Module: TensorStream::ArrayOpsHelper
- Included in:
- Evaluator::RubyEvaluator, InferShape
- Defined in:
- lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb
Overview
varoius utility functions for array processing
Instance Method Summary collapse
- #_reduced_shape(input_shape, axes) ⇒ Object
- #arr_pad(arr, paddings, data_type = :float32, rank = 0) ⇒ Object
- #array_set!(input, value) ⇒ Object
- #broadcast(input_a, input_b) ⇒ Object
-
#broadcast_dimensions(input, dims = []) ⇒ Object
explicit broadcasting helper.
- #deep_dup_array(arr, value = nil) ⇒ Object
- #gather(params, indexes) ⇒ Object
- #get_rank(value, rank = 0) ⇒ Object
- #last_axis(arr) ⇒ Object
- #process_function_op(a, &block) ⇒ Object
- #reduce(val, axis, keep_dims, &block) ⇒ Object
- #reduce_axis(current_axis, axis, val, keep_dims, &block) ⇒ Object
- #shape_diff(shape_a, shape_b) ⇒ Object
- #slice_tensor(input, start, size) ⇒ Object
- #softmax(arr) ⇒ Object
- #softmax_grad(arr) ⇒ Object
- #split_tensor(input, begin_index, end_index, axis = 0) ⇒ Object
- #strided_slice(value, slices = []) ⇒ Object
- #strided_slice_grad(value, grad, x, slices) ⇒ Object
- #tile_arr(input, dimen, multiples) ⇒ Object
-
#transpose_with_perm(arr, new_arr, shape, new_shape, perm) ⇒ Object
general case transposition with flat arrays.
- #truncate(input, target_shape) ⇒ Object
-
#vector_op(vector, vector2, switch = false, safe = true, &block) ⇒ Object
handle 2 tensor math operations.
Instance Method Details
#_reduced_shape(input_shape, axes) ⇒ Object
51 52 53 54 55 56 57 58 59 60 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 51 def _reduced_shape(input_shape, axes) return [] if axes.nil? # reduce to scalar axes = [axes] unless axes.is_a?(Array) return input_shape if axes.empty? axes.each do |dimen| input_shape[dimen] = 1 end input_shape end |
#arr_pad(arr, paddings, data_type = :float32, rank = 0) ⇒ Object
320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 320 def arr_pad(arr, paddings, data_type = :float32, rank = 0) raise "padding #{paddings[rank]} needs to have to elements [before, after]" if paddings[rank].size != 2 before = paddings[rank][0] after = paddings[rank][1] pad_value = fp_type?(data_type) ? 0.0 : 0 if arr[0].is_a?(Array) next_dim_elem = arr.collect { |a| arr_pad(a, paddings, data_type, rank + 1) } padding = deep_dup_array(next_dim_elem[0], pad_value) Array.new(before) { padding } + next_dim_elem + Array.new(after) { padding } else Array.new(before) { pad_value } + arr + Array.new(after) { pad_value } end end |
#array_set!(input, value) ⇒ Object
33 34 35 36 37 38 39 40 41 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 33 def array_set!(input, value) input.each_with_index do |element, index| if element.is_a?(Array) array_set(element, value) else input[index] = value[index] end end end |
#broadcast(input_a, input_b) ⇒ Object
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 62 def broadcast(input_a, input_b) sa = shape_eval(input_a) sb = shape_eval(input_b) return [input_a, input_b] if sa == sb # descalar if sa.empty? input_a = [input_a] sa = [1] end if sb.empty? input_b = [input_b] sb = [1] end target_shape = shape_diff(sa, sb) if target_shape input_b = broadcast_dimensions(input_b, target_shape) else target_shape = shape_diff(sb, sa) raise "Incompatible shapes for op #{shape_eval(input_a)} vs #{shape_eval(input_b)}" if target_shape.nil? input_a = broadcast_dimensions(input_a, target_shape) end [input_a, input_b] end |
#broadcast_dimensions(input, dims = []) ⇒ Object
explicit broadcasting helper
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 94 def broadcast_dimensions(input, dims = []) return input if dims.empty? d = dims.shift if input.is_a?(Array) && (get_rank(input) - 1) == dims.size row_to_dup = input.collect { |item| broadcast_dimensions(item, dims.dup) } row_to_dup + Array.new(d) { row_to_dup }.flatten(1) elsif input.is_a?(Array) Array.new(d) { broadcast_dimensions(input, dims.dup) } else Array.new(d + 1) { input } end end |
