Class: Torch::Optim::Adadelta
- Defined in:
- lib/torch/optim/adadelta.rb
Instance Attribute Summary
Attributes inherited from Optimizer
Instance Method Summary collapse
-
#initialize(params, lr: 1.0, rho: 0.9, eps: 1e-6, weight_decay: 0) ⇒ Adadelta
constructor
A new instance of Adadelta.
- #step(closure = nil) ⇒ Object
Methods inherited from Optimizer
#add_param_group, #load_state_dict, #state_dict, #zero_grad
Constructor Details
#initialize(params, lr: 1.0, rho: 0.9, eps: 1e-6, weight_decay: 0) ⇒ Adadelta
Returns a new instance of Adadelta.
5 6 7 8 9 10 11 12 13 |
# File 'lib/torch/optim/adadelta.rb', line 5 def initialize(params, lr: 1.0, rho: 0.9, eps: 1e-6, weight_decay: 0) raise ArgumentError, "Invalid learning rate: #{lr}" if lr < 0 raise ArgumentError, "Invalid rho value: #{rho}" if rho < 0 || rho > 1 raise ArgumentError, "Invalid epsilon value: #{eps}" if eps < 0 raise ArgumentError, "Invalid weight_decay value: #{weight_decay}" if weight_decay < 0 defaults = {lr: lr, rho: rho, eps: eps, weight_decay: weight_decay} super(params, defaults) end |
Instance Method Details
#step(closure = nil) ⇒ Object
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# File 'lib/torch/optim/adadelta.rb', line 15 def step(closure = nil) loss = nil if closure loss = closure.call end @param_groups.each do |group| group[:params].each do |p| next unless p.grad grad = p.grad.data if grad.sparse? raise Error, "Adadelta does not support sparse gradients" end state = @state[p] if state.size == 0 state[:step] = 0 state[:square_avg] = Torch.zeros_like(p.data) state[:acc_delta] = Torch.zeros_like(p.data) end square_avg, acc_delta = state[:square_avg], state[:acc_delta] rho, eps = group[:rho], group[:eps] state[:step] += 1 if group[:weight_decay] != 0 grad = grad.add(p.data, alpha: group[:weight_decay]) end square_avg.mul!(rho).addcmul!(grad, grad, value: 1 - rho) std = square_avg.add(eps).sqrt! delta = acc_delta.add(eps).sqrt!.div!(std).mul!(grad) p.data.add!(delta, alpha: -group[:lr]) acc_delta.mul!(rho).addcmul!(delta, delta, value: 1 - rho) end end loss end |