flag
  }
  if dtype.is_a?(List)
    out["FAST_EXPLODE"] = _s.can_fast_explode_flag
  end
  out
end

#floorSeries

Rounds down to the nearest integer value.

Only works on floating point Series.

Examples:

s = Polars::Series.new("a", [1.12345, 2.56789, 3.901234])
s.floor
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         1.0
#         2.0
#         3.0
# ]

Returns:



2511
2512
2513
# File 'lib/polars/series.rb', line 2511

def floor
  Utils.wrap_s(_s.floor)
end

#ge(other) ⇒ Series

Method equivalent of operator expression series >= other.

Returns:



326
327
328
# File 'lib/polars/series.rb', line 326

def ge(other)
  self >= other
end

#gt(other) ⇒ Series

Method equivalent of operator expression series > other.

Returns:



333
334
335
# File 'lib/polars/series.rb', line 333

def gt(other)
  self > other
end

#has_nullsBoolean Also known as: has_validity

Return true if the Series has a validity bitmask.

If there is none, it means that there are no null values. Use this to swiftly assert a Series does not have null values.

Returns:



1793
1794
1795
# File 'lib/polars/series.rb', line 1793

def has_nulls
  _s.has_nulls
end

#head(n = 10) ⇒ Series

Get the first n rows.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.head(2)
# =>
# shape: (2,)
# Series: 'a' [i64]
# [
#         1
#         2
# ]

Parameters:

  • n (Integer) (defaults to: 10)

    Number of rows to return.

Returns:



1512
1513
1514
# File 'lib/polars/series.rb', line 1512

def head(n = 10)
  to_frame.select(F.col(name).head(n)).to_series
end

#inner_dtypeSymbol

Get the inner dtype in of a List typed Series.

Returns:

  • (Symbol)


112
113
114
# File 'lib/polars/series.rb', line 112

def inner_dtype
  _s.inner_dtype
end

#interpolate(method: "linear") ⇒ Series

Interpolate intermediate values. The interpolation method is linear.

Examples:

s = Polars::Series.new("a", [1, 2, nil, nil, 5])
s.interpolate
# =>
# shape: (5,)
# Series: 'a' [f64]
# [
#         1.0
#         2.0
#         3.0
#         4.0
#         5.0
# ]

Returns:



3542
3543
3544
# File 'lib/polars/series.rb', line 3542

def interpolate(method: "linear")
  super
end

#is_booleanBoolean Also known as: boolean?, is_bool, bool?

Check if this Series is a Boolean.

Examples:

s = Polars::Series.new("a", [true, false, true])
s.is_boolean
# => true

Returns:



2263
2264
2265
# File 'lib/polars/series.rb', line 2263

def is_boolean
  dtype == Boolean
end

#is_datelikeBoolean Also known as: datelike?, is_temporal, temporal?

Check if this Series datatype is datelike.

Examples:

s = Polars::Series.new([Date.new(2021, 1, 1), Date.new(2021, 1, 2), Date.new(2021, 1, 3)])
s.is_datelike
# => true

Returns:



2235
2236
2237
# File 'lib/polars/series.rb', line 2235

def is_datelike
  [Date, Time].include?(dtype) || dtype.is_a?(Datetime) || dtype.is_a?(Duration)
end

#is_duplicatedSeries

Get mask of all duplicated values.

Examples:

s = Polars::Series.new("a", [1, 2, 2, 3])
s.is_duplicated
# =>
# shape: (4,)
# Series: 'a' [bool]
# [
#         false
#         true
#         true
#         false
# ]

Returns:



2042
2043
2044
# File 'lib/polars/series.rb', line 2042

def is_duplicated
  super
end

#is_emptyBoolean Also known as: empty?

Check if the Series is empty.

Examples:

s = Polars::Series.new("a", [])
s.is_empty
# => true

Returns:



1806
1807
1808
# File 'lib/polars/series.rb', line 1806

def is_empty
  len == 0
end

#is_finiteSeries

Returns a boolean Series indicating which values are finite.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, Float::INFINITY])
s.is_finite
# =>
# shape: (3,)
# Series: 'a' [bool]
# [
#         true
#         true
#         false
# ]

Returns:



1866
1867
1868
# File 'lib/polars/series.rb', line 1866

def is_finite
  super
end

#is_firstSeries

Get a mask of the first unique value.

Returns:



2022
2023
2024
# File 'lib/polars/series.rb', line 2022

def is_first
  super
end

#is_floatBoolean Also known as: float?

Check if this Series has floating point numbers.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0])
s.is_float
# => true

Returns:



2250
2251
2252
# File 'lib/polars/series.rb', line 2250

def is_float
  [Float32, Float64].include?(dtype)
end

#is_in(other) ⇒ Series Also known as: in?

Check if elements of this Series are in the other Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s2 = Polars::Series.new("b", [2, 4])
s2.is_in(s)
# =>
# shape: (2,)
# Series: 'b' [bool]
# [
#         true
#         false
# ]
sets = Polars::Series.new("sets", [[1, 2, 3], [1, 2], [9, 10]])
# =>
# shape: (3,)
# Series: 'sets' [list[i64]]
# [
#         [1, 2, 3]
#         [1, 2]
#         [9, 10]
# ]
optional_members = Polars::Series.new("optional_members", [1, 2, 3])
# =>
# shape: (3,)
# Series: 'optional_members' [i64]
# [
#         1
#         2
#         3
# ]
optional_members.is_in(sets)
# =>
# shape: (3,)
# Series: 'optional_members' [bool]
# [
#         true
#         true
#         false
# ]

Returns:



1977
1978
1979
# File 'lib/polars/series.rb', line 1977

def is_in(other)
  super
end

#is_infiniteSeries

Returns a boolean Series indicating which values are infinite.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, Float::INFINITY])
s.is_infinite
# =>
# shape: (3,)
# Series: 'a' [bool]
# [
#         false
#         false
#         true
# ]

Returns:



1885
1886
1887
# File 'lib/polars/series.rb', line 1885

def is_infinite
  super
end

#is_nanSeries

Returns a boolean Series indicating which values are NaN.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, Float::NAN])
s.is_nan
# =>
# shape: (4,)
# Series: 'a' [bool]
# [
#         false
#         false
#         false
#         true
# ]

Returns:



1905
1906
1907
# File 'lib/polars/series.rb', line 1905

def is_nan
  super
end

#is_not_nanSeries

Returns a boolean Series indicating which values are not NaN.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, Float::NAN])
s.is_not_nan
# =>
# shape: (4,)
# Series: 'a' [bool]
# [
#         true
#         true
#         true
#         false
# ]

Returns:



1925
1926
1927
# File 'lib/polars/series.rb', line 1925

def is_not_nan
  super
end

#is_not_nullSeries

Returns a boolean Series indicating which values are not null.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, nil])
s.is_not_null
# =>
# shape: (4,)
# Series: 'a' [bool]
# [
#         true
#         true
#         true
#         false
# ]

Returns:



1847
1848
1849
# File 'lib/polars/series.rb', line 1847

def is_not_null
  super
end

#is_nullSeries

Returns a boolean Series indicating which values are null.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, nil])
s.is_null
# =>
# shape: (4,)
# Series: 'a' [bool]
# [
#         false
#         false
#         false
#         true
# ]

Returns:



1827
1828
1829
# File 'lib/polars/series.rb', line 1827

def is_null
  super
end

#is_numericBoolean Also known as: numeric?