#deep_dup_array(arr, value = nil) ⇒ Object
335 336 337 338 339 340 341 342 343 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 335 def deep_dup_array(arr, value = nil) if arr.is_a?(Array) arr.dup.collect do |a| deep_dup_array(a, value) end else value.nil? ? arr : value end end |
#gather(params, indexes) ⇒ Object
234 235 236 237 238 239 240 241 242 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 234 def gather(params, indexes) indexes.collect do |index| if index.is_a?(Array) gather(params, index) else params[index] end end end |
#get_rank(value, rank = 0) ⇒ Object
187 188 189 190 191 192 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 187 def get_rank(value, rank = 0) return rank unless value.is_a?(Array) return rank + 1 if value.empty? get_rank(value[0], rank + 1) end |
#last_axis(arr) ⇒ Object
194 195 196 197 198 199 200 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 194 def last_axis(arr) return arr if get_rank(arr) <= 2 arr.inject([]).map do |sub, rows| rows + last_axis(sub) end end |
#process_function_op(a, &block) ⇒ Object
178 179 180 181 182 183 184 185 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 178 def process_function_op(a, &block) # ruby scalar if (a.is_a?(Tensor) && a.shape.rank > 0) || a.is_a?(Array) vector_op(a, 0, &block) else yield a, 0 end end |
#reduce(val, axis, keep_dims, &block) ⇒ Object
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 303 def reduce(val, axis, keep_dims, &block) rank = get_rank(val) return val if axis&.is_a?(Array) && axis&.empty? axis = if axis.nil? nil elsif axis.is_a?(Array) return val if axis.empty? axis.map { |a| a < 0 ? rank - a.abs : a } else axis < 0 ? rank - axis.abs : axis end reduce_axis(0, axis, val, keep_dims, &block) end |
#reduce_axis(current_axis, axis, val, keep_dims, &block) ⇒ Object
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 277 def reduce_axis(current_axis, axis, val, keep_dims, &block) return val unless val.is_a?(Array) r = val.collect { |v| reduce_axis(current_axis + 1, axis, v, keep_dims, &block) } should_reduce_axis = axis.nil? || (axis.is_a?(Array) && axis.include?(current_axis)) || (current_axis == axis) if should_reduce_axis reduced_val = r[0] if r.size > 1 reduced_val = if block_given? yield(r[0..val.size]) else r[0..val.size].reduce(:+) end elsif r.empty? reduced_val = yield(nil) end keep_dims ? [reduced_val] : reduced_val else r end end |
#shape_diff(shape_a, shape_b) ⇒ Object
149 150 151 152 153 154 155 156 157 158 159 160 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 149 def shape_diff(shape_a, shape_b) return nil if shape_b.size > shape_a.size reversed_a = shape_a.reverse reversed_b = shape_b.reverse reversed_a.each_with_index.collect { |s, index| next s if index >= reversed_b.size return nil if reversed_b[index] > s s - reversed_b[index] }.reverse end |
#slice_tensor(input, start, size) ⇒ Object
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 14 def slice_tensor(input, start, size) return input if size.empty? start_index = start.shift current_size = size.shift dimen_size = if current_size == -1 input.size - 1 else start_index + current_size - 1 end input[start_index..dimen_size].collect do |item| if item.is_a?(Array) slice_tensor(item, start.dup, size.dup) else item end end end |
#softmax(arr) ⇒ Object
202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 202 def softmax(arr) return arr if arr.empty? if !arr[0].is_a?(Array) c = arr.max arr = arr.map { |a| Math.exp(a - c) } sum = arr.reduce(:+) arr.collect do |input| input / sum end else arr.collect { |input| softmax(input) } end end |
#softmax_grad(arr) ⇒ Object
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 217 def softmax_grad(arr) return arr if arr.empty? arr.each_with_index.collect do |input, index| if input.is_a?(Array) softmax_grad(input) else arr.each_with_index.collect do |input2, index2| if index != index2 -input * input2 else input * (1.0 - input) end end end end end |
#split_tensor(input, begin_index, end_index, axis = 0) ⇒ Object
