Module: Bitcoin::Util
- Included in:
- Bitcoin
- Defined in:
- lib/bitcoin.rb
Instance Method Summary collapse
-
#address_type(address) ⇒ Object
get type of given
address
. - #address_version ⇒ Object
-
#base58_checksum?(base58) ⇒ Boolean
(also: #address_checksum?)
verify base58 checksum for given
base58
data. - #base58_to_int(base58_val) ⇒ Object
- #bitcoin_byte_hash(bytes) ⇒ Object
- #bitcoin_elliptic_curve ⇒ Object
- #bitcoin_hash(hex) ⇒ Object
- #bitcoin_mrkl(a, b) ⇒ Object
- #bitcoin_signed_message_hash(message) ⇒ Object
-
#block_average_hashing_time(target_nbits, hashes_per_second) ⇒ Object
average time to find a block in seconds with the current target.
-
#block_average_mining_time(block_nbits, block_height, mega_hashes_per_second, target_btc = 1.0) ⇒ Object
average mining time (in days) using Mh/s to get btc.
- #block_creation_reward(block_height) ⇒ Object
-
#block_difficulty(target_nbits) ⇒ Object
current difficulty as a multiple of the minimum difficulty (highest target).
- #block_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
-
#block_hashes_to_win(target_nbits) ⇒ Object
average number of hashes required to win a block with the current target.
-
#block_new_target(prev_height, prev_block_time, prev_block_bits, last_retarget_time) ⇒ Object
Calculate new difficulty target.
-
#block_next_retarget(block_height) ⇒ Object
block count when the next retarget will take place.
-
#block_probability(target_nbits) ⇒ Object
probability of a single hash solving a block with the current difficulty.
- #block_scrypt_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
-
#blockchain_total_btc(height) ⇒ Object
shows the total number of Bitcoins in circulation, reward era and reward in that era.
-
#checksum(hex) ⇒ Object
checksum is a 4 bytes sha256-sha256 hexdigest.
- #decode_base58(base58_val) ⇒ Object (also: #base58_to_hex)
-
#decode_compact_bits(bits) ⇒ Object
target compact bits (int) to bignum hex.
- #decode_segwit_address(address) ⇒ Object
- #decode_target(target_bits) ⇒ Object
- #encode_address(hex, version) ⇒ Object
- #encode_base58(hex) ⇒ Object
-
#encode_compact_bits(target) ⇒ Object
target bignum hex to compact bits (int).
- #encode_segwit_address(version, program_hex) ⇒ Object
- #generate_address ⇒ Object
- #generate_key ⇒ Object
-
#hash160(hex) ⇒ Object
hash160 is a 20 bytes (160bits) rmd610-sha256 hexdigest.
-
#hash160_from_address(address) ⇒ Object
get hash160 for given
address
. - #hash160_to_address(hex) ⇒ Object
- #hash160_to_p2sh_address(hex) ⇒ Object
-
#hash_mrkl_branch(tx, target) ⇒ Object
get merkle branch connecting given
target
to the merkle root oftx
list. -
#hash_mrkl_tree(tx) ⇒ Object
get merkle tree for given
tx
list. - #inspect_key(key) ⇒ Object
- #int_to_base58(int_val, leading_zero_bytes = 0) ⇒ Object
- #litecoin_hash(hex) ⇒ Object
-
#mrkl_branch_root(branch, target, idx) ⇒ Object
get merkle root from
branch
andtarget
. - #open_key(private_key, public_key = nil) ⇒ Object
- #p2sh_version ⇒ Object
- #pubkey_to_address(pubkey) ⇒ Object
- #pubkeys_to_p2sh_multisig_address(m, *pubkeys) ⇒ Object
- #regenerate_public_key(private_key) ⇒ Object
- #sha256(hex) ⇒ Object
- #sign_data(key, data) ⇒ Object
- #sign_message(private_key_hex, public_key_hex, message) ⇒ Object
-
#valid_address?(address) ⇒ Boolean
check if given
address
is valid. -
#valid_pubkey?(pubkey) ⇒ Boolean
check if given
pubkey
is valid. - #verify_message(address, signature, message) ⇒ Object
- #verify_signature(hash, signature, public_key) ⇒ Object
- #version_bytes ⇒ Object
Instance Method Details
#address_type(address) ⇒ Object
get type of given address
.