Check if this Series datatype is numeric.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.is_numeric
# => true

Returns:



2222
2223
2224
# File 'lib/polars/series.rb', line 2222

def is_numeric
  [Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64, Float32, Float64].include?(dtype)
end

#is_uniqueSeries

Get mask of all unique values.

Examples:

s = Polars::Series.new("a", [1, 2, 2, 3])
s.is_unique
# =>
# shape: (4,)
# Series: 'a' [bool]
# [
#         true
#         false
#         false
#         true
# ]

Returns:



2015
2016
2017
# File 'lib/polars/series.rb', line 2015

def is_unique
  super
end

#is_utf8Boolean Also known as: utf8?

Check if this Series datatype is a Utf8.

Examples:

s = Polars::Series.new("x", ["a", "b", "c"])
s.is_utf8
# => true

Returns:



2278
2279
2280
# File 'lib/polars/series.rb', line 2278

def is_utf8
  dtype == String
end

#kurtosis(fisher: true, bias: true) ⇒ Float?

Compute the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is false, then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators

Parameters:

  • fisher (Boolean) (defaults to: true)

    If true, Fisher's definition is used (normal ==> 0.0). If false, Pearson's definition is used (normal ==> 3.0).

  • bias (Boolean) (defaults to: true)

    If false, the calculations are corrected for statistical bias.

Returns:

  • (Float, nil)


3705
3706
3707
# File 'lib/polars/series.rb', line 3705

def kurtosis(fisher: true, bias: true)
  _s.kurtosis(fisher, bias)
end

#le(other) ⇒ Series

Method equivalent of operator expression series <= other.

Returns:



220
221
222
# File 'lib/polars/series.rb', line 220

def le(other)
  self <= other
end

#lenInteger Also known as: length, size

Return the number of elements in the Series.

Examples:

s = Polars::Series.new("a", [1, 2, nil])
s.len
# => 3

Returns:

  • (Integer)


2115
2116
2117
# File 'lib/polars/series.rb', line 2115

def len
  _s.len
end

#limit(n = 10) ⇒ Series

Get the first n rows.

Alias for #head.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.limit(2)
# =>
# shape: (2,)
# Series: 'a' [i64]
# [
#         1
#         2
# ]

Parameters:

  • n (Integer) (defaults to: 10)

    Number of rows to return.

Returns:



1380
1381
1382
# File 'lib/polars/series.rb', line 1380

def limit(n = 10)
  to_frame.select(F.col(name).limit(n)).to_series
end

#listListNameSpace

Create an object namespace of all list related methods.

Returns:



3989
3990
3991
# File 'lib/polars/series.rb', line 3989

def list
  ListNameSpace.new(self)
end

#log(base = Math::E) ⇒ Series

Compute the logarithm to a given base.

Parameters:

  • base (Float) (defaults to: Math::E)

    Given base, defaults to Math::E.

Returns:



573
574
575
# File 'lib/polars/series.rb', line 573

def log(base = Math::E)
  super
end

#log10Series

Compute the base 10 logarithm of the input array, element-wise.

Returns:



580
581
582
# File 'lib/polars/series.rb', line 580

def log10
  super
end

#lt(other) ⇒ Series

Method equivalent of operator expression series < other.

Returns:



227
228
229
# File 'lib/polars/series.rb', line 227

def lt(other)
  self < other
end

#map_elements(return_dtype: nil, skip_nulls: true, &func) ⇒ Series Also known as: map, apply

Apply a custom/user-defined function (UDF) over elements in this Series and return a new Series.

If the function returns another datatype, the return_dtype arg should be set, otherwise the method will fail.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.map_elements { |x| x + 10 }
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         11
#         12
#         13
# ]

Parameters:

  • return_dtype (Symbol) (defaults to: nil)

    Output datatype. If none is given, the same datatype as this Series will be used.

  • skip_nulls (Boolean) (defaults to: true)

    Nulls will be skipped and not passed to the Ruby function. This is faster because Ruby can be skipped and because we call more specialized functions.

Returns:



2887
2888
2889
2890
2891
2892
2893
2894
# File 'lib/polars/series.rb', line 2887

def map_elements(return_dtype: nil, skip_nulls: true, &func)
  if return_dtype.nil?
    pl_return_dtype = nil
  else
    pl_return_dtype = Utils.rb_type_to_dtype(return_dtype)
  end
  Utils.wrap_s(_s.apply_lambda(func, pl_return_dtype, skip_nulls))
end

#maxObject

Get the maximum value in this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.max
# => 3

Returns:



749
750
751
# File 'lib/polars/series.rb', line 749

def max
  _s.max
end

#meanFloat?

Reduce this Series to the mean value.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.mean
# => 2.0

Returns:

  • (Float, nil)


718
719
720
# File 'lib/polars/series.rb', line 718

def mean
  _s.mean
end

#medianFloat?

Get the median of this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.median
# => 2.0

Returns:

  • (Float, nil)


815
816
817
# File 'lib/polars/series.rb', line 815

def median
  _s.median
end

#minObject

Get the minimal value in this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.min
# => 1

Returns:



737
738
739
# File 'lib/polars/series.rb', line 737

def min
  _s.min
end

#modeSeries

Compute the most occurring value(s).

Can return multiple Values.

Examples:

s = Polars::Series.new("a", [1, 2, 2, 3])
s.mode
# =>
# shape: (1,)
# Series: 'a' [i64]
# [
#         2
# ]

Returns:



2596
2597
2598
# File 'lib/polars/series.rb', line 2596

def mode
  super
end

#n_chunksInteger

Get the number of chunks that this Series contains.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s2 = Polars::Series.new("b", [4, 5, 6])

Concatenate Series with rechunk: true

Polars.concat([s, s2]).n_chunks
# => 1

Concatenate Series with rechunk: false

Polars.concat([s, s2], rechunk: false).n_chunks
# => 2

Returns:

  • (Integer)


1257
1258
1259
# File 'lib/polars/series.rb', line 1257

def n_chunks
  _s.n_chunks
end

#n_uniqueInteger

Count the number of unique values in this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 2, 3])
s.n_unique
# => 3

Returns:

  • (Integer)


3461
3462
3463
# File 'lib/polars/series.rb', line 3461

def n_unique
  _s.n_unique
end

#nameString

Get the name of this Series.

Returns:



119
120
121
# File 'lib/polars/series.rb', line 119

def name
  _s.name
end

#nan_maxObject

Get maximum value, but propagate/poison encountered NaN values.

Returns:



756
757
758
# File 'lib/polars/series.rb', line 756

def nan_max
  to_frame.select(Polars.col(name).nan_max)[0, 0]
end

#nan_minObject

Get minimum value, but propagate/poison encountered NaN values.

Returns:



763
764
765
# File 'lib/polars/series.rb', line 763

def nan_min
  to_frame.select(Polars.col(name).nan_min)[0, 0]
end

#ne(other) ⇒ Series

Method equivalent of operator expression series != other.

Returns:



280
281
282
# File 'lib/polars/series.rb', line 280

def ne(other)
  self != other
end

#ne_missing(other) ⇒ Object

Method equivalent of equality operator series != other where None == None.

This differs from the standard ne where null values are propagated.

