Class: Statsample::Reliability::ScaleAnalysis
- Includes:
- Summarizable
- Defined in:
- lib/statsample/reliability/scaleanalysis.rb
Overview
Analysis of a Scale. Analoge of Scale Reliability analysis on SPSS. Returns several statistics for complete scale and each item
Usage
@x1 = Daru::Vector.new([1,1,1,1,2,2,2,2,3,3,3,30])
@x2 = Daru::Vector.new([1,1,1,2,2,3,3,3,3,4,4,50])
@x3 = Daru::Vector.new([2,2,1,1,1,2,2,2,3,4,5,40])
@x4 = Daru::Vector.new([1,2,3,4,4,4,4,3,4,4,5,30])
ds = Daru::DataFrame.new({:x1 => @x1,:x2 => @x2,:x3 => @x3,:x4 => @x4})
ia = Statsample::Reliability::ScaleAnalysis.new(ds)
puts ia.summary
Instance Attribute Summary collapse
-
#alpha ⇒ Object
readonly
Returns the value of attribute alpha.
-
#alpha_standarized ⇒ Object
readonly
Returns the value of attribute alpha_standarized.
-
#cov_m ⇒ Object
readonly
Returns the value of attribute cov_m.
-
#covariances_mean ⇒ Object
readonly
Returns the value of attribute covariances_mean.
-
#ds ⇒ Object
readonly
Returns the value of attribute ds.
-
#mean ⇒ Object
readonly
Returns the value of attribute mean.
-
#name ⇒ Object
Returns the value of attribute name.
-
#sd ⇒ Object
readonly
Returns the value of attribute sd.
-
#summary_histogram ⇒ Object
Returns the value of attribute summary_histogram.
-
#valid_n ⇒ Object
readonly
Returns the value of attribute valid_n.
-
#variances_mean ⇒ Object
readonly
Returns the value of attribute variances_mean.
Instance Method Summary collapse
-
#initialize(ds, opts = Hash.new) ⇒ ScaleAnalysis
constructor
A new instance of ScaleAnalysis.
-
#item_characteristic_curve ⇒ Object
Returns a hash with structure.
-
#item_difficulty_analysis ⇒ Object
Returns a dataset with cases ordered by score and variables ordered by difficulty.
- #item_statistics ⇒ Object
-
#item_total_correlation ⇒ Object
Adjusted R.P.B.
- #mean_rpb ⇒ Object
-
#report_building(builder) ⇒ Object
:nodoc:.
- #stats_if_deleted ⇒ Object
-
#stats_if_deleted_intern ⇒ Object
:nodoc:.
Methods included from Summarizable
Constructor Details
#initialize(ds, opts = Hash.new) ⇒ ScaleAnalysis
Returns a new instance of ScaleAnalysis.
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 18 def initialize(ds, opts=Hash.new) @dumped=ds.vectors.to_a.find_all {|f| ds[f].variance == 0 } @ods = ds @ds = ds.reject_values(*Daru::MISSING_VALUES).dup(ds.vectors.to_a - @dumped) @ds.rename ds.name @k = @ds.ncols @total = @ds.vector_sum @o_total=@dumped.size > 0 ? @ods.vector_sum : nil @vector_mean = @ds.vector_mean @item_mean = @vector_mean.mean @item_sd = @vector_mean.sd @mean = @total.mean @median = @total.median @skew = @total.skew @kurtosis = @total.kurtosis @sd = @total.sd @variance = @total.variance @valid_n = @total.size opts_default = { :name => _("Reliability Analysis"), :summary_histogram => true } @opts = opts_default.merge(opts) @opts.each{ |k,v| self.send("#{k}=",v) if self.respond_to? k } @cov_m=Statsample::Bivariate.covariance_matrix(@ds) # Mean for covariances and variances @variances = Daru::Vector.new(@k.times.map { |i| @cov_m[i,i] }) @variances_mean=@variances.mean @covariances_mean=(@variance-@variances.sum).quo(@k**2-@k) #begin @alpha = Statsample::Reliability.cronbach_alpha(@ds) @alpha_standarized = Statsample::Reliability.cronbach_alpha_standarized(@ds) #rescue => e # raise DatasetException.new(@ds,e), "Error calculating alpha" #end end |
Instance Attribute Details
#alpha ⇒ Object (readonly)
Returns the value of attribute alpha.