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# File 'lib/bitcoin.rb', line 106 def address_type(address) segwit_decoded = decode_segwit_address(address) rescue nil if segwit_decoded witness_version, witness_program_hex = segwit_decoded witness_program = [witness_program_hex].pack("H*") if witness_version == 0 && witness_program.bytesize == 20 return :witness_v0_keyhash end if witness_version == 0 && witness_program.bytesize == 32 return :witness_v0_scripthash end end hex = decode_base58(address) rescue nil target_size = (version_bytes + 20 + 4) * 2 # version_bytes + 20 bytes hash + 4 bytes checksum if hex && hex.bytesize == target_size && address_checksum?(address) # Litecoin updates the P2SH version byte, and this method should recognize both. p2sh_versions = [p2sh_version] if Bitcoin.network[:legacy_p2sh_versions] p2sh_versions += Bitcoin.network[:legacy_p2sh_versions] end case hex[0...(version_bytes * 2)] when address_version return :hash160 when *p2sh_versions return :p2sh end end nil end |
#address_version ⇒ Object
49 |
# File 'lib/bitcoin.rb', line 49 def address_version; Bitcoin.network[:address_version]; end |
#base58_checksum?(base58) ⇒ Boolean Also known as: address_checksum?
verify base58 checksum for given base58
data.
66 67 68 69 70 |
# File 'lib/bitcoin.rb', line 66 def base58_checksum?(base58) hex = decode_base58(base58) rescue nil return false unless hex checksum(hex[0...(version_bytes + 20) * 2]) == hex[-8..-1] end |
#base58_to_int(base58_val) ⇒ Object
221 222 223 224 225 226 227 228 229 |
# File 'lib/bitcoin.rb', line 221 def base58_to_int(base58_val) alpha = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz" int_val, base = 0, alpha.size base58_val.reverse.each_char.with_index do |char,index| raise ArgumentError, 'Value not a valid Base58 String.' unless char_index = alpha.index(char) int_val += char_index*(base**index) end int_val end |
#bitcoin_byte_hash(bytes) ⇒ Object
312 313 314 |
# File 'lib/bitcoin.rb', line 312 def bitcoin_byte_hash(bytes) Digest::SHA256.digest(Digest::SHA256.digest(bytes)) end |
#bitcoin_elliptic_curve ⇒ Object
288 289 290 |
# File 'lib/bitcoin.rb', line 288 def bitcoin_elliptic_curve ::OpenSSL::PKey::EC.new("secp256k1") end |
#bitcoin_hash(hex) ⇒ Object
306 307 308 309 310 |
# File 'lib/bitcoin.rb', line 306 def bitcoin_hash(hex) Digest::SHA256.digest( Digest::SHA256.digest( [hex].pack("H*").reverse ) ).reverse.bth end |
#bitcoin_mrkl(a, b) ⇒ Object
316 |
# File 'lib/bitcoin.rb', line 316 def bitcoin_mrkl(a, b); bitcoin_hash(b + a); end |
#bitcoin_signed_message_hash(message) ⇒ Object
421 422 423 424 425 426 427 428 429 |
# File 'lib/bitcoin.rb', line 421 def () = .dup.force_encoding('binary') magic = Bitcoin.network[:message_magic] buf = Protocol.pack_var_int(magic.bytesize) + magic buf << Protocol.pack_var_int(.bytesize) + Digest::SHA256.digest(Digest::SHA256.digest(buf)) end |
#block_average_hashing_time(target_nbits, hashes_per_second) ⇒ Object
average time to find a block in seconds with the current target. (nbits)
506 507 508 |
# File 'lib/bitcoin.rb', line 506 def block_average_hashing_time(target_nbits, hashes_per_second) block_hashes_to_win(target_nbits) / hashes_per_second end |
#block_average_mining_time(block_nbits, block_height, mega_hashes_per_second, target_btc = 1.0) ⇒ Object
average mining time (in days) using Mh/s to get btc
511 512 513 514 515 |
# File 'lib/bitcoin.rb', line 511 def block_average_mining_time(block_nbits, block_height, mega_hashes_per_second, target_btc=1.0) seconds = block_average_hashing_time(block_nbits, mega_hashes_per_second * 1_000_000) reward = block_creation_reward(block_height) / COIN # satoshis to btc (days = seconds / 60 / 60 / 24) * (target_btc / reward) end |
#block_creation_reward(block_height) ⇒ Object
530 531 532 |
# File 'lib/bitcoin.rb', line 530 def block_creation_reward(block_height) Bitcoin.network[:reward_base] / (2 ** (block_height / Bitcoin.network[:reward_halving].to_f).floor) end |
#block_difficulty(target_nbits) ⇒ Object
current difficulty as a multiple of the minimum difficulty (highest target).