4 5 6 7 8 9 10 11 12 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 4 def split_tensor(input, begin_index, end_index, axis = 0) if axis.zero? input[begin_index...end_index] else input.collect do |item| split_tensor(item, begin_index, end_index, axis - 1) end end end |
#strided_slice(value, slices = []) ⇒ Object
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 345 def strided_slice(value, slices = []) current_slice = slices.dup selection = current_slice.shift return value if selection.nil? b, e, stride = selection b = value.size + b if b < 0 e = value.size + e + 1 if e < 0 indexes = if stride < 0 b.downto(e).select.with_index { |elem, index| (index % stride.abs) == 0 } else (b...e).step(stride) end indexes.map do |index| strided_slice(value[index], current_slice) end end |
#strided_slice_grad(value, grad, x, slices) ⇒ Object
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 366 def strided_slice_grad(value, grad, x, slices) current_slice = slices.dup selection = current_slice.shift current_shape = x.shift if selection.nil? array_set!(value, grad) end b, e, stride = selection b = value.size + b if b < 0 e = value.size + e + 1 if e < 0 indexes = if stride < 0 b.downto(e).select.with_index { |elem, index| (index % stride.abs) == 0 } else (b...e).step(stride) end indexes.each_with_index do |index, grad_index| if (value[index].is_a?(Array)) strided_slice_grad(value[index], grad[grad_index], x.dup, current_slice.dup) else value[index] = grad[grad_index] end end end |
#tile_arr(input, dimen, multiples) ⇒ Object
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 162 def tile_arr(input, dimen, multiples) t = multiples[dimen] if dimen == multiples.size - 1 return nil if t.zero? input * t # ruby array dup else new_arr = input.collect { |sub| tile_arr(sub, dimen + 1, multiples) }.compact return nil if new_arr.empty? new_arr * t end end |
#transpose_with_perm(arr, new_arr, shape, new_shape, perm) ⇒ Object
general case transposition with flat arrays
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 245 def transpose_with_perm(arr, new_arr, shape, new_shape, perm) arr_size = shape.reduce(:*) divisors = shape.dup.drop(1).reverse.inject([1]) { |a, s| a << s * a.last }.reverse multipliers = new_shape.dup.drop(1).reverse.inject([1]) { |a, s| a << s * a.last }.reverse arr_size.times do |p| ptr = p index = [] divisors.each_with_object(index) do |div, a| a << (ptr / div.to_f).floor ptr = ptr % div end # remap based on perm remaped = perm.map { |x| index[x] } ptr2 = 0 multipliers.each_with_index do |m, idx| ptr2 += remaped[idx] * m end new_arr[ptr2] = arr[p] end [new_arr, new_shape] end |
#truncate(input, target_shape) ⇒ Object
43 44 45 46 47 48 49 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 43 def truncate(input, target_shape) rank = get_rank(input) return input if rank.zero? start = Array.new(rank) { 0 } slice_tensor(input, start, target_shape) end |
#vector_op(vector, vector2, switch = false, safe = true, &block) ⇒ Object
handle 2 tensor math operations
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# File 'lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb', line 113 def vector_op(vector, vector2, switch = false, safe = true, &block) if get_rank(vector) < get_rank(vector2) # upgrade rank of A duplicated = Array.new(vector2.size) { vector } return vector_op(duplicated, vector2, switch, &block) end return yield(vector, vector2) unless vector.is_a?(Array) vector.each_with_index.collect { |input, index| next vector_op(input, vector2, switch, &block) if input.is_a?(Array) && get_rank(vector) > get_rank(vector2) if safe && vector2.is_a?(Array) next nil if vector2.size != 1 && index >= vector2.size end z = if vector2.is_a?(Array) if index < vector2.size vector2[index] else raise "incompatible tensor shapes used during op" if vector2.size != 1 vector2[0] end else vector2 end if input.is_a?(Array) vector_op(input, z, switch, &block) else switch ? yield(z, input) : yield(input, z) end }.compact end |