Examples:

s1 = Polars::Series.new("a", [333, 200, nil])
s2 = Polars::Series.new("a", [100, 200, nil])
s1.ne(s2)
# =>
# shape: (3,)
# Series: 'a' [bool]
# [
#         true
#         false
#         null
# ]
s1.ne_missing(s2)
# =>
# shape: (3,)
# Series: 'a' [bool]
# [
#         true
#         false
#         false
# ]

Parameters:

  • other (Object)

    A literal or expression value to compare with.

Returns:



316
317
318
319
320
321
# File 'lib/polars/series.rb', line 316

def ne_missing(other)
  if other.is_a?(Expr)
    return Polars.lit(self).ne_missing(other)
  end
  to_frame.select(Polars.col(name).ne_missing(other)).to_series
end

#new_from_index(index, length) ⇒ Series

Create a new Series filled with values from the given index.

Returns:



3972
3973
3974
# File 'lib/polars/series.rb', line 3972

def new_from_index(index, length)
  Utils.wrap_s(_s.new_from_index(index, length))
end

#none?(&block) ⇒ Boolean Also known as: none

Check if all boolean values in the column are false.

Returns:



558
559
560
561
562
563
564
# File 'lib/polars/series.rb', line 558

def none?(&block)
  if block_given?
    apply(&block).none?
  else
    to_frame.select(Polars.col(name).is_not.all).to_series[0]
  end
end

#null_countInteger

Count the null values in this Series.

Returns:

  • (Integer)


1783
1784
1785
# File 'lib/polars/series.rb', line 1783

def null_count
  _s.null_count
end

#pct_change(n: 1) ⇒ Series

Computes percentage change between values.

Percentage change (as fraction) between current element and most-recent non-null element at least n period(s) before the current element.

Computes the change from the previous row by default.

Examples:

Polars::Series.new(0..9).pct_change
# =>
# shape: (10,)
# Series: '' [f64]
# [
#         null
#         inf
#         1.0
#         0.5
#         0.333333
#         0.25
#         0.2
#         0.166667
#         0.142857
#         0.125
# ]
Polars::Series.new([1, 2, 4, 8, 16, 32, 64, 128, 256, 512]).pct_change(n: 2)
# =>
# shape: (10,)
# Series: '' [f64]
# [
#         null
#         null
#         3.0
#         3.0
#         3.0
#         3.0
#         3.0
#         3.0
#         3.0
#         3.0
# ]

Parameters:

  • n (Integer) (defaults to: 1)

    periods to shift for forming percent change.

Returns:



3670
3671
3672
# File 'lib/polars/series.rb', line 3670

def pct_change(n: 1)
  super
end

#peak_maxSeries

Get a boolean mask of the local maximum peaks.

Examples:

s = Polars::Series.new("a", [1, 2, 3, 4, 5])
s.peak_max
# =>
# shape: (5,)
# Series: 'a' [bool]
# [
#         false
#         false
#         false
#         false
#         true
# ]

Returns:



3428
3429
3430
# File 'lib/polars/series.rb', line 3428

def peak_max
  super
end

#peak_minSeries

Get a boolean mask of the local minimum peaks.

Examples:

s = Polars::Series.new("a", [4, 1, 3, 2, 5])
s.peak_min
# =>
# shape: (5,)
# Series: 'a' [bool]
# [
#         false
#         true
#         false
#         true
#         false
# ]

Returns:



3449
3450
3451
# File 'lib/polars/series.rb', line 3449

def peak_min
  super
end

#productNumeric

Reduce this Series to the product value.

Returns:

  • (Numeric)


725
726
727
# File 'lib/polars/series.rb', line 725

def product
  to_frame.select(Polars.col(name).product).to_series[0]
end

#qcut(quantiles, labels: nil, left_closed: false, allow_duplicates: false, include_breaks: false) ⇒ Series

Bin continuous values into discrete categories based on their quantiles.

Examples:

Divide a column into three categories according to pre-defined quantile probabilities.

s = Polars::Series.new("foo", [-2, -1, 0, 1, 2])
s.qcut([0.25, 0.75], labels: ["a", "b", "c"])
# =>
# shape: (5,)
# Series: 'foo' [cat]
# [
#         "a"
#         "a"
#         "b"
#         "b"
#         "c"
# ]

Divide a column into two categories using uniform quantile probabilities.

s.qcut(2, labels: ["low", "high"], left_closed: true)
# =>
# shape: (5,)
# Series: 'foo' [cat]
# [
#         "low"
#         "low"
#         "high"
#         "high"
#         "high"
# ]

Create a DataFrame with the breakpoint and category for each value.

cut = s.qcut([0.25, 0.75], include_breaks: true).alias("cut")
s.to_frame.with_columns(cut).unnest("cut")
# =>
# shape: (5, 3)
# ┌─────┬─────────────┬────────────┐
# │ foo ┆ break_point ┆ category   │
# │ --- ┆ ---         ┆ ---        │
# │ i64 ┆ f64         ┆ cat        │
# ╞═════╪═════════════╪════════════╡
# │ -2  ┆ -1.0        ┆ (-inf, -1] │
# │ -1  ┆ -1.0        ┆ (-inf, -1] │
# │ 0   ┆ 1.0         ┆ (-1, 1]    │
# │ 1   ┆ 1.0         ┆ (-1, 1]    │
# │ 2   ┆ inf         ┆ (1, inf]   │
# └─────┴─────────────┴────────────┘

Parameters:

  • quantiles (Array)

    Either a list of quantile probabilities between 0 and 1 or a positive integer determining the number of bins with uniform probability.

  • labels (Array) (defaults to: nil)

    Names of the categories. The number of labels must be equal to the number of cut points plus one.

  • left_closed (Boolean) (defaults to: false)

    Set the intervals to be left-closed instead of right-closed.

  • allow_duplicates (Boolean) (defaults to: false)

    If set to true, duplicates in the resulting quantiles are dropped, rather than raising a DuplicateError. This can happen even with unique probabilities, depending on the data.

  • include_breaks (Boolean) (defaults to: false)

    Include a column with the right endpoint of the bin each observation falls in. This will change the data type of the output from a Categorical to a Struct.

Returns:



989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
# File 'lib/polars/series.rb', line 989

def qcut(quantiles, labels: nil, left_closed: false, allow_duplicates: false, include_breaks: false)
  result = (
    to_frame
    .select(
      Polars.col(name).qcut(
        quantiles,
        labels: labels,
        left_closed: left_closed,
        allow_duplicates: allow_duplicates,
        include_breaks: include_breaks
      )
    )
    .to_series
  )

  if include_breaks
    result = result.struct.rename_fields(["break_point", "category"])
  end

  result
end

#quantile(quantile, interpolation: "nearest") ⇒ Float?

Get the quantile value of this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.quantile(0.5)
# => 2.0

Parameters:

  • quantile (Float, nil)

    Quantile between 0.0 and 1.0.

  • interpolation ("nearest", "higher", "lower", "midpoint", "linear") (defaults to: "nearest")

    Interpolation method.

Returns:

  • (Float, nil)


832
833
834
# File 'lib/polars/series.rb', line 832

def quantile(quantile, interpolation: "nearest")
  _s.quantile(quantile, interpolation)
end

#rank(method: "average", reverse: false, seed: nil) ⇒ Series

Assign ranks to data, dealing with ties appropriately.

