Class: TensorStream::InferShape
- Inherits:
-
Object
- Object
- TensorStream::InferShape
- Extended by:
- ArrayOpsHelper, OpHelper
- Defined in:
- lib/tensor_stream/helpers/infer_shape.rb
Overview
Convenience class for guessing the shape of a tensor
Class Method Summary collapse
Methods included from ArrayOpsHelper
_reduced_shape, arr_pad, array_set!, broadcast, broadcast_dimensions, deep_dup_array, gather, get_rank, last_axis, process_function_op, reduce, reduce_axis, shape_diff, slice_tensor, softmax, softmax_grad, split_tensor, strided_slice, strided_slice_grad, tile_arr, transpose_with_perm, truncate, vector_op
Methods included from OpHelper
_op, cons, format_source, fp_type?, i_cons, i_op, i_var, int_type?, reduced_shape, shape_eval, shape_full_specified, shapes_fully_specified_and_equal
Class Method Details
._infer_reduction_op_shape(tensor) ⇒ Object
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# File 'lib/tensor_stream/helpers/infer_shape.rb', line 186 def self._infer_reduction_op_shape(tensor) return [] if tensor.inputs[1].nil? return nil if tensor.inputs[0].nil? return nil unless tensor.inputs[0].shape.known? input_shape = tensor.inputs[0].shape.shape rank = input_shape.size axis = tensor.inputs[1].const_value return nil if axis.nil? axis = [axis] unless axis.is_a?(Array) axis = axis.map { |a| a < 0 ? rank - a.abs : a } input_shape.each_with_index.map { |item, index| if axis.include?(index) next 1 if tensor.[:keepdims] next nil end item }.compact end |
.infer_shape(tensor) ⇒ Object
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# File 'lib/tensor_stream/helpers/infer_shape.rb', line 10 def self.infer_shape(tensor) case tensor.operation when :assign tensor.inputs[0]&.shape&.shape when :const shape_eval(tensor.[:value]) when :variable_v2 tensor.shape ? tensor.shape.shape : nil when :placeholder return nil if tensor.inputs[0].nil? return tensor.inputs[0].shape.shape if tensor.inputs.size == 1 TensorShape.infer_shape(tensor.inputs[0].shape.shape, tensor.inputs[1].shape.shape) if tensor.inputs.size == 2 && tensor.inputs[0] && tensor.inputs[1] when :case, :case_grad tensor.inputs[2]&.shape&.shape when :const shape_eval(tensor.[:value]) when :variable_v2 tensor.shape ? tensor.shape.shape : nil when :assign possible_shape = if tensor.inputs[0]&.shape&.shape tensor.inputs[0].shape.shape else tensor.inputs[1].shape.shape end possible_shape when :index return nil unless tensor.inputs[0].is_a?(Tensor) return nil unless tensor.inputs[0].const_value input_shape = tensor.inputs[0].shape return nil unless input_shape.known? s = input_shape.shape.dup s.shift s when :arg_min, :argmax, :argmin return nil unless tensor.inputs[0].shape.known? return nil if tensor.inputs[1] && tensor.inputs[1].const_value.nil? axis = tensor.inputs[1].nil? ? 0 : tensor.inputs[1].const_value new_shape = tensor.inputs[0].shape.shape new_shape.each_with_index.collect { |shape, index| next nil if index == axis shape }.compact when :mean, :prod, :sum, :arg_max return [] if tensor.inputs[1].nil? return nil if tensor.inputs[0].nil? return nil unless tensor.inputs[0].shape.known? input_shape = tensor.inputs[0].shape.shape rank = input_shape.size axis = tensor.inputs[1].const_value return nil if axis.nil? axis = [axis] unless axis.is_a?(Array) axis = axis.map { |a| a < 0 ? rank - a.abs : a } input_shape.each_with_index.map { |item, index| if axis.include?(index) next 1 if tensor.[:keepdims] next nil end item }.compact when :flow_group [] when :zeros, :ones, :fill, :random_standard_normal, :random_uniform, :truncated_normal a_shape = tensor.inputs[0] ? tensor.inputs[0].const_value : tensor.[:shape] return nil if a_shape.nil? a_shape.is_a?(Array) ? a_shape : [a_shape] when :zeros_like, :ones_like tensor.inputs[0].shape.shape when :shape tensor.inputs[0].shape.shape ? [tensor.inputs[0].shape.shape.size] : nil when :pad return nil unless tensor.inputs[0].shape.known? return nil unless tensor.inputs[1].const_value size = tensor.inputs[0].shape.shape.reduce(:*) || 1 dummy_tensor_for_shape = TensorShape.reshape(Array.new(size), tensor.inputs[0].shape) shape_eval(arr_pad(dummy_tensor_for_shape, tensor.inputs[1].const_value)) when :transpose return nil unless shape_full_specified(tensor.inputs[0]) return nil if tensor.inputs[1].is_a?(Tensor) rank = tensor.inputs[0].shape.shape.size perm = tensor.inputs[1] || (0...rank).to_a.reverse perm.map { |p| tensor.inputs[0].shape.shape[p] } when :stack return nil unless shape_full_specified(tensor.inputs[0]) axis = tensor.[:axis] || 0 new_shape = [tensor.inputs.size] tensor.inputs[0].shape.shape.inject(new_shape) { |ns, i| ns << i } rank = tensor.inputs[0].shape.shape.size + 1 axis = rank + axis if axis < 0 rotated_shape = Array.new(axis + 1) { new_shape.shift } rotated_shape.rotate! + new_shape when :concat return nil if tensor.inputs[0].const_value.nil? axis = tensor.inputs[0].const_value # get axis axis_size = 0 tensor.inputs[1..tensor.inputs.size].each do |input_item| return nil if input_item.shape.shape.nil? return nil if input_item.shape.shape[axis].nil? axis_size += input_item.shape.shape[axis] end new_shape = tensor.inputs[1].shape.shape.dup new_shape[axis] = axis_size new_shape when :slice, :squeeze nil when :broadcast_gradient_args nil when :no_op nil when :softmax_cross_entropy_with_logits_v2, :sparse_softmax_cross_entropy_with_logits nil when :decode_png, :flow_dynamic_stitch, :dynamic_stitch, :gather nil when :eye return [tensor.inputs[0].const_value, tensor.inputs[1].const_value] if tensor.inputs[0].const_value && tensor.inputs[1].const_value nil when :unstack return nil unless tensor.inputs[0].shape.known? new_shape = tensor.inputs[0].shape.shape.dup rank = new_shape.size - 1 axis = tensor.[:axis] || 0 axis = rank + axis if axis < 0 rotated_shape = Array.new(axis + 1) { new_shape.shift } rotated_shape.rotate!(-1) + new_shape when :conv2d return nil unless tensor.inputs[0].shape.known? return nil unless tensor.inputs[1].shape.known? new_shape = tensor.inputs[0].shape.shape.dup new_shape[3] = tensor.inputs[1].shape.shape[3] # account for stride and padding options strides = tensor.[:strides] case tensor.[:padding] when "SAME" new_shape[1] /= strides[1] new_shape[2] /= strides[2] when "VALID" new_shape[1] = (new_shape[1] - tensor.inputs[1].shape.shape[0]) / strides[1] + 1 new_shape[2] = (new_shape[2] - tensor.inputs[1].shape.shape[1]) / strides[2] + 1 else raise TensorStream::ValueError, "Invalid padding option only 'SAME', 'VALID' accepted" end new_shape when :conv2d_backprop_input return nil unless tensor.inputs[0].const_value tensor.inputs[0].const_value else TensorStream::OpMaker.infer_shape(self, tensor) end end |