453 454 455 456 457 458 459 |
# File 'lib/bitcoin.rb', line 453 def block_difficulty(target_nbits) # max_target = 0x00000000ffff0000000000000000000000000000000000000000000000000000 # current_target = Bitcoin.decode_compact_bits(target_nbits).to_i(16) # "%.7f" % (max_target / current_target.to_f) bits, max_body, scaland = target_nbits, Math.log(0x00ffff), Math.log(256) "%.7f" % Math.exp(max_body - Math.log(bits&0x00ffffff) + scaland * (0x1d - ((bits&0xff000000)>>24))) end |
#block_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
318 319 320 321 322 |
# File 'lib/bitcoin.rb', line 318 def block_hash(prev_block, mrkl_root, time, bits, nonce, ver) h = "%08x%08x%08x%064s%064s%08x" % [nonce, bits, time, mrkl_root, prev_block, ver] bitcoin_hash(h) end |
#block_hashes_to_win(target_nbits) ⇒ Object
average number of hashes required to win a block with the current target. (nbits)
494 495 496 497 |
# File 'lib/bitcoin.rb', line 494 def block_hashes_to_win(target_nbits) current_target = decode_compact_bits(target_nbits).to_i(16) 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff / current_target end |
#block_new_target(prev_height, prev_block_time, prev_block_bits, last_retarget_time) ⇒ Object
Calculate new difficulty target. Note this takes in details of the preceeding block, not the current one.
prev_height is the height of the block before the retarget occurs prev_block_time “time” field from the block before the retarget occurs prev_block_bits “bits” field from the block before the retarget occurs (target as a compact value) last_retarget_time is the “time” field from the block when a retarget last occurred
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
# File 'lib/bitcoin.rb', line 468 def block_new_target(prev_height, prev_block_time, prev_block_bits, last_retarget_time) # target interval - what is the ideal interval between the blocks retarget_time = Bitcoin.network[:retarget_time] actual_time = prev_block_time - last_retarget_time min = retarget_time / 4 max = retarget_time * 4 actual_time = min if actual_time < min actual_time = max if actual_time > max # It could be a bit confusing: we are adjusting difficulty of the previous block, while logically # we should use difficulty of the previous retarget block prev_target = decode_compact_bits(prev_block_bits).to_i(16) new_target = prev_target * actual_time / retarget_time if new_target < Bitcoin.decode_compact_bits(Bitcoin.network[:proof_of_work_limit]).to_i(16) encode_compact_bits(new_target.to_s(16)) else Bitcoin.network[:proof_of_work_limit] end end |
#block_next_retarget(block_height) ⇒ Object
block count when the next retarget will take place.
448 449 450 |
# File 'lib/bitcoin.rb', line 448 def block_next_retarget(block_height) (block_height + (RETARGET_INTERVAL-block_height.divmod(RETARGET_INTERVAL).last)) - 1 end |
#block_probability(target_nbits) ⇒ Object
probability of a single hash solving a block with the current difficulty.
500 501 502 503 |
# File 'lib/bitcoin.rb', line 500 def block_probability(target_nbits) current_target = decode_compact_bits(target_nbits).to_i(16) "%.55f" % (current_target.to_f / 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) end |
#block_scrypt_hash(prev_block, mrkl_root, time, bits, nonce, ver) ⇒ Object
335 336 337 338 339 |
# File 'lib/bitcoin.rb', line 335 def block_scrypt_hash(prev_block, mrkl_root, time, bits, nonce, ver) h = "%08x%08x%08x%064s%064s%08x" % [nonce, bits, time, mrkl_root, prev_block, ver] litecoin_hash(h) end |
#blockchain_total_btc(height) ⇒ Object
shows the total number of Bitcoins in circulation, reward era and reward in that era.
518 519 520 521 522 523 524 525 526 527 528 |
# File 'lib/bitcoin.rb', line 518 def blockchain_total_btc(height) reward, interval = Bitcoin.network[:reward_base], Bitcoin.network[:reward_halving] total_btc = reward reward_era, remainder = (height).divmod(interval) reward_era.times{ total_btc += interval * reward reward = reward / 2 } total_btc += remainder * reward [total_btc, reward_era+1, reward, height] end |
#checksum(hex) ⇒ Object
checksum is a 4 bytes sha256-sha256 hexdigest.