Examples:

The 'average' method:

s = Polars::Series.new("a", [3, 6, 1, 1, 6])
s.rank
# =>
# shape: (5,)
# Series: 'a' [f64]
# [
#         3.0
#         4.5
#         1.5
#         1.5
#         4.5
# ]

The 'ordinal' method:

s = Polars::Series.new("a", [3, 6, 1, 1, 6])
s.rank(method: "ordinal")
# =>
# shape: (5,)
# Series: 'a' [u32]
# [
#         3
#         4
#         1
#         2
#         5
# ]

Parameters:

  • method ("average", "min", "max", "dense", "ordinal", "random") (defaults to: "average")

    The method used to assign ranks to tied elements. The following methods are available (default is 'average'):

    • 'average' : The average of the ranks that would have been assigned to all the tied values is assigned to each value.
    • 'min' : The minimum of the ranks that would have been assigned to all the tied values is assigned to each value. (This is also referred to as "competition" ranking.)
    • 'max' : The maximum of the ranks that would have been assigned to all the tied values is assigned to each value.
    • 'dense' : Like 'min', but the rank of the next highest element is assigned the rank immediately after those assigned to the tied elements.
    • 'ordinal' : All values are given a distinct rank, corresponding to the order that the values occur in the Series.
    • 'random' : Like 'ordinal', but the rank for ties is not dependent on the order that the values occur in the Series.
  • reverse (Boolean) (defaults to: false)

    Reverse the operation.

  • seed (Integer) (defaults to: nil)

    If method: "random", use this as seed.

Returns:



3607
3608
3609
# File 'lib/polars/series.rb', line 3607

def rank(method: "average", reverse: false, seed: nil)
  super
end

#rechunk(in_place: false) ⇒ Series

Create a single chunk of memory for this Series.

Parameters:

  • in_place (Boolean) (defaults to: false)

    In place or not.

Returns:



2190
2191
2192
2193
# File 'lib/polars/series.rb', line 2190

def rechunk(in_place: false)
  opt_s = _s.rechunk(in_place)
  in_place ? self : Utils.wrap_s(opt_s)
end

#reinterpret(signed: true) ⇒ Series

Reinterpret the underlying bits as a signed/unsigned integer.

This operation is only allowed for 64bit integers. For lower bits integers, you can safely use that cast operation.

Parameters:

  • signed (Boolean) (defaults to: true)

    If true, reinterpret as :i64. Otherwise, reinterpret as :u64.

Returns:



3521
3522
3523
# File 'lib/polars/series.rb', line 3521

def reinterpret(signed: true)
  super
end

#rename(name, in_place: false) ⇒ Series

Rename this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.rename("b")

Parameters:

  • name (String)

    New name.

  • in_place (Boolean) (defaults to: false)

    Modify the Series in-place.

Returns:



1214
1215
1216
1217
1218
1219
1220
1221
# File 'lib/polars/series.rb', line 1214

def rename(name, in_place: false)
  if in_place
    _s.rename(name)
    self
  else
    self.alias(name)
  end
end

#replace(old, new = Expr::NO_DEFAULT, default: Expr::NO_DEFAULT, return_dtype: nil) ⇒ Series

Replace values by different values.

Examples:

Replace a single value by another value. Values that were not replaced remain unchanged.

s = Polars::Series.new([1, 2, 2, 3])
s.replace(2, 100)
# =>
# shape: (4,)
# Series: '' [i64]
# [
#         1
#         100
#         100
#         3
# ]

Replace multiple values by passing sequences to the old and new parameters.

s.replace([2, 3], [100, 200])
# =>
# shape: (4,)
# Series: '' [i64]
# [
#         1
#         100
#         100
#         200
# ]

Passing a mapping with replacements is also supported as syntactic sugar.

mapping = {2 => 100, 3 => 200}
s.replace(mapping)
# =>
# shape: (4,)
# Series: '' [i64]
# [
#         1
#         100
#         100
#         200
# ]

The original data type is preserved when replacing by values of a different data type.

s = Polars::Series.new(["x", "y", "z"])
mapping = {"x" => 1, "y" => 2, "z" => 3}
s.replace(mapping)
# =>
# shape: (3,)
# Series: '' [str]
# [
#         "1"
#         "2"
#         "3"
# ]

Parameters:

  • old (Object)

    Value or sequence of values to replace. Also accepts a mapping of values to their replacement.

  • new (Object) (defaults to: Expr::NO_DEFAULT)

    Value or sequence of values to replace by. Length must match the length of old or have length 1.

  • default (Object) (defaults to: Expr::NO_DEFAULT)

    Set values that were not replaced to this value. Defaults to keeping the original value. Accepts expression input. Non-expression inputs are parsed as literals.

  • return_dtype (Object) (defaults to: nil)

    The data type of the resulting Series. If set to nil (default), the data type is determined automatically based on the other inputs.

Returns:



3837
3838
3839
# File 'lib/polars/series.rb', line 3837

def replace(old, new = Expr::NO_DEFAULT, default: Expr::NO_DEFAULT, return_dtype: nil)
  super
end

#reshape(dims) ⇒ Series

Reshape this Series to a flat Series or a Series of Lists.

Parameters:

  • dims (Array)

    Tuple of the dimension sizes. If a -1 is used in any of the dimensions, that dimension is inferred.

Returns:



3848
3849
3850
# File 'lib/polars/series.rb', line 3848

def reshape(dims)
  super
end

#reverseSeries

Return Series in reverse order.

Examples:

s = Polars::Series.new("a", [1, 2, 3], dtype: :i8)
s.reverse
# =>
# shape: (3,)
# Series: 'a' [i8]
# [
#         3
#         2
#         1
# ]

Returns:



2210
2211
2212
# File 'lib/polars/series.rb', line 2210

def reverse
  super
end

#rleSeries

Get the lengths of runs of identical values.

Examples:

s = Polars::Series.new("s", [1, 1, 2, 1, nil, 1, 3, 3])
s.rle.struct.unnest
# =>
# shape: (6, 2)
# ┌─────┬───────┐
# │ len ┆ value │
# │ --- ┆ ---   │
# │ u32 ┆ i64   │
# ╞═════╪═══════╡
# │ 2   ┆ 1     │
# │ 1   ┆ 2     │
# │ 1   ┆ 1     │
# │ 1   ┆ null  │
# │ 1   ┆ 1     │
# │ 2   ┆ 3     │
# └─────┴───────┘

Returns:



1032
1033
1034
# File 'lib/polars/series.rb', line 1032

def rle
  super
end

#rle_idSeries

Map values to run IDs.

Similar to RLE, but it maps each value to an ID corresponding to the run into which it falls. This is especially useful when you want to define groups by runs of identical values rather than the values themselves.

Examples:

s = Polars::Series.new("s", [1, 1, 2, 1, nil, 1, 3, 3])
s.rle_id
# =>
# shape: (8,)
# Series: 's' [u32]
# [
#         0
#         0
#         1
#         2
#         3
#         4
#         5
#         5
# ]

Returns:



1060
1061
1062
# File 'lib/polars/series.rb', line 1060

def rle_id
  super
end

#rolling_max(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series

Apply a rolling max (moving max) over the values in this array.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the weight vector. The resulting values will be aggregated to their sum.

