Module: Statsample::TimeSeries::Pacf
- Included in:
- Daru::Vector
- Defined in:
- lib/statsample-timeseries/timeseries/pacf.rb
Class Method Summary collapse
-
.diag(mat) ⇒ Object
Returns diagonal elements of matrices.
-
.levinson_durbin(series, nlags = 10, is_acovf = false) ⇒ Object
Levinson-Durbin Algorithm ==Parameters * series: timeseries, or a series of autocovariances * nlags: integer(default: 10): largest lag to include in recursion or order of the AR process * is_acovf: boolean(default: false): series is timeseries if it is false, else contains autocavariances.
- .pacf_yw(timeseries, max_lags, method = 'yw') ⇒ Object
-
.solve_matrix(matrix, out_vector) ⇒ Object
Solves matrix equations.
-
.toeplitz(arr) ⇒ Object
ToEplitz.
-
.yule_walker(ts, k = 1, method = 'yw') ⇒ Object
Yule Walker Algorithm.
Class Method Details
.diag(mat) ⇒ Object
Returns diagonal elements of matrices
63 64 65 |
# File 'lib/statsample-timeseries/timeseries/pacf.rb', line 63 def diag(mat) return mat.each_with_index(:diagonal).map { |x, r, c| x } end |
.levinson_durbin(series, nlags = 10, is_acovf = false) ⇒ Object
Levinson-Durbin Algorithm
Parameters
-
series: timeseries, or a series of autocovariances
-
nlags: integer(default: 10): largest lag to include in recursion or order of the AR process
-
is_acovf: boolean(default: false): series is timeseries if it is false, else contains autocavariances
Returns:
-
sigma_v: estimate of the error variance
-
arcoefs: AR coefficients
-
pacf: pacf function
-
sigma: some function
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/statsample-timeseries/timeseries/pacf.rb', line 28 def levinson_durbin(series, nlags = 10, is_acovf = false) if is_acovf series = series.map(&:to_f) else #nlags = order(k) of AR in this case series = series.acvf.map(&:to_f)[0..nlags] end #phi = Array.new((nlags+1), 0.0) { Array.new(nlags+1, 0.0) } order = nlags phi = Matrix.zero(nlags + 1) sig = Array.new(nlags+1) #setting initial point for recursion: phi[1,1] = series[1]/series[0] #phi[1][1] = series[1]/series[0] sig[1] = series[0] - phi[1, 1] * series[1] 2.upto(order).each do |k| phi[k, k] = (series[k] - (Statsample::Vector.new(phi[1...k, k-1]) * series[1...k].reverse.to_ts).sum) / sig[k-1] #some serious refinement needed in above for matrix manipulation. Will do today 1.upto(k-1).each do |j| phi[j, k] = phi[j, k-1] - phi[k, k] * phi[k-j, k-1] end sig[k] = sig[k-1] * (1-phi[k, k] ** 2) end sigma_v = sig[-1] arcoefs_delta = phi.column(phi.column_size - 1) arcoefs = arcoefs_delta[1..arcoefs_delta.size] pacf = diag(phi) pacf[0] = 1.0 return [sigma_v, arcoefs, pacf, sig, phi] end |
.pacf_yw(timeseries, max_lags, method = 'yw') ⇒ Object
5 6 7 8 9 10 11 12 13 14 |
# File 'lib/statsample-timeseries/timeseries/pacf.rb', line 5 def pacf_yw(timeseries, max_lags, method = 'yw') #partial autocorrelation by yule walker equations. #Inspiration: StatsModels pacf = [1.0] arr = timeseries.to_a (1..max_lags).map do |i| pacf << yule_walker(arr, i, method)[0][-1] end pacf end |
.solve_matrix(matrix, out_vector) ⇒ Object
Solves matrix equations
Solves for X in AX = B
158 159 160 161 162 163 164 165 166 167 168 169 |
# File 'lib/statsample-timeseries/timeseries/pacf.rb', line 158 def solve_matrix(matrix, out_vector) solution_vector = Array.new(out_vector.size, 0) matrix = matrix.to_a k = 0 matrix.each do |row| row.each_with_index do |element, i| solution_vector[k] += element * 1.0 * out_vector[i] end k += 1 end solution_vector end |
.toeplitz(arr) ⇒ Object
ToEplitz
Generates teoeplitz matrix from an array en.wikipedia.org/wiki/Toeplitz_matrix. Toeplitz matrix are equal when they are stored in row & column major
Parameters
-
arr: array of integers;
Usage
arr = [0,1,2,3]
Pacf.toeplitz(arr)
#=> [[0, 1, 2, 3],
#=> [1, 0, 1, 2],
#=> [2, 1, 0, 1],
#=> [3, 2, 1, 0]]
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# File 'lib/statsample-timeseries/timeseries/pacf.rb', line 135 def toeplitz(arr) eplitz_matrix = Array.new(arr.size) { Array.new(arr.size) } 0.upto(arr.size - 1) do |i| j = 0 index = i while i >= 0 do eplitz_matrix[index][j] = arr[i] j += 1 i -= 1 end i = index + 1; k = 1 while i < arr.size do eplitz_matrix[index][j] = arr[k] i += 1; j += 1; k += 1 end end eplitz_matrix end |
.yule_walker(ts, k = 1, method = 'yw') ⇒ Object
Yule Walker Algorithm
From the series, estimates AR(p)(autoregressive) parameter using Yule-Waler equation. See - en.wikipedia.org/wiki/Autoregressive_moving_average_model
Parameters
-
ts: timeseries
-
k: order, default = 1
-
method: can be ‘yw’ or ‘mle’. If ‘yw’ then it is unbiased, denominator is (n - k)
Returns
-
rho: autoregressive coefficients
-
sigma: sigma parameter
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'lib/statsample-timeseries/timeseries/pacf.rb', line 84 def yule_walker(ts, k = 1, method='yw') n = ts.size mean = (ts.inject(:+) / n) ts = ts.map { |t| t - mean } if method == 'yw' #unbiased => denominator = (n - k) denom =->(k) { n - k } else #mle #denominator => (n) denom =->(k) { n } end r = Array.new(k + 1) { 0.0 } r[0] = ts.map { |x| x**2 }.inject(:+).to_f / denom.call(0).to_f 1.upto(k) do |l| r[l] = (ts[0...-l].zip(ts[l...n])).map do |x| x.inject(:*) end.inject(:+).to_f / denom.call(l).to_f end r_R = toeplitz(r[0...-1]) mat = Matrix.columns(r_R).inverse phi = solve_matrix(mat, r[1..r.size]) phi_vector = phi r_vector = r[1..-1] sigma = r[0] - (r_vector.map.with_index {|e,i| e*phi_vector[i] }).inject(:+) return [phi, sigma] end |