60 61 62 63 |
# File 'lib/bitcoin.rb', line 60 def checksum(hex) b = [hex].pack("H*") # unpack hex Digest::SHA256.hexdigest( Digest::SHA256.digest(b) )[0...8] end |
#decode_base58(base58_val) ⇒ Object Also known as: base58_to_hex
236 237 238 239 240 241 242 |
# File 'lib/bitcoin.rb', line 236 def decode_base58(base58_val) s = base58_to_int(base58_val).to_s(16); s = (s.bytesize.odd? ? '0'+s : s) s = '' if s == '00' leading_zero_bytes = (base58_val.match(/^([1]+)/) ? $1 : '').size s = ("00"*leading_zero_bytes) + s if leading_zero_bytes > 0 s end |
#decode_compact_bits(bits) ⇒ Object
target compact bits (int) to bignum hex
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# File 'lib/bitcoin.rb', line 246 def decode_compact_bits(bits) if Bitcoin.network_project == :dogecoin bytes = Array.new(size=((bits >> 24) & 255), 0) bytes[0] = (bits >> 16) & 0x7f if size >= 1 bytes[1] = (bits >> 8) & 255 if size >= 2 bytes[2] = (bits ) & 255 if size >= 3 target = bytes.pack("C*").unpack("H*")[0].rjust(64, '0') # Bit number 24 represents the sign if (bits & 0x00800000) != 0 "-" + target else target end else bytes = Array.new(size=((bits >> 24) & 255), 0) bytes[0] = (bits >> 16) & 255 if size >= 1 bytes[1] = (bits >> 8) & 255 if size >= 2 bytes[2] = (bits ) & 255 if size >= 3 bytes.pack("C*").unpack("H*")[0].rjust(64, '0') end end |
#decode_segwit_address(address) ⇒ Object
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# File 'lib/bitcoin.rb', line 187 def decode_segwit_address(address) hrp = Bitcoin.network[:bech32_hrp] return nil if hrp.nil? actual_hrp, data = Bitcoin::Bech32.decode(address) return nil if actual_hrp.nil? length = data.size return nil if length == 0 || length > 65 return nil if hrp != actual_hrp return nil if data[0] > 16 program = Bitcoin::Bech32.convert_bits(data[1..-1], from_bits: 5, to_bits: 8, pad: false) return nil if program.nil? length = program.size return nil if length < 2 || length > 40 return nil if data[0] == 0 && length != 20 && length != 32 program_hex = program.pack("C*").unpack("H*").first return [data[0], program_hex] end |
#decode_target(target_bits) ⇒ Object
279 280 281 282 283 284 285 286 |
# File 'lib/bitcoin.rb', line 279 def decode_target(target_bits) case target_bits when Bitcoin::Integer [ decode_compact_bits(target_bits).to_i(16), target_bits ] when String [ target_bits.to_i(16), encode_compact_bits(target_bits) ] end end |
#encode_address(hex, version) ⇒ Object
154 155 156 157 |
# File 'lib/bitcoin.rb', line 154 def encode_address(hex, version) hex = version + hex encode_base58(hex + checksum(hex)) end |
#encode_base58(hex) ⇒ Object
231 232 233 234 |
# File 'lib/bitcoin.rb', line 231 def encode_base58(hex) leading_zero_bytes = (hex.match(/^([0]+)/) ? $1 : '').size / 2 ("1"*leading_zero_bytes) + int_to_base58( hex.to_i(16) ) end |
#encode_compact_bits(target) ⇒ Object
target bignum hex to compact bits (int)
269 270 271 272 273 274 275 276 277 |
# File 'lib/bitcoin.rb', line 269 def encode_compact_bits(target) bytes = OpenSSL::BN.new(target, 16).to_mpi size = bytes.size - 4 nbits = size << 24 nbits |= (bytes[4] << 16) if size >= 1 nbits |= (bytes[5] << 8) if size >= 2 nbits |= (bytes[6] ) if size >= 3 nbits end |
#encode_segwit_address(version, program_hex) ⇒ Object
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# File 'lib/bitcoin.rb', line 169 def encode_segwit_address(version, program_hex) hrp = Bitcoin.network[:bech32_hrp] raise "Invalid network" if hrp.nil? program = [program_hex].pack("H*") return nil if version > 16 length = program.size return nil if version == 0 && length != 20 && length != 32 return nil if length < 2 || length > 40 data = [ version ] + Bitcoin::Bech32.convert_bits(program.unpack("C*"), from_bits: 8, to_bits: 5, pad: true) address = Bitcoin::Bech32.encode(hrp, data) return address.nil? ? nil : address end |
#generate_address ⇒ Object
301 302 303 304 |
# File 'lib/bitcoin.rb', line 301 def generate_address prvkey, pubkey = generate_key [ pubkey_to_address(pubkey), prvkey, pubkey, hash160(pubkey) ] end |
#generate_key ⇒ Object
292 293 294 295 |
# File 'lib/bitcoin.rb', line 292 def generate_key key = bitcoin_elliptic_curve.generate_key inspect_key( key ) end |
#hash160(hex) ⇒ Object
hash160 is a 20 bytes (160bits) rmd610-sha256 hexdigest.
54 55 56 57 |
# File 'lib/bitcoin.rb', line 54 def hash160(hex) bytes = [hex].pack("H