Examples:

s = Polars::Series.new("a", [100, 200, 300, 400, 500])
s.rolling_max(2)
# =>
# shape: (5,)
# Series: 'a' [i64]
# [
#         null
#         200
#         300
#         400
#         500
# ]

Parameters:

  • window_size (Integer)

    The length of the window.

  • weights (Array) (defaults to: nil)

    An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.

  • min_periods (Integer) (defaults to: nil)

    The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.

  • center (Boolean) (defaults to: false)

    Set the labels at the center of the window

Returns:



3060
3061
3062
3063
3064
3065
3066
3067
# File 'lib/polars/series.rb', line 3060

def rolling_max(
  window_size,
  weights: nil,
  min_periods: nil,
  center: false
)
  super
end

#rolling_mean(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series

Apply a rolling mean (moving mean) over the values in this array.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the weight vector. The resulting values will be aggregated to their sum.

Examples:

s = Polars::Series.new("a", [100, 200, 300, 400, 500])
s.rolling_mean(2)
# =>
# shape: (5,)
# Series: 'a' [f64]
# [
#         null
#         150.0
#         250.0
#         350.0
#         450.0
# ]

Parameters:

  • window_size (Integer)

    The length of the window.

  • weights (Array) (defaults to: nil)

    An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.

  • min_periods (Integer) (defaults to: nil)

    The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.

  • center (Boolean) (defaults to: false)

    Set the labels at the center of the window

Returns:



3101
3102
3103
3104
3105
3106
3107
3108
# File 'lib/polars/series.rb', line 3101

def rolling_mean(
  window_size,
  weights: nil,
  min_periods: nil,
  center: false
)
  super
end

#rolling_median(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series

Compute a rolling median.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, 4.0, 6.0, 8.0])
s.rolling_median(3)
# =>
# shape: (6,)
# Series: 'a' [f64]
# [
#         null
#         null
#         2.0
#         3.0
#         4.0
#         6.0
# ]

Parameters:

  • window_size (Integer)

    The length of the window.

  • weights (Array) (defaults to: nil)

    An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.

  • min_periods (Integer) (defaults to: nil)

    The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.

  • center (Boolean) (defaults to: false)

    Set the labels at the center of the window

Returns:



3269
3270
3271
3272
3273
3274
3275
3276
# File 'lib/polars/series.rb', line 3269

def rolling_median(
  window_size,
  weights: nil,
  min_periods: nil,
  center: false
)
  super
end

#rolling_min(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series

Apply a rolling min (moving min) over the values in this array.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the weight vector. The resulting values will be aggregated to their sum.

Examples:

s = Polars::Series.new("a", [100, 200, 300, 400, 500])
s.rolling_min(3)
# =>
# shape: (5,)
# Series: 'a' [i64]
# [
#         null
#         null
#         100
#         200
#         300
# ]

Parameters:

  • window_size (Integer)

    The length of the window.

  • weights (Array) (defaults to: nil)

    An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.

  • min_periods (Integer) (defaults to: nil)

    The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.

  • center (Boolean) (defaults to: false)

    Set the labels at the center of the window

Returns:



3019
3020
3021
3022
3023
3024
3025
3026
# File 'lib/polars/series.rb', line 3019

def rolling_min(
  window_size,
  weights: nil,
  min_periods: nil,
  center: false
)
  super
end

#rolling_quantile(quantile, interpolation: "nearest", window_size: 2, weights: nil, min_periods: nil, center: false) ⇒ Series

Compute a rolling quantile.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, 4.0, 6.0, 8.0])
s.rolling_quantile(0.33, window_size: 3)
# =>
# shape: (6,)
# Series: 'a' [f64]
# [
#         null
#         null
#         1.0
#         2.0
#         3.0
#         4.0
# ]
s.rolling_quantile(0.33, interpolation: "linear", window_size: 3)
# =>
# shape: (6,)
# Series: 'a' [f64]
# [
#         null
#         null
#         1.66
#         2.66
#         3.66
#         5.32
# ]

Parameters:

  • quantile (Float)

    Quantile between 0.0 and 1.0.

  • interpolation ("nearest", "higher", "lower", "midpoint", "linear") (defaults to: "nearest")

    Interpolation method.

  • window_size (Integer) (defaults to: 2)

    The length of the window.

  • weights (Array) (defaults to: nil)

    An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.

  • min_periods (Integer) (defaults to: nil)

    The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.

  • center (Boolean) (defaults to: false)

    Set the labels at the center of the window

Returns:



3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
# File 'lib/polars/series.rb', line 3325

def rolling_quantile(
  quantile,
  interpolation: "nearest",
  window_size: 2,
  weights: nil,
  min_periods: nil,
  center: false
)
  super
end

#rolling_skew(window_size, bias: true) ⇒ Series

Compute a rolling skew.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, 4.0, 6.0, 8.0])
s.rolling_skew(3)
# =>
# shape: (6,)
# Series: 'a' [f64]
# [
#         null
#         null
#         0.0
#         0.0
#         0.381802
#         0.0
# ]

Parameters:

  • window_size (Integer)

    Integer size of the rolling window.

  • bias (Boolean) (defaults to: true)

    If false, the calculations are corrected for statistical bias.

Returns:



3359
3360
3361
# File 'lib/polars/series.rb', line 3359

def rolling_skew(window_size, bias: true)
  super
end

#rolling_std(window_size, weights: nil, min_periods: nil, center: false, ddof: 1) ⇒ Series

Compute a rolling std dev.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the weight vector. The resulting values will be aggregated to their sum.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, 4.0, 6.0, 8.0])
s.rolling_std(3)
# =>
# shape: (6,)
# Series: 'a' [f64]
# [
#         null
#         null
#         1.0
#         1.0
#         1.527525
#         2.0
# ]

Parameters:

  • window_size (Integer)

    The length of the window.

  • weights (Array) (defaults to: nil)

    An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.

  • min_periods (Integer) (defaults to: nil)

    The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.

  • center (Boolean) (defaults to: false)

    Set the labels at the center of the window

Returns:



3184
3185
3186
3187
3188
3189
3190
3191
3192
# File 'lib/polars/series.rb', line 3184

def rolling_std(
  window_size,
  weights: nil,
  min_periods: nil,
  center: false,
  ddof: 1
)
  super
end

#rolling_sum(window_size, weights: nil, min_periods: nil, center: false) ⇒ Series

Apply a rolling sum (moving sum) over the values in this array.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the weight vector. The resulting values will be aggregated to their sum.

Examples:

s = Polars::Series.new("a", [1, 2, 3, 4, 5])
s.rolling_sum(2)
# =>
# shape: (5,)
# Series: 'a' [i64]
# [
#         null
#         3
#         5
#         7
#         9
# ]

Parameters:

  • window_size (Integer)

    The length of the window.

  • weights (Array) (defaults to: nil)

    An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.

  • min_periods (Integer) (defaults to: nil)

    The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.

  • center (Boolean) (defaults to: false)

    Set the labels at the center of the window

Returns:



3142
3143
3144
3145
3146
3147
3148
3149
# File 'lib/polars/series.rb', line 3142

def rolling_sum(
  window_size,
  weights: nil,
  min_periods: nil,
  center: false
)
  super
end

#rolling_var(window_size, weights: nil, min_periods: nil, center: false, ddof: 1) ⇒ Series

Compute a rolling variance.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the weight vector. The resulting values will be aggregated to their sum.

