Class: Torch::NN::Conv2d
Instance Attribute Summary
Attributes inherited from ConvNd
#dilation, #groups, #in_channels, #kernel_size, #out_channels, #output_paddding, #padding, #padding_mode, #stride, #transposed
Attributes inherited from Module
Instance Method Summary collapse
- #extra_inspect ⇒ Object
- #forward(input) ⇒ Object
-
#initialize(in_channels, out_channels, kernel_size, stride: 1, padding: 0, dilation: 1, groups: 1, bias: true, padding_mode: "zeros") ⇒ Conv2d
constructor
A new instance of Conv2d.
Methods inherited from ConvNd
Methods inherited from Module
#_apply, #add_module, #apply, #buffers, #call, #children, #cpu, #cuda, #deep_dup, #double, #eval, #float, #half, #inspect, #load_state_dict, #method_missing, #modules, #named_buffers, #named_children, #named_modules, #named_parameters, #parameters, #register_buffer, #register_parameter, #requires_grad!, #respond_to?, #share_memory, #state_dict, #to, #train, #type, #zero_grad
Methods included from Utils
#_activation_fn, #_clones, #_ntuple, #_pair, #_quadrupal, #_single, #_triple
Constructor Details
#initialize(in_channels, out_channels, kernel_size, stride: 1, padding: 0, dilation: 1, groups: 1, bias: true, padding_mode: "zeros") ⇒ Conv2d
Returns a new instance of Conv2d.
4 5 6 7 8 9 10 11 12 |
# File 'lib/torch/nn/conv2d.rb', line 4 def initialize(in_channels, out_channels, kernel_size, stride: 1, padding: 0, dilation: 1, groups: 1, bias: true, padding_mode: "zeros") kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(in_channels, out_channels, kernel_size, stride, padding, dilation, false, _pair(0), groups, bias, padding_mode) end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class Torch::NN::Module
Instance Method Details
#extra_inspect ⇒ Object
21 22 23 24 25 26 27 28 29 30 |
# File 'lib/torch/nn/conv2d.rb', line 21 def extra_inspect s = String.new("%{in_channels}, %{out_channels}, kernel_size: %{kernel_size}, stride: %{stride}") s += ", padding: %{padding}" if @padding != [0] * @padding.size s += ", dilation: %{dilation}" if @dilation != [1] * @dilation.size s += ", output_padding: %{output_padding}" if @output_padding != [0] * @output_padding.size s += ", groups: %{groups}" if @groups != 1 s += ", bias: false" unless @bias s += ", padding_mode: %{padding_mode}" if @padding_mode != "zeros" format(s, **dict) end |
#forward(input) ⇒ Object
14 15 16 17 18 19 |
# File 'lib/torch/nn/conv2d.rb', line 14 def forward(input) if @padding_mode == "circular" raise NotImplementedError end F.conv2d(input, @weight, @bias, @stride, @padding, @dilation, @groups) end |