Class: Transformers::Vit::ViTImageProcessor
- Inherits:
-
BaseImageProcessor
- Object
- ImageProcessingMixin
- BaseImageProcessor
- Transformers::Vit::ViTImageProcessor
- Defined in:
- lib/transformers/models/vit/image_processing_vit.rb
Instance Method Summary collapse
-
#initialize(do_resize: true, size: nil, resample: :bilinear, do_rescale: true, rescale_factor: 1 / 255.0, do_normalize: true, image_mean: nil, image_std: nil, **kwargs) ⇒ ViTImageProcessor
constructor
A new instance of ViTImageProcessor.
- #preprocess(images, do_resize: nil, size: nil, resample: nil, do_rescale: nil, rescale_factor: nil, do_normalize: nil, image_mean: nil, image_std: nil, return_tensors: nil, data_format: ChannelDimension::FIRST, input_data_format: nil, **kwargs) ⇒ Object
- #resize(image, size, resample: :bilinear, data_format: nil, input_data_format: nil, **kwargs) ⇒ Object
Methods inherited from BaseImageProcessor
Methods inherited from ImageProcessingMixin
from_dict, from_pretrained, get_image_processor_dict
Constructor Details
#initialize(do_resize: true, size: nil, resample: :bilinear, do_rescale: true, rescale_factor: 1 / 255.0, do_normalize: true, image_mean: nil, image_std: nil, **kwargs) ⇒ ViTImageProcessor
Returns a new instance of ViTImageProcessor.
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# File 'lib/transformers/models/vit/image_processing_vit.rb', line 18 def initialize( do_resize: true, size: nil, resample: :bilinear, do_rescale: true, rescale_factor: 1 / 255.0, do_normalize: true, image_mean: nil, image_std: nil, **kwargs ) super(**kwargs) size = !size.nil? ? size : {height: 224, width: 224} size = ImageProcessingUtils.get_size_dict(size) @do_resize = do_resize @do_rescale = do_rescale @do_normalize = do_normalize @size = size @resample = resample @rescale_factor = rescale_factor @image_mean = !image_mean.nil? ? image_mean : IMAGENET_STANDARD_MEAN @image_std = !image_std.nil? ? image_std : IMAGENET_STANDARD_STD @valid_processor_keys = [ :images, :do_resize, :size, :resample, :do_rescale, :rescale_factor, :do_normalize, :image_mean, :image_std, :return_tensors, :data_format, :input_data_format ] end |
Instance Method Details
#preprocess(images, do_resize: nil, size: nil, resample: nil, do_rescale: nil, rescale_factor: nil, do_normalize: nil, image_mean: nil, image_std: nil, return_tensors: nil, data_format: ChannelDimension::FIRST, input_data_format: nil, **kwargs) ⇒ Object
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# File 'lib/transformers/models/vit/image_processing_vit.rb', line 79 def preprocess( images, do_resize: nil, size: nil, resample: nil, do_rescale: nil, rescale_factor: nil, do_normalize: nil, image_mean: nil, image_std: nil, return_tensors: nil, data_format: ChannelDimension::FIRST, input_data_format: nil, **kwargs ) do_resize = !do_resize.nil? ? do_resize : @do_resize do_rescale = !do_rescale.nil? ? do_rescale : @do_rescale do_normalize = !do_normalize.nil? ? do_normalize : @do_normalize resample = !resample.nil? ? resample : @resample rescale_factor = !rescale_factor.nil? ? rescale_factor : @rescale_factor image_mean = !image_mean.nil? ? image_mean : @image_mean image_std = !image_std.nil? ? image_std : @image_std size = !size.nil? ? size : @size size_dict = ImageProcessingUtils.get_size_dict(size) images = ImageUtils.make_list_of_images(images) ImageUtils.validate_kwargs(captured_kwargs: kwargs.keys, valid_processor_keys: @valid_processor_keys) if !ImageUtils.valid_images(images) raise ArgumentError, "Invalid image type. Must be of type Vips::Image, Numo::NArray, or Torch::Tensor." end ImageUtils.validate_preprocess_arguments( do_rescale: do_rescale, rescale_factor: rescale_factor, do_normalize: do_normalize, image_mean: image_mean, image_std: image_std, do_resize: do_resize, size: size, resample: resample ) # All transformations expect numo arrays. images = images.map { |image| ImageUtils.to_numo_array(image) } if ImageUtils.is_scaled_image(images[0]) && do_rescale Transformers.logger.warn( "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale: false` to avoid rescaling them again." ) end if input_data_format.nil? # We assume that all images have the same channel dimension format. input_data_format = ImageUtils.infer_channel_dimension_format(images[0]) end if do_resize images = images.map do |image| resize(image, size_dict, resample: resample, input_data_format: input_data_format) end end if do_rescale images = images.map do |image| rescale(image, rescale_factor, input_data_format: input_data_format) end end if do_normalize images = images.map do |image| normalize(image, image_mean, image_std, input_data_format: input_data_format) end end images = images.map do |image| ImageTransforms.to_channel_dimension_format(image, data_format, input_channel_dim: input_data_format) end data = {pixel_values: images} BatchFeature.new(data: data, tensor_type: return_tensors) end |
#resize(image, size, resample: :bilinear, data_format: nil, input_data_format: nil, **kwargs) ⇒ Object
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# File 'lib/transformers/models/vit/image_processing_vit.rb', line 56 def resize( image, size, resample: :bilinear, data_format: nil, input_data_format: nil, **kwargs ) size = ImageProcessingUtils.get_size_dict(size) if !size.include?(:height) || !size.include?(:width) raise ArgumentError, "The `size` dictionary must contain the keys `height` and `width`. Got #{size.keys}" end output_size = [size[:height], size[:width]] ImageTransforms.resize( image, output_size, resample: resample, data_format: data_format, input_data_format: input_data_format, **kwargs ) end |