Examples:

s = Polars::Series.new("a", [1.0, 2.0, 3.0, 4.0, 6.0, 8.0])
s.rolling_var(3)
# =>
# shape: (6,)
# Series: 'a' [f64]
# [
#         null
#         null
#         1.0
#         1.0
#         2.333333
#         4.0
# ]

Parameters:

  • window_size (Integer)

    The length of the window.

  • weights (Array) (defaults to: nil)

    An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.

  • min_periods (Integer) (defaults to: nil)

    The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.

  • center (Boolean) (defaults to: false)

    Set the labels at the center of the window

Returns:



3227
3228
3229
3230
3231
3232
3233
3234
3235
# File 'lib/polars/series.rb', line 3227

def rolling_var(
  window_size,
  weights: nil,
  min_periods: nil,
  center: false,
  ddof: 1
)
  super
end

#round(decimals = 0) ⇒ Series

Round underlying floating point data by decimals digits.

Examples:

s = Polars::Series.new("a", [1.12345, 2.56789, 3.901234])
s.round(2)
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         1.12
#         2.57
#         3.9
# ]

Parameters:

  • decimals (Integer) (defaults to: 0)

    number of decimals to round by.

Returns:



2554
2555
2556
# File 'lib/polars/series.rb', line 2554

def round(decimals = 0)
  super
end

#sample(n: nil, frac: nil, with_replacement: false, shuffle: false, seed: nil) ⇒ Series

Sample from this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3, 4, 5])
s.sample(n: 2, seed: 0)
# =>
# shape: (2,)
# Series: 'a' [i64]
# [
#         5
#         3
# ]

Parameters:

  • n (Integer) (defaults to: nil)

    Number of items to return. Cannot be used with frac. Defaults to 1 if frac is None.

  • frac (Float) (defaults to: nil)

    Fraction of items to return. Cannot be used with n.

  • with_replacement (Boolean) (defaults to: false)

    Allow values to be sampled more than once.

  • shuffle (Boolean) (defaults to: false)

    Shuffle the order of sampled data points.

  • seed (Integer) (defaults to: nil)

    Seed for the random number generator. If set to None (default), a random seed is used.

Returns:



3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
# File 'lib/polars/series.rb', line 3390

def sample(
  n: nil,
  frac: nil,
  with_replacement: false,
  shuffle: false,
  seed: nil
)
  if !n.nil? && !frac.nil?
    raise ArgumentError, "cannot specify both `n` and `frac`"
  end

  if n.nil? && !frac.nil?
    return Utils.wrap_s(_s.sample_frac(frac, with_replacement, shuffle, seed))
  end

  if n.nil?
    n = 1
  end
  Utils.wrap_s(_s.sample_n(n, with_replacement, shuffle, seed))
end

#scatter(idx, value) ⇒ Series Also known as: set_at_idx

Set values at the index locations.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.set_at_idx(1, 10)
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         1
#         10
#         3
# ]

Parameters:

  • idx (Object)

    Integers representing the index locations.

  • value (Object)

    Replacement values.

Returns:



2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
# File 'lib/polars/series.rb', line 2375

def scatter(idx, value)
  if idx.is_a?(Integer)
    idx = [idx]
  end
  if idx.length == 0
    return self
  end

  idx = Series.new("", idx)
  if value.is_a?(Integer) || value.is_a?(Float) || Utils.bool?(value) || value.is_a?(::String) || value.nil?
    value = Series.new("", [value])

    # if we need to set more than a single value, we extend it
    if idx.length > 0
      value = value.extend_constant(value[0], idx.length - 1)
    end
  elsif !value.is_a?(Series)
    value = Series.new("", value)
  end
  _s.scatter(idx._s, value._s)
  self
end

#search_sorted(element, side: "any") ⇒ Integer

Find indices where elements should be inserted to maintain order.

Parameters:

  • element (Object)

    Expression or scalar value.

Returns:

  • (Integer)


1728
1729
1730
1731
1732
1733
1734
# File 'lib/polars/series.rb', line 1728

def search_sorted(element, side: "any")
  if element.is_a?(Integer) || element.is_a?(Float)
    return Polars.select(Polars.lit(self).search_sorted(element, side: side)).item
  end
  element = Series.new(element)
  Polars.select(Polars.lit(self).search_sorted(element, side: side)).to_series
end

#set(filter, value) ⇒ Series

Note:

Use of this function is frequently an anti-pattern, as it can block optimization (predicate pushdown, etc). Consider using Polars.when(predicate).then(value).otherwise(self) instead.

Set masked values.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.set(s == 2, 10)
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         1
#         10
#         3
# ]

Parameters:

  • filter (Series)

    Boolean mask.

  • value (Object)

    Value with which to replace the masked values.

Returns:



2351
2352
2353
# File 'lib/polars/series.rb', line 2351

def set(filter, value)
  Utils.wrap_s(_s.send("set_with_mask_#{DTYPE_TO_FFINAME.fetch(dtype.class)}", filter._s, value))
end

#set_sorted(reverse: false) ⇒ Series

Note:

This can lead to incorrect results if this Series is not sorted!! Use with care!

Flags the Series as sorted.

Enables downstream code to user fast paths for sorted arrays.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.set_sorted.max
# => 3

Parameters:

  • reverse (Boolean) (defaults to: false)

    If the Series order is reversed, e.g. descending.

Returns:



3965
3966
3967
# File 'lib/polars/series.rb', line 3965

def set_sorted(reverse: false)
  Utils.wrap_s(_s.set_sorted(reverse))
end

#shapeArray

Shape of this Series.

Returns:



126
127
128
# File 'lib/polars/series.rb', line 126

def shape
  [_s.len]
end

#shift(periods = 1) ⇒ Series

Shift the values by a given period.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.shift(1)
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         null
#         1
#         2
# ]
s.shift(-1)
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         2
#         3
#         null
# ]

Parameters:

  • periods (Integer) (defaults to: 1)

    Number of places to shift (may be negative).

Returns:



2927
2928
2929
# File 'lib/polars/series.rb', line 2927

def shift(periods = 1)
  super
end

#shift_and_fill(periods, fill_value) ⇒ Series

Shift the values by a given period and fill the resulting null values.

Parameters:

  • periods (Integer)

    Number of places to shift (may be negative).

  • fill_value (Object)

    Fill None values with the result of this expression.

Returns:



2939
2940
2941
# File 'lib/polars/series.rb', line 2939

def shift_and_fill(periods, fill_value)
  super
end

#shrink_dtypeSeries

Shrink numeric columns to the minimal required datatype.

Shrink to the dtype needed to fit the extrema of this Series. This can be used to reduce memory pressure.

Returns:



3982
3983
3984
# File 'lib/polars/series.rb', line 3982

def shrink_dtype
  super
end

#shrink_to_fit(in_place: false) ⇒ Series

Shrink Series memory usage.

Shrinks the underlying array capacity to exactly fit the actual data. (Note that this function does not change the Series data type).

Returns:



3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
# File 'lib/polars/series.rb', line 3471

def shrink_to_fit(in_place: false)
  if in_place
    _s.shrink_to_fit
    self
  else
    series = clone
    series._s.shrink_to_fit
    series
  end
end

#shuffle(seed: nil) ⇒ Series

Shuffle the contents of this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.shuffle(seed: 1)
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         2
#         1
#         3
# ]

Parameters:

  • seed (Integer, nil) (defaults to: nil)

    Seed for the random number generator.