15 16 17 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 15 def alpha @alpha end |
#alpha_standarized ⇒ Object (readonly)
Returns the value of attribute alpha_standarized.
15 16 17 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 15 def alpha_standarized @alpha_standarized end |
#cov_m ⇒ Object (readonly)
Returns the value of attribute cov_m.
15 16 17 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 15 def cov_m @cov_m end |
#covariances_mean ⇒ Object (readonly)
Returns the value of attribute covariances_mean.
15 16 17 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 15 def covariances_mean @covariances_mean end |
#ds ⇒ Object (readonly)
Returns the value of attribute ds.
15 16 17 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 15 def ds @ds end |
#mean ⇒ Object (readonly)
Returns the value of attribute mean.
15 16 17 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 15 def mean @mean end |
#name ⇒ Object
Returns the value of attribute name.
16 17 18 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 16 def name @name end |
#sd ⇒ Object (readonly)
Returns the value of attribute sd.
15 16 17 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 15 def sd @sd end |
#summary_histogram ⇒ Object
Returns the value of attribute summary_histogram.
17 18 19 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 17 def summary_histogram @summary_histogram end |
#valid_n ⇒ Object (readonly)
Returns the value of attribute valid_n.
15 16 17 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 15 def valid_n @valid_n end |
#variances_mean ⇒ Object (readonly)
Returns the value of attribute variances_mean.
15 16 17 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 15 def variances_mean @variances_mean end |
Instance Method Details
#item_characteristic_curve ⇒ Object
Returns a hash with structure
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 63 def item_characteristic_curve i=0 out={} total={} @ds.each do |row| tot=@total[i] @ds.vectors.each do |f| out[f]||= {} total[f]||={} out[f][tot]||= 0 total[f][tot]||=0 out[f][tot]+= row[f] total[f][tot]+=1 end i+=1 end total.each do |f,var| var.each do |tot,v| out[f][tot]=out[f][tot].quo(total[f][tot]) end end out end |
#item_difficulty_analysis ⇒ Object
Returns a dataset with cases ordered by score and variables ordered by difficulty
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 109 def item_difficulty_analysis dif={} @ds.vectors.each{|f| dif[f]=@ds[f].mean } dif_sort = dif.sort { |a,b| -(a[1]<=>b[1]) } scores_sort={} scores=@ds.vector_mean scores.each_index{ |i| scores_sort[i]=scores[i] } scores_sort=scores_sort.sort{|a,b| a[1]<=>b[1]} ds_new = Daru::DataFrame.new({}, order: ([:case,:score] + dif_sort.collect{|a,b| a.to_sym})) scores_sort.each do |i,score| row = [i, score] case_row = @ds.row[i].to_h dif_sort.each{ |variable,dif_value| row.push(case_row[variable]) } ds_new.add_row(row) end ds_new end |
#item_statistics ⇒ Object
100 101 102 103 104 105 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 100 def item_statistics @is||=@ds.vectors.to_a.inject({}) do |a,v| a[v]={:mean=>@ds[v].mean, :sds=>Math::sqrt(@cov_m.variance(v))} a end end |
#item_total_correlation ⇒ Object
Adjusted R.P.B. for each item
Adjusted RPB(Point biserial-correlation) for each item
89 90 91 92 93 94 95 96 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 89 def item_total_correlation vecs = @ds.vectors.to_a @itc ||= vecs.inject({}) do |a,v| total=@ds.vector_sum(vecs - [v]) a[v]=Statsample::Bivariate.pearson(@ds[v],total) a end end |
#mean_rpb ⇒ Object
