Class: Torch::NN::MultiheadAttention
- Defined in:
- lib/torch/nn/multihead_attention.rb
Instance Attribute Summary
Attributes inherited from Module
Instance Method Summary collapse
- #batch_first? ⇒ Boolean
- #forward(query, key, value, key_padding_mask: nil, need_weights: true, attn_mask: nil) ⇒ Object
-
#initialize(embed_dim, num_heads, dropout: 0.0, bias: true, add_bias_kv: false, add_zero_attn: false, kdim: nil, vdim: nil, batch_first: false, device: nil, dtype: nil) ⇒ MultiheadAttention
constructor
A new instance of MultiheadAttention.
- #reset_parameters ⇒ Object
Methods inherited from Module
#_apply, #add_module, #apply, #buffers, #call, #children, #cpu, #cuda, #deep_dup, #double, #eval, #float, #half, #inspect, #load_state_dict, #method_missing, #modules, #named_buffers, #named_children, #named_modules, #named_parameters, #parameters, #register_buffer, #register_parameter, #requires_grad!, #respond_to?, #share_memory, #state_dict, #to, #train, #type, #zero_grad
Methods included from Utils
#_activation_fn, #_clones, #_ntuple, #_pair, #_quadrupal, #_single, #_triple
Constructor Details
#initialize(embed_dim, num_heads, dropout: 0.0, bias: true, add_bias_kv: false, add_zero_attn: false, kdim: nil, vdim: nil, batch_first: false, device: nil, dtype: nil) ⇒ MultiheadAttention
Returns a new instance of MultiheadAttention.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# File 'lib/torch/nn/multihead_attention.rb', line 4 def initialize( , num_heads, dropout: 0.0, bias: true, add_bias_kv: false, add_zero_attn: false, kdim: nil, vdim: nil, batch_first: false, device: nil, dtype: nil ) super() @embed_dim = @kdim = kdim || @embed_dim @vdim = vdim || @embed_dim @qkv_same_embed_dim = @kdim == @embed_dim && @vdim == @embed_dim @num_heads = num_heads @dropout = dropout @batch_first = batch_first @head_dim = @embed_dim.div @num_heads raise ArgumentError, "embed_dim must be divisible by num_heads" unless @head_dim * @num_heads == @embed_dim if @qkv_same_embed_dim @in_proj_weight = Parameter.new(Torch.empty([3 * @embed_dim, @embed_dim])) %w(q k v).each { |x| register_parameter("#{x}_proj_weight", nil) } else @q_proj_weight = Parameter.new(Torch.empty([@embed_dim, @embed_dim])) @k_proj_weight = Parameter.new(Torch.empty([@embed_dim, @kdim])) @v_proj_weight = Parameter.new(Torch.empty([@embed_dim, @vdim])) register_parameter('in_proj_weight', nil) end if bias @in_proj_bias = Parameter.new(Torch.empty(3 * @embed_dim)) else register_parameter('in_proj_bias', nil) end @out_proj = Linear.new(@embed_dim, @embed_dim, bias: bias) if add_bias_kv @bias_k = Parameter.new(Torch.empty([1, 1, @embed_dim])) @bias_v = Parameter.new(Torch.empty([1, 1, @embed_dim])) else @bias_k = @bias_v = nil end @add_zero_attn = add_zero_attn reset_parameters end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class Torch::NN::Module
Instance Method Details
#batch_first? ⇒ Boolean
57 58 59 |
# File 'lib/torch/nn/multihead_attention.rb', line 57 def batch_first? !!@batch_first end |
#forward(query, key, value, key_padding_mask: nil, need_weights: true, attn_mask: nil) ⇒ Object
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
# File 'lib/torch/nn/multihead_attention.rb', line 79 def forward( query, key, value, key_padding_mask: nil, need_weights: true, attn_mask: nil ) if batch_first? query, key, value = [query, key, value].map { |t| t.transpose(1, 0) } end attn_output, attn_output_weights = if @qkv_same_embed_dim F.multi_head_attention_forward( query, key, value, @embed_dim, @num_heads, @in_proj_weight, @in_proj_bias, @bias_k, @bias_v, @add_zero_attn, @dropout, @out_proj.weight, @out_proj.bias, training: @training, key_padding_mask: key_padding_mask, need_weights: need_weights, attn_mask: attn_mask ) else F.multi_head_attention_forward( query, key, value, @embed_dim, @num_heads, @in_proj_weight, @in_proj_bias, @bias_k, @bias_v, @add_zero_attn, @dropout, @out_proj.weight, @out_proj.bias, training: @training, key_padding_mask: key_padding_mask, need_weights: need_weights, attn_mask: attn_mask, use_separate_proj_weight: true, q_proj_weight: @q_proj_weight, k_proj_weight: @k_proj_weight, v_proj_weight: @v_proj_weight ) end attn_output = attn_output.transpose(1, 0) if batch_first? [attn_output, attn_output_weights] end |
#reset_parameters ⇒ Object
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# File 'lib/torch/nn/multihead_attention.rb', line 61 def reset_parameters if @qkv_same_embed_dim Init.xavier_uniform!(@in_proj_weight) else Init.xavier_uniform!(@q_proj_weight) Init.xavier_uniform!(@k_proj_weight) Init.xavier_uniform!(@v_proj_weight) end if @in_proj_bias Init.constant!(@in_proj_bias, 0.0) Init.constant!(@out_proj.bias, 0.0) end Init.xavier_uniform!(@bias_k) if @bias_k Init.xavier_uniform!(@bias_v) if @bias_v end |