Class: Daru::Vector

Inherits:
Object
  • Object
show all
Includes:
Statsample::TimeSeries::Pacf
Defined in:
lib/statsample-timeseries/daru_monkeys.rb

Direct Known Subclasses

Statsample::TimeSeries::Series

Instance Method Summary collapse

Methods included from Statsample::TimeSeries::Pacf

diag, levinson_durbin, pacf_yw, solve_matrix, toeplitz, yule_walker

Instance Method Details

#ar(n = 1500, k = 1) ⇒ Object

Autoregressive estimation

Generates AR(k) series for the calling timeseries by yule walker.

Parameters

  • n: integer, (default = 1500) number of observations for AR.

  • k: integer, (default = 1) order of AR process.

Returns

Array constituting estimated AR series.



59
60
61
62
63
# File 'lib/statsample-timeseries/daru_monkeys.rb', line 59

def ar(n = 1500, k = 1)
  series = Statsample::TimeSeries.arima
  #series = Statsample::TimeSeries::ARIMA.new
  series.yule_walker(self, n, k)
end

#pacf(max_lags = nil, method = :yw) ⇒ Object

Partial Autocorrelation

Generates partial autocorrelation series for a timeseries

Arguments

  • max_lags: integer, optional - provide number of lags

  • method: string. Default: ‘yw’.

    * *yw*: For yule-walker algorithm unbiased approach
    * *mle*: For Maximum likelihood algorithm approach
    * *ld*: Forr Levinson-Durbin recursive approach
    

Returns

array of pacf



34
35
36
37
38
39
40
41
42
43
44
45
46
# File 'lib/statsample-timeseries/daru_monkeys.rb', line 34

def pacf(max_lags = nil, method = :yw)
  helper = Statsample::TimeSeries::Pacf
  method = method.downcase.to_sym
  max_lags ||= (10 * Math.log10(size)).to_i
  if method == :yw or method == :mle
    helper.pacf_yw(self, max_lags, method.to_s)
  elsif method == :ld
    series = self.acvf
    helper.levinson_durbin(series, max_lags, true)[2]
  else
    raise "Method presents for pacf are 'yw', 'mle' or 'ld'"
  end
end