97 98 99 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 97 def mean_rpb Daru::Vector.new(item_total_correlation.values).mean end |
#report_building(builder) ⇒ Object
:nodoc:
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 149 def report_building(builder) #:nodoc: builder.section(:name=>@name) do |s| if @dumped.size>0 s.section(:name=>"Items with variance=0") do |s1| s.table(:name=>_("Summary for %s with all items") % @name) do |t| t.row [_("Items"), @ods.ncols] t.row [_("Sum mean"), "%0.4f" % @o_total.mean] t.row [_("S.d. mean"), "%0.4f" % @o_total.sd] end s.table(:name=>_("Deleted items"), :header=>['item','mean']) do |t| @dumped.each do |f| t.row(["#{@ods[f].name}(#{f})", "%0.5f" % @ods[f].mean]) end end s.parse_element(Statsample::Graph::Histogram.new(@o_total, :name=>"Histogram (complete data) for %s" % @name)) if @summary_histogram end end s.table(:name=>_("Summary for %s") % @name) do |t| t.row [_("Valid Items"), @ds.ncols] t.row [_("Valid cases"), @valid_n] t.row [_("Sum mean"), "%0.4f" % @mean] t.row [_("Sum sd"), "%0.4f" % @sd ] # t.row [_("Sum variance"), "%0.4f" % @variance] t.row [_("Sum median"), @median] t.hr t.row [_("Item mean"), "%0.4f" % @item_mean] t.row [_("Item sd"), "%0.4f" % @item_sd] t.hr t.row [_("Skewness"), "%0.4f" % @skew] t.row [_("Kurtosis"), "%0.4f" % @kurtosis] t.hr t.row [_("Cronbach's alpha"), @alpha ? ("%0.4f" % @alpha) : "--"] t.row [_("Standarized Cronbach's alpha"), @alpha_standarized ? ("%0.4f" % @alpha_standarized) : "--" ] t.row [_("Mean rpb"), "%0.4f" % mean_rpb] t.row [_("Variances mean"), "%g" % @variances_mean] t.row [_("Covariances mean") , "%g" % @covariances_mean] end if (@alpha) s.text _("Items for obtain alpha(0.8) : %d" % Statsample::Reliability::n_for_desired_reliability(@alpha, 0.8, @ds.ncols)) s.text _("Items for obtain alpha(0.9) : %d" % Statsample::Reliability::n_for_desired_reliability(@alpha, 0.9, @ds.ncols)) end sid=stats_if_deleted is=item_statistics itc=item_total_correlation s.table(:name=>_("Items report for %s") % @name, :header=>["item","mean","sd", "mean if deleted", "var if deleted", "sd if deleted"," item-total correl.", "alpha if deleted"]) do |t| @ds.vectors.each do |f| row=["#{@ds[f].name}(#{f})"] if is[f] row+=[sprintf("%0.5f",is[f][:mean]), sprintf("%0.5f", is[f][:sds])] else row+=["-","-"] end if sid[f] row+= [sprintf("%0.5f",sid[f][:mean]), sprintf("%0.5f",sid[f][:variance_sample]), sprintf("%0.5f",sid[f][:sds])] else row+=%w{- - -} end if itc[f] row+= [sprintf("%0.5f",itc[f])] else row+=['-'] end if sid[f] and !sid[f][:alpha].nil? row+=[sprintf("%0.5f",sid[f][:alpha])] else row+=["-"] end t.row row end # end each end # table s.parse_element(Statsample::Graph::Histogram.new(@total, :name=>"Histogram (valid data) for %s" % @name)) if @summary_histogram end # section end |
#stats_if_deleted ⇒ Object
127 128 129 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 127 def stats_if_deleted @sif||=stats_if_deleted_intern end |
#stats_if_deleted_intern ⇒ Object
:nodoc:
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# File 'lib/statsample/reliability/scaleanalysis.rb', line 131 def stats_if_deleted_intern # :nodoc: return Hash.new if @ds.ncols == 1 vecs = @ds.vectors.to_a vecs.inject({}) do |a,v| cov_2=@cov_m.submatrix(vecs - [v]) #[email protected] #ds2.delete_vector(v) #total=ds2.vector_sum a[v]={} #a[v][:mean]=total.mean a[v][:mean]=@mean-item_statistics[v][:mean] a[v][:variance_sample]=cov_2.total_sum a[v][:sds]=Math::sqrt(a[v][:variance_sample]) n=cov_2.row_size a[v][:alpha] = (n>=2) ? Statsample::Reliability.cronbach_alpha_from_covariance_matrix(cov_2) : nil a end end |