Class: Torch::Optim::Adamax
- Defined in:
- lib/torch/optim/adamax.rb
Instance Attribute Summary
Attributes inherited from Optimizer
Instance Method Summary collapse
-
#initialize(params, lr: 2e-3, betas: [0.9, 0.999], eps: 1e-8, weight_decay: 0) ⇒ Adamax
constructor
A new instance of Adamax.
- #step(closure = nil) ⇒ Object
Methods inherited from Optimizer
#add_param_group, #load_state_dict, #state_dict, #zero_grad
Constructor Details
#initialize(params, lr: 2e-3, betas: [0.9, 0.999], eps: 1e-8, weight_decay: 0) ⇒ Adamax
Returns a new instance of Adamax.
5 6 7 8 9 10 11 12 13 14 |
# File 'lib/torch/optim/adamax.rb', line 5 def initialize(params, lr: 2e-3, betas: [0.9, 0.999], eps: 1e-8, weight_decay: 0) raise ArgumentError, "Invalid learning rate: #{lr}" if lr < 0 raise ArgumentError, "Invalid epsilon value: #{eps}" if eps < 0 raise ArgumentError, "Invalid beta parameter at index 0: #{betas[0]}" if betas[0] < 0 || betas[0] >= 1 raise ArgumentError, "Invalid beta parameter at index 1: #{betas[1]}" if betas[1] < 0 || betas[1] >= 1 raise ArgumentError, "Invalid weight_decay value: #{weight_decay}" if weight_decay < 0 defaults = {lr: lr, betas: betas, eps: eps, weight_decay: weight_decay} super(params, defaults) end |
Instance Method Details
#step(closure = nil) ⇒ Object
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/torch/optim/adamax.rb', line 16 def step(closure = nil) loss = nil if closure loss = closure.call end @param_groups.each do |group| group[:params].each do |p| next unless p.grad grad = p.grad.data if grad.sparse? raise Error, "Adamax does not support sparse gradients, please consider SparseAdam instead" end state = @state[p] # State initialization if state.size == 0 state[:step] = 0 state[:exp_avg] = Torch.zeros_like(p.data) state[:exp_inf] = Torch.zeros_like(p.data) end exp_avg, exp_inf = state[:exp_avg], state[:exp_inf] beta1, beta2 = group[:betas] eps = group[:eps] state[:step] += 1 if group[:weight_decay] != 0 grad = grad.add(p.data, alpha: group[:weight_decay]) end # Update biased first moment estimate. exp_avg.mul!(beta1).add!(grad, alpha: 1 - beta1) # Update the exponentially weighted infinity norm. norm_buf = Torch.cat([ exp_inf.mul!(beta2).unsqueeze(0), grad.abs.add!(eps).unsqueeze!(0) ], 0) Torch.max(norm_buf, 0, keepdim: false, out: [exp_inf, exp_inf.new.long]) bias_correction = 1 - beta1 ** state[:step] clr = group[:lr] / bias_correction p.data.addcdiv!(exp_avg, exp_inf, value: -clr) end end loss end |