Returns:



3870
3871
3872
# File 'lib/polars/series.rb', line 3870

def shuffle(seed: nil)
  super
end

#signSeries

Compute the element-wise indication of the sign.

Examples:

s = Polars::Series.new("a", [-9.0, -0.0, 0.0, 4.0, nil])
s.sign
# =>
# shape: (5,)
# Series: 'a' [f64]
# [
#         -1.0
#         -0.0
#         0.0
#         1.0
#         null
# ]

Returns:



2617
2618
2619
# File 'lib/polars/series.rb', line 2617

def sign
  super
end

#sinSeries

Compute the element-wise value for the sine.

Examples:

s = Polars::Series.new("a", [0.0, Math::PI / 2.0, Math::PI])
s.sin
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         0.0
#         1.0
#         1.2246e-16
# ]

Returns:



2636
2637
2638
# File 'lib/polars/series.rb', line 2636

def sin
  super
end

#sinhSeries

Compute the element-wise value for the hyperbolic sine.

Examples:

s = Polars::Series.new("a", [1.0, 0.0, -1.0])
s.sinh
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         1.175201
#         0.0
#         -1.175201
# ]

Returns:



2818
2819
2820
# File 'lib/polars/series.rb', line 2818

def sinh
  super
end

#skew(bias: true) ⇒ Float?

Compute the sample skewness of a data set.

For normally distributed data, the skewness should be about zero. For unimodal continuous distributions, a skewness value greater than zero means that there is more weight in the right tail of the distribution. The function skewtest can be used to determine if the skewness value is close enough to zero, statistically speaking.

Parameters:

  • bias (Boolean) (defaults to: true)

    If false, the calculations are corrected for statistical bias.

Returns:

  • (Float, nil)


3686
3687
3688
# File 'lib/polars/series.rb', line 3686

def skew(bias: true)
  _s.skew(bias)
end

#slice(offset, length = nil) ⇒ Series

Get a slice of this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3, 4])
s.slice(1, 2)
# =>
# shape: (2,)
# Series: 'a' [i64]
# [
#         2
#         3
# ]

Parameters:

  • offset (Integer)

    Start index. Negative indexing is supported.

  • length (Integer, nil) (defaults to: nil)

    Length of the slice. If set to nil, all rows starting at the offset will be selected.

Returns:



1404
1405
1406
# File 'lib/polars/series.rb', line 1404

def slice(offset, length = nil)
  self.class._from_rbseries(_s.slice(offset, length))
end

#sort(reverse: false, nulls_last: false, multithreaded: true, in_place: false) ⇒ Series

Sort this Series.

Examples:

s = Polars::Series.new("a", [1, 3, 4, 2])
s.sort
# =>
# shape: (4,)
# Series: 'a' [i64]
# [
#         1
#         2
#         3
#         4
# ]
s.sort(reverse: true)
# =>
# shape: (4,)
# Series: 'a' [i64]
# [
#         4
#         3
#         2
#         1
# ]

Parameters:

  • reverse (Boolean) (defaults to: false)

    Reverse sort.

  • in_place (Boolean) (defaults to: false)

    Sort in place.

Returns:



1586
1587
1588
1589
1590
1591
1592
1593
# File 'lib/polars/series.rb', line 1586

def sort(reverse: false, nulls_last: false, multithreaded: true, in_place: false)
  if in_place
    self._s = _s.sort(reverse, nulls_last, multithreaded)
    self
  else
    Utils.wrap_s(_s.sort(reverse, nulls_last, multithreaded))
  end
end

#sqrtSeries

Compute the square root of the elements.

Returns:



527
528
529
# File 'lib/polars/series.rb', line 527

def sqrt
  self**0.5
end

#std(ddof: 1) ⇒ Float?

Get the standard deviation of this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.std
# => 1.0

Parameters:

  • ddof (Integer) (defaults to: 1)

    “Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements.

Returns:

  • (Float, nil)


779
780
781
782
783
784
785
# File 'lib/polars/series.rb', line 779

def std(ddof: 1)
  if !is_numeric
    nil
  else
    to_frame.select(Polars.col(name).std(ddof: ddof)).to_series[0]
  end
end

#strStringNameSpace

Create an object namespace of all string related methods.

Returns:



4024
4025
4026
# File 'lib/polars/series.rb', line 4024

def str
  StringNameSpace.new(self)
end

#structStructNameSpace

Create an object namespace of all struct related methods.

Returns:



4031
4032
4033
# File 'lib/polars/series.rb', line 4031

def struct
  StructNameSpace.new(self)
end

#sumNumeric

Note:

Dtypes :i8, :u8, :i16, and :u16 are cast to :i64 before summing to prevent overflow issues.

Reduce this Series to the sum value.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.sum
# => 6

Returns:

  • (Numeric)


706
707
708
# File 'lib/polars/series.rb', line 706

def sum
  _s.sum
end

#tail(n = 10) ⇒ Series

Get the last n rows.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.tail(2)
# =>
# shape: (2,)
# Series: 'a' [i64]
# [
#         2
#         3
# ]

Parameters:

  • n (Integer) (defaults to: 10)

    Number of rows to return.

Returns:



1533
1534
1535
# File 'lib/polars/series.rb', line 1533

def tail(n = 10)
  to_frame.select(F.col(name).tail(n)).to_series
end

#take(indices) ⇒ Series

Take values by index.

Examples:

s = Polars::Series.new("a", [1, 2, 3, 4])
s.take([1, 3])
# =>
# shape: (2,)
# Series: 'a' [i64]
# [
#         2
#         4
# ]

Parameters:

  • indices (Array)

    Index location used for selection.

Returns:



1776
1777
1778
# File 'lib/polars/series.rb', line 1776

def take(indices)
  to_frame.select(Polars.col(name).take(indices)).to_series
end

#take_every(n) ⇒ Series

Take every nth value in the Series and return as new Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3, 4])
s.take_every(2)
# =>
# shape: (2,)
# Series: 'a' [i64]
# [
#         1
#         3
# ]

Returns:



1551
1552
1553
# File 'lib/polars/series.rb', line 1551

def take_every(n)
  super
end

#tanSeries

Compute the element-wise value for the tangent.

Examples:

s = Polars::Series.new("a", [0.0, Math::PI / 2.0, Math::PI])
s.tan
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         0.0
#         1.6331e16
#         -1.2246e-16
# ]

Returns:



2674
2675
2676
# File 'lib/polars/series.rb', line 2674

def tan
  super
end

#tanhSeries

Compute the element-wise value for the hyperbolic tangent.

Examples:

s = Polars::Series.new("a", [1.0, 0.0, -1.0])
s.tanh
# =>
# shape: (3,)
# Series: 'a' [f64]
# [
#         0.761594
#         0.0
#         -0.761594
# ]

Returns:



2856
2857
2858
# File 'lib/polars/series.rb', line 2856

def tanh
  super
end

#time_unitString

Get the time unit of underlying Datetime Series as "ns", "us", or "ms".

Returns:



133
134
135
# File 'lib/polars/series.rb', line 133

def time_unit
  _s.time_unit
end

#to_aArray

Convert this Series to a Ruby Array. This operation clones data.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.to_a
# => [1, 2, 3]

Returns:



2180
2181
2182
# File 'lib/polars/series.rb', line 2180

def to_a
  _s.to_a
end

#to_dummies(separator: "_", drop_first: false) ⇒ DataFrame

Get dummy variables.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.to_dummies
# =>
# shape: (3, 3)
# ┌─────┬─────┬─────┐
# │ a_1 ┆ a_2 ┆ a_3 │
# │ --- ┆ --- ┆ --- │
# │ u8  ┆ u8  ┆ u8  │
# ╞═════╪═════╪═════╡
# │ 1   ┆ 0   ┆ 0   │
# │ 0   ┆ 1   ┆ 0   │
# │ 0   ┆ 0   ┆ 1   │
# └─────┴─────┴─────┘

Returns:



854
855
856
# File 'lib/polars/series.rb', line 854

def to_dummies(separator: "_", drop_first: false)
  Utils.wrap_df(_s.to_dummies(separator, drop_first))
end

#to_frameDataFrame

Cast this Series to a DataFrame.

Returns:



608
609
610
# File 'lib/polars/series.rb', line 608

def to_frame
  Utils.wrap_df(RbDataFrame.new([_s]))
end

#to_numoNumo::NArray

Convert this Series to a Numo array. This operation clones data but is completely safe.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.to_numo
# =>
# Numo::Int64#shape=[3]
# [1, 2, 3]

Returns:

  • (Numo::NArray)


2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
# File 'lib/polars/series.rb', line 2296

def to_numo
  if !has_validity
    if is_datelike
      Numo::RObject.cast(to_a)
    elsif is_numeric
      # TODO make more efficient
      {
        UInt8 => Numo::UInt8,
        UInt16 => Numo::UInt16,
        UInt32 => Numo::UInt32,
        UInt64 => Numo::UInt64,
        Int8 => Numo::Int8,
        Int16 => Numo::Int16,
        Int32 => Numo::Int32,
        Int64 => Numo::Int64,
        Float32 => Numo::SFloat,
        Float64 => Numo::DFloat
      }.fetch(dtype.class).cast(to_a)
    elsif is_boolean
      Numo::Bit.cast(to_a)
    else
      _s.to_numo
    end
  elsif is_datelike
    Numo::RObject.cast(to_a)
  else
    _s.to_numo
  end
end

#to_physicalSeries

Cast to physical representation of the logical dtype.

  • :date -> :i32
  • :datetime -> :i64
  • :time -> :i64
  • :duration -> :i64
  • :cat -> :u32
  • other data types will be left unchanged.

Examples:

s = Polars::Series.new("values", ["a", nil, "x", "a"])
s.cast(:cat).to_physical
# =>
# shape: (4,)
# Series: 'values' [u32]
# [
#         0
#         null
#         1
#         0
# ]

Returns:



2168
2169
2170
# File 'lib/polars/series.rb', line 2168

def to_physical
  super
end

#to_sString Also known as: inspect

Returns a string representing the Series.

Returns:



140
141
142
# File 'lib/polars/series.rb', line 140

def to_s
  _s.to_s
end

#top_k(k: 5) ⇒ Boolean

Return the k largest elements.

Examples:

s = Polars::Series.new("a", [2, 5, 1, 4, 3])
s.top_k(k: 3)
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         5
#         4
#         3
# ]

Parameters:

  • k (Integer) (defaults to: 5)

    Number of elements to return.

Returns:



1613
1614
1615
# File 'lib/polars/series.rb', line 1613

def top_k(k: 5)
  super
end

#unique(maintain_order: false) ⇒ Series Also known as: uniq

Get unique elements in series.

Examples:

s = Polars::Series.new("a", [1, 2, 2, 3])
s.unique.sort
# =>
# shape: (3,)
# Series: 'a' [i64]
# [
#         1
#         2
#         3
# ]

Parameters:

  • maintain_order (Boolean) (defaults to: false)

    Maintain order of data. This requires more work.

Returns:



1754
1755
1756
# File 'lib/polars/series.rb', line 1754

def unique(maintain_order: false)
  super
end

#unique_countsSeries

Return a count of the unique values in the order of appearance.

Examples:

s = Polars::Series.new("id", ["a", "b", "b", "c", "c", "c"])
s.unique_counts
# =>
# shape: (3,)
# Series: 'id' [u32]
# [
#         1
#         2
#         3
# ]

Returns:



1120
1121
1122
# File 'lib/polars/series.rb', line 1120

def unique_counts
  super
end

#value_counts(sort: false, parallel: false, name: nil, normalize: false) ⇒ DataFrame

Count the unique values in a Series.

Examples:

s = Polars::Series.new("a", [1, 2, 2, 3])
s.value_counts.sort("a")
# =>
# shape: (3, 2)
# ┌─────┬────────┐
# │ a   ┆ counts │
# │ --- ┆ ---    │
# │ i64 ┆ u32    │
# ╞═════╪════════╡
# │ 1   ┆ 1      │
# │ 2   ┆ 2      │
# │ 3   ┆ 1      │
# └─────┴────────┘

Parameters:

  • sort (Boolean) (defaults to: false)

    Ensure the output is sorted from most values to least.

Returns:



1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
# File 'lib/polars/series.rb', line 1085

def value_counts(
  sort: false,
  parallel: false,
  name: nil,
  normalize: false
)
  if name.nil?
    if normalize
      name = "proportion"
    else
      name = "count"
    end
  end
  DataFrame._from_rbdf(
    self._s.value_counts(
      sort, parallel, name, normalize
    )
  )
end

#var(ddof: 1) ⇒ Float?

Get variance of this Series.

Examples:

s = Polars::Series.new("a", [1, 2, 3])
s.var
# => 1.0

Parameters:

  • ddof (Integer) (defaults to: 1)

    “Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements.

Returns:

  • (Float, nil)


799
800
801
802
803
804
805
# File 'lib/polars/series.rb', line 799

def var(ddof: 1)
  if !is_numeric
    nil
  else
    to_frame.select(Polars.col(name).var(ddof: ddof)).to_series[0]
  end
end

#zip_with(mask, other) ⇒ Series

Take values from self or other based on the given mask.

Where mask evaluates true, take values from self. Where mask evaluates false, take values from other.

Examples:

s1 = Polars::Series.new([1, 2, 3, 4, 5])
s2 = Polars::Series.new([5, 4, 3, 2, 1])
s1.zip_with(s1 < s2, s2)
# =>
# shape: (5,)
# Series: '' [i64]
# [
#         1
#         2
#         3
#         2
#         1
# ]
mask = Polars::Series.new([true, false, true, false, true])
s1.zip_with(mask, s2)
# =>
# shape: (5,)
# Series: '' [i64]
# [
#         1
#         4
#         3
#         2
#         5
# ]

Parameters:

  • mask (Series)

    Boolean Series.

  • other (Series)

    Series of same type.

Returns:



2983
2984
2985
# File 'lib/polars/series.rb', line 2983

def zip_with(mask, other)
  Utils.wrap_s(_s.zip_with(mask._s, other._s))
end

#|(other) ⇒ Series

Bitwise OR.

Returns:



158
159
160
161
162
163
# File 'lib/polars/series.rb', line 158

def |(other)
  if !other.is_a?(Series)
    other = Series.new([other])
  end
  Utils.wrap_s(_s.bitor(other._s))
end