Module: Bitcoin::OpenSSL_EC

Extended by:
FFI::Library
Defined in:
lib/bitcoin/ffi/openssl.rb

Constant Summary collapse

NID_secp256k1 =
714
POINT_CONVERSION_COMPRESSED =
2
POINT_CONVERSION_UNCOMPRESSED =
4

Class Method Summary collapse

Class Method Details

.BN_num_bytes(ptr) ⇒ Object


74
# File 'lib/bitcoin/ffi/openssl.rb', line 74

def self.BN_num_bytes(ptr); (BN_num_bits(ptr) + 7) / 8; end

.der_to_private_key(der_hex) ⇒ Object

extract private key from uncompressed DER format


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# File 'lib/bitcoin/ffi/openssl.rb', line 134

def self.der_to_private_key(der_hex)
  init_ffi_ssl
  #k  = EC_KEY_new_by_curve_name(NID_secp256k1)
  #kp = FFI::MemoryPointer.new(:pointer).put_pointer(0, eckey)

  buf = FFI::MemoryPointer.from_string([der_hex].pack("H*"))
  ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, buf)

  #ec_key = d2i_ECPrivateKey(kp, ptr, buf.size-1)
  ec_key = d2i_ECPrivateKey(nil, ptr, buf.size-1)
  return nil if ec_key.null?
  bn = EC_KEY_get0_private_key(ec_key)
  BN_bn2bin(bn, buf)
  buf.read_string(32).unpack("H*")[0]
end

.ec_add(point_0, point_1) ⇒ Object


337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# File 'lib/bitcoin/ffi/openssl.rb', line 337

def self.ec_add(point_0, point_1)
  init_ffi_ssl

  eckey = EC_KEY_new_by_curve_name(NID_secp256k1)
  group = EC_KEY_get0_group(eckey)

  point_0_hex = point_0.to_bn.to_s(16)
  point_0_pt = EC_POINT_hex2point(group, point_0_hex, nil, nil)
  point_1_hex = point_1.to_bn.to_s(16)
  point_1_pt = EC_POINT_hex2point(group, point_1_hex, nil, nil)

  sum_point = EC_POINT_new(group)
  success = EC_POINT_add(group, sum_point, point_0_pt, point_1_pt, nil)
  hex = EC_POINT_point2hex(group, sum_point, POINT_CONVERSION_UNCOMPRESSED, nil)
  EC_KEY_free(eckey)
  EC_POINT_free(sum_point)
  hex
end

.init_ffi_sslObject


379
380
381
382
383
384
385
386
# File 'lib/bitcoin/ffi/openssl.rb', line 379

def self.init_ffi_ssl
  return if @ssl_loaded
  SSL_library_init()
  ERR_load_crypto_strings()
  SSL_load_error_strings()
  RAND_poll()
  @ssl_loaded = true
end

.recover_compact(hash, signature) ⇒ Object


325
326
327
328
329
330
331
332
333
334
# File 'lib/bitcoin/ffi/openssl.rb', line 325

def self.recover_compact(hash, signature)
  return false if signature.bytesize != 65
  msg32 = FFI::MemoryPointer.new(:uchar, 32).put_bytes(0, hash)

  version = signature.unpack('C')[0]
  return false if version < 27 or version > 34

  compressed = (version >= 31) ? (version -= 4; true) : false
  pubkey = recover_public_key_from_signature(msg32.read_string(32), signature, version-27, compressed)
end

.recover_public_key_from_signature(message_hash, signature, rec_id, is_compressed) ⇒ Object

Given the components of a signature and a selector value, recover and return the public key that generated the signature according to the algorithm in SEC1v2 section 4.1.6.

rec_id is an index from 0 to 3 that indicates which of the 4 possible keys is the correct one. Because the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the signature, or you must be willing to try each rec_id in turn until you find one that outputs the key you are expecting.

If this method returns nil, it means recovery was not possible and rec_id should be iterated.

Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the output is nil OR a key that is not the one you expect, you try again with the next rec_id.

message_hash = hash of the signed message.
signature = the R and S components of the signature, wrapped.
rec_id = which possible key to recover.
is_compressed = whether or not the original pubkey was compressed.

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# File 'lib/bitcoin/ffi/openssl.rb', line 171

def self.recover_public_key_from_signature(message_hash, signature, rec_id, is_compressed)
  return nil if rec_id < 0 or signature.bytesize != 65
  init_ffi_ssl

  signature = FFI::MemoryPointer.from_string(signature)
  #signature_bn = BN_bin2bn(signature, 65, BN_new())
  r = BN_bin2bn(signature[1], 32, BN_new())
  s = BN_bin2bn(signature[33], 32, BN_new())

  n, i = 0, rec_id / 2
  eckey = EC_KEY_new_by_curve_name(NID_secp256k1)

  EC_KEY_set_conv_form(eckey, POINT_CONVERSION_COMPRESSED) if is_compressed

  group = EC_KEY_get0_group(eckey)
  order = BN_new()
  EC_GROUP_get_order(group, order, nil)
  x = BN_dup(order)
  BN_mul_word(x, i)
  BN_add(x, x, r)

  field = BN_new()
  EC_GROUP_get_curve_GFp(group, field, nil, nil, nil)

  if BN_cmp(x, field) >= 0
    [r, s, order, x, field].each{|i| BN_free(i) }
    EC_KEY_free(eckey)
    return nil
  end

  big_r = EC_POINT_new(group)
  EC_POINT_set_compressed_coordinates_GFp(group, big_r, x, rec_id % 2, nil)

  big_q = EC_POINT_new(group)
  n = EC_GROUP_get_degree(group)
  e = BN_bin2bn(message_hash, message_hash.bytesize, BN_new())
  BN_rshift(e, e, 8 - (n & 7)) if 8 * message_hash.bytesize > n

  ctx = BN_CTX_new()
  zero, rr, sor, eor = BN_new(), BN_new(), BN_new(), BN_new()
  BN_set_word(zero, 0)
  BN_mod_sub(e, zero, e, order, ctx)
  BN_mod_inverse(rr, r, order, ctx)
  BN_mod_mul(sor, s, rr, order, ctx)
  BN_mod_mul(eor, e, rr, order, ctx)
  EC_POINT_mul(group, big_q, eor, big_r, sor, ctx)
  EC_KEY_set_public_key(eckey, big_q)
  BN_CTX_free(ctx)

  [r, s, order, x, field, e, zero, rr, sor, eor].each{|i| BN_free(i) }
  [big_r, big_q].each{|i| EC_POINT_free(i) }

  length = i2o_ECPublicKey(eckey, nil)
  buf = FFI::MemoryPointer.new(:uint8, length)
  ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, buf)
  pub_hex = if i2o_ECPublicKey(eckey, ptr) == length
    buf.read_string(length).unpack("H*")[0]
  end

  EC_KEY_free(eckey)

  pub_hex
end

.regenerate_key(private_key) ⇒ Object

resolve public from private key, using ffi and libssl.so example:

keypair = Bitcoin.generate_key; Bitcoin::OpenSSL_EC.regenerate_key(keypair.first) == keypair

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# File 'lib/bitcoin/ffi/openssl.rb', line 80

def self.regenerate_key(private_key)
  private_key = [private_key].pack("H*") if private_key.bytesize >= (32*2)
  private_key_hex = private_key.unpack("H*")[0]

  #private_key = FFI::MemoryPointer.new(:uint8, private_key.bytesize)
  #                .put_bytes(0, private_key, 0, private_key.bytesize)
  private_key = FFI::MemoryPointer.from_string(private_key)

  init_ffi_ssl
  eckey = EC_KEY_new_by_curve_name(NID_secp256k1)
  #priv_key = BN_bin2bn(private_key, private_key.size, BN_new())
  priv_key = BN_bin2bn(private_key, private_key.size-1, BN_new())

  group, order, ctx = EC_KEY_get0_group(eckey), BN_new(), BN_CTX_new()
  EC_GROUP_get_order(group, order, ctx)

  pub_key = EC_POINT_new(group)
  EC_POINT_mul(group, pub_key, priv_key, nil, nil, ctx)
  EC_KEY_set_private_key(eckey, priv_key)
  EC_KEY_set_public_key(eckey, pub_key)

  BN_free(order)
  BN_CTX_free(ctx)
  EC_POINT_free(pub_key)
  BN_free(priv_key)


  length = i2d_ECPrivateKey(eckey, nil)
  buf = FFI::MemoryPointer.new(:uint8, length)
  ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, buf)
  priv_hex = if i2d_ECPrivateKey(eckey, ptr) == length
    size = buf.get_array_of_uint8(8, 1)[0]
    buf.get_array_of_uint8(9, size).pack("C*").rjust(32, "\x00").unpack("H*")[0]
    #der_to_private_key( ptr.read_pointer.read_string(length).unpack("H*")[0] )
  end

  if priv_hex != private_key_hex
    raise "regenerated wrong private_key, raise here before generating a faulty public_key too!"
  end


  length = i2o_ECPublicKey(eckey, nil)
  buf = FFI::MemoryPointer.new(:uint8, length)
  ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, buf)
  pub_hex = if i2o_ECPublicKey(eckey, ptr) == length
    buf.read_string(length).unpack("H*")[0]
  end

  EC_KEY_free(eckey)

  [ priv_hex, pub_hex ]
end

.repack_der_signature(signature) ⇒ Object

repack signature for OpenSSL 1.0.1k handling of DER signatures github.com/bitcoin/bitcoin/pull/5634/files


358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# File 'lib/bitcoin/ffi/openssl.rb', line 358

def self.repack_der_signature(signature)
  init_ffi_ssl

  return false if signature.empty?

  # New versions of OpenSSL will reject non-canonical DER signatures. de/re-serialize first.
  norm_der = FFI::MemoryPointer.new(:pointer)
  sig_ptr  = FFI::MemoryPointer.new(:pointer).put_pointer(0, FFI::MemoryPointer.from_string(signature))

  norm_sig = d2i_ECDSA_SIG(nil, sig_ptr, signature.bytesize)

  derlen = i2d_ECDSA_SIG(norm_sig, norm_der)
  ECDSA_SIG_free(norm_sig)
  return false if derlen <= 0

  ret = norm_der.read_pointer.read_string(derlen)
  OPENSSL_free(norm_der.read_pointer)

  ret
end

.sign_compact(hash, private_key, public_key_hex = nil, pubkey_compressed = nil) ⇒ Object


279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# File 'lib/bitcoin/ffi/openssl.rb', line 279

def self.sign_compact(hash, private_key, public_key_hex = nil, pubkey_compressed = nil)
  msg32 = FFI::MemoryPointer.new(:uchar, 32).put_bytes(0, hash)

  private_key = [private_key].pack("H*") if private_key.bytesize >= 64
  private_key_hex = private_key.unpack("H*")[0]

  public_key_hex = regenerate_key(private_key_hex).last unless public_key_hex
  pubkey_compressed = (public_key_hex[0..1] == "04" ? false : true) unless pubkey_compressed

  init_ffi_ssl
  eckey = EC_KEY_new_by_curve_name(NID_secp256k1)
  priv_key = BN_bin2bn(private_key, private_key.bytesize, BN_new())

  group, order, ctx = EC_KEY_get0_group(eckey), BN_new(), BN_CTX_new()
  EC_GROUP_get_order(group, order, ctx)

  pub_key = EC_POINT_new(group)
  EC_POINT_mul(group, pub_key, priv_key, nil, nil, ctx)
  EC_KEY_set_private_key(eckey, priv_key)
  EC_KEY_set_public_key(eckey, pub_key)

  signature = ECDSA_do_sign(msg32, msg32.size, eckey)

  BN_free(order)
  BN_CTX_free(ctx)
  EC_POINT_free(pub_key)
  BN_free(priv_key)
  EC_KEY_free(eckey)

  buf, rec_id, head = FFI::MemoryPointer.new(:uint8, 32), nil, nil
  r, s = signature.get_array_of_pointer(0, 2).map{|i| BN_bn2bin(i, buf); buf.read_string(BN_num_bytes(i)).rjust(32, "\x00") }

  if signature.get_array_of_pointer(0, 2).all?{|i| BN_num_bits(i) <= 256 }
    4.times{|i|
      head = [ 27 + i + (pubkey_compressed ? 4 : 0) ].pack("C")
      if public_key_hex == recover_public_key_from_signature(msg32.read_string(32), [head, r, s].join, i, pubkey_compressed)
        rec_id = i; break
      end
    }
  end

  ECDSA_SIG_free(signature)

  [ head, [r,s] ].join if rec_id
end

.signature_to_low_s(signature) ⇒ Object

Regenerate a DER-encoded signature such that the S-value complies with the BIP62 specification.


238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# File 'lib/bitcoin/ffi/openssl.rb', line 238

def self.signature_to_low_s(signature)
  init_ffi_ssl

  buf = FFI::MemoryPointer.new(:uint8, 34)
  temp = signature.unpack("C*")
  length_r = temp[3]
  length_s = temp[5+length_r]
  sig = FFI::MemoryPointer.from_string(signature)

  # Calculate the lower s value
  s = BN_bin2bn(sig[6 + length_r], length_s, BN_new())
  eckey = EC_KEY_new_by_curve_name(NID_secp256k1)
  group, order, halforder, ctx = EC_KEY_get0_group(eckey), BN_new(), BN_new(), BN_CTX_new()

  EC_GROUP_get_order(group, order, ctx)
  BN_rshift1(halforder, order)
  if BN_cmp(s, halforder) > 0
    BN_sub(s, order, s)
  end

  BN_free(halforder)
  BN_free(order)
  BN_CTX_free(ctx)

  length_s = BN_bn2bin(s, buf)
  # p buf.read_string(length_s).unpack("H*")

  # Re-encode the signature in DER format
  sig = [0x30, 0, 0x02, length_r]
  sig.concat(temp.slice(4, length_r))
  sig << 0x02
  sig << length_s
  sig.concat(buf.read_string(length_s).unpack("C*"))
  sig[1] = sig.size - 2

  BN_free(s)
  EC_KEY_free(eckey)

  sig.pack("C*")
end