Class: OpenCV::CvSVM
- Inherits:
-
Object
- Object
- OpenCV::CvSVM
- Extended by:
- FFI::DataConverter
- Defined in:
- lib/ruby/ropencv/ropencv_types.rb
Constants collapse
- C_SVC =
100
- NU_SVC =
101
- ONE_CLASS =
102
- EPS_SVR =
103
- NU_SVR =
104
- LINEAR =
0
- POLY =
1
- RBF =
2
- SIGMOID =
3
- C =
0
- GAMMA =
1
- P =
2
- NU =
3
- COEF =
4
- DEGREE =
5
Instance Attribute Summary collapse
- #__obj_ptr__ ⇒ Object readonly private
Class Method Summary collapse
-
.from_native(ptr, context) ⇒ Object
private
can be overwritten by the user.
- .new(*args) ⇒ Object
- .rbind_from_native(ptr, context) ⇒ Object private
- .rbind_to_native(obj, context) ⇒ Object private
-
.to_native(obj, context) ⇒ Object
private
can be overwritten by the user.
Instance Method Summary collapse
-
#__owner__? ⇒ Boolean
private
returns true if the underlying pointer is owner of the real object.
-
#clear ⇒ Object
wrapper for void CvSVM::clear().
-
#get_support_vector_count ⇒ Object
wrapper for int CvSVM::get_support_vector_count().
-
#get_var_count ⇒ Object
wrapper for int CvSVM::get_var_count().
-
#initialize(ptr) ⇒ CvSVM
constructor
private
A new instance of CvSVM.
-
#load(filename, name = 0) ⇒ Object
wrapper for void CvSVM::load(c_string filename, c_string name=0).
-
#predict(sample, return_d_f_val = false) ⇒ Object
wrapper for float CvSVM::predict(const cv::Mat sample, bool returnDFVal=false).
-
#predict_all(samples, results) ⇒ Object
wrapper for void CvSVM::predict(const cv::Mat samples, cv::Mat results).
-
#save(filename, name = 0) ⇒ Object
wrapper for void CvSVM::save(c_string filename, c_string name=0).
-
#train(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), params = CvSVMParams.new()) ⇒ Object
methods wrapper for bool CvSVM::train(const cv::Mat trainData, const cv::Mat responses, const cv::Mat varIdx=cv::Mat(), const cv::Mat sampleIdx=cv::Mat(), const CvSVMParams params=CvSVMParams()).
-
#train_auto(train_data, responses, var_idx, sample_idx, params, k_fold = 10, cgrid = CvSVM.new(CvSVM::C), gamma_grid = CvSVM.new(CvSVM::GAMMA), p_grid = CvSVM.new(CvSVM::P), nu_grid = CvSVM.new(CvSVM::NU), coeff_grid = CvSVM.new(CvSVM::COEF), degree_grid = CvSVM.new(CvSVM::DEGREE), balanced = false) ⇒ Object
wrapper for bool CvSVM::train_auto(const cv::Mat trainData, const cv::Mat responses, const cv::Mat varIdx, const cv::Mat sampleIdx, const CvSVMParams params, int k_fold=10, const CvParamGrid Cgrid=CvSVM::get_default_grid(CvSVM::C), const CvParamGrid gammaGrid=CvSVM::get_default_grid(CvSVM::GAMMA), const CvParamGrid pGrid=CvSVM::get_default_grid(CvSVM::P), const CvParamGrid nuGrid=CvSVM::get_default_grid(CvSVM::NU), const CvParamGrid coeffGrid=CvSVM::get_default_grid(CvSVM::COEF), const CvParamGrid degreeGrid=CvSVM::get_default_grid(CvSVM::DEGREE), bool balanced=false).
Constructor Details
#initialize(ptr) ⇒ CvSVM
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
Returns a new instance of CvSVM.
20247 20248 20249 20250 20251 20252 20253 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20247 def initialize(ptr) @__obj_ptr__ = if ptr.is_a? CvSVMStruct ptr else CvSVMStruct.new(FFI::AutoPointer.new(ptr,CvSVMStruct.method(:release))) end end |
Instance Attribute Details
#__obj_ptr__ ⇒ Object (readonly)
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
20244 20245 20246 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20244 def __obj_ptr__ @__obj_ptr__ end |
Class Method Details
.from_native(ptr, context) ⇒ Object
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
can be overwritten by the user
20239 20240 20241 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20239 def self.from_native(ptr,context) rbind_from_native(ptr,context) end |
.new(*args) ⇒ Object
20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20183 def self.new(*args) if args.first.is_a?(FFI::Pointer) || args.first.is_a?(CvSVMStruct) raise ArgumentError, "too many arguments for creating #{self.name} from Pointer" unless args.size == 1 return super(args.first) end # wrapper for CvSVM::CvSVM() @@cvsvm_cvsvm_defaults0 ||= [] if(args.size >= 0 && args.size <= 0) args.size.upto(-1) do |i| args[i] = @@cvsvm_cvsvm_defaults0[i] end begin return Rbind::cvsvm_cvsvm(*args) rescue TypeError => e @error = e end end # wrapper for CvSVM::CvSVM(const cv::Mat trainData, const cv::Mat responses, const cv::Mat varIdx=cv::Mat(), const cv::Mat sampleIdx=cv::Mat(), const CvSVMParams params=CvSVMParams()) @@cvsvm_cvsvm2_defaults1 ||= [nil, nil, Cv::Mat.new(), Cv::Mat.new(), CvSVMParams.new()] if(args.size >= 2 && args.size <= 5) args.size.upto(4) do |i| args[i] = @@cvsvm_cvsvm2_defaults1[i] end begin return Rbind::cvsvm_cvsvm2(*args) rescue TypeError => e @error = e end end raise ArgumentError, "no constructor for #{self}(#{args.inspect})" end |
.rbind_from_native(ptr, context) ⇒ Object
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
20227 20228 20229 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20227 def self.rbind_from_native(ptr,context) CvSVM.new(ptr) end |
.rbind_to_native(obj, context) ⇒ Object
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
20218 20219 20220 20221 20222 20223 20224 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20218 def self.rbind_to_native(obj,context) if obj.is_a? CvSVM obj.__obj_ptr__ else raise TypeError, "expected kind of #{name}, was #{obj.class}" end end |
.to_native(obj, context) ⇒ Object
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
can be overwritten by the user
20233 20234 20235 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20233 def self.to_native(obj,context) rbind_to_native(obj,context) end |
Instance Method Details
#__owner__? ⇒ Boolean
This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.
returns true if the underlying pointer is owner of the real object
20258 20259 20260 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20258 def __owner__? @__obj_ptr__[:bowner] end |
#clear ⇒ Object
wrapper for void CvSVM::clear()
20312 20313 20314 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20312 def clear() Rbind::cvsvm_clear( self) end |
#get_support_vector_count ⇒ Object
wrapper for int CvSVM::get_support_vector_count()
20307 20308 20309 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20307 def get_support_vector_count() Rbind::cvsvm_get_support_vector_count( self) end |
#get_var_count ⇒ Object
wrapper for int CvSVM::get_var_count()
20317 20318 20319 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20317 def get_var_count() Rbind::cvsvm_get_var_count( self) end |
#load(filename, name = 0) ⇒ Object
wrapper for void CvSVM::load(c_string filename, c_string name=0)
20327 20328 20329 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20327 def load(filename, name = 0) Rbind::cvsvm_load( self, filename, name) end |
#predict(sample, return_d_f_val = false) ⇒ Object
wrapper for float CvSVM::predict(const cv::Mat sample, bool returnDFVal=false)
20297 20298 20299 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20297 def predict(sample, return_d_f_val = false) Rbind::cvsvm_predict( self, sample, return_d_f_val) end |
#predict_all(samples, results) ⇒ Object
wrapper for void CvSVM::predict(const cv::Mat samples, cv::Mat results)
20302 20303 20304 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20302 def predict_all(samples, results) Rbind::cvsvm_predict_all( self, samples, results) end |
#save(filename, name = 0) ⇒ Object
wrapper for void CvSVM::save(c_string filename, c_string name=0)
20322 20323 20324 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20322 def save(filename, name = 0) Rbind::cvsvm_save( self, filename, name) end |
#train(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), params = CvSVMParams.new()) ⇒ Object
methods wrapper for bool CvSVM::train(const cv::Mat trainData, const cv::Mat responses, const cv::Mat varIdx=cv::Mat(), const cv::Mat sampleIdx=cv::Mat(), const CvSVMParams params=CvSVMParams())
20287 20288 20289 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20287 def train(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), params = CvSVMParams.new()) Rbind::cvsvm_train( self, train_data, responses, var_idx, sample_idx, params) end |
#train_auto(train_data, responses, var_idx, sample_idx, params, k_fold = 10, cgrid = CvSVM.new(CvSVM::C), gamma_grid = CvSVM.new(CvSVM::GAMMA), p_grid = CvSVM.new(CvSVM::P), nu_grid = CvSVM.new(CvSVM::NU), coeff_grid = CvSVM.new(CvSVM::COEF), degree_grid = CvSVM.new(CvSVM::DEGREE), balanced = false) ⇒ Object
wrapper for bool CvSVM::train_auto(const cv::Mat trainData, const cv::Mat responses, const cv::Mat varIdx, const cv::Mat sampleIdx, const CvSVMParams params, int k_fold=10, const CvParamGrid Cgrid=CvSVM::get_default_grid(CvSVM::C), const CvParamGrid gammaGrid=CvSVM::get_default_grid(CvSVM::GAMMA), const CvParamGrid pGrid=CvSVM::get_default_grid(CvSVM::P), const CvParamGrid nuGrid=CvSVM::get_default_grid(CvSVM::NU), const CvParamGrid coeffGrid=CvSVM::get_default_grid(CvSVM::COEF), const CvParamGrid degreeGrid=CvSVM::get_default_grid(CvSVM::DEGREE), bool balanced=false)
20292 20293 20294 |
# File 'lib/ruby/ropencv/ropencv_types.rb', line 20292 def train_auto(train_data, responses, var_idx, sample_idx, params, k_fold = 10, cgrid = CvSVM.new(CvSVM::C), gamma_grid = CvSVM.new(CvSVM::GAMMA), p_grid = CvSVM.new(CvSVM::P), nu_grid = CvSVM.new(CvSVM::NU), coeff_grid = CvSVM.new(CvSVM::COEF), degree_grid = CvSVM.new(CvSVM::DEGREE), balanced = false) Rbind::cvsvm_train_auto( self, train_data, responses, var_idx, sample_idx, params, k_fold, cgrid, gamma_grid, p_grid, nu_grid, coeff_grid, degree_grid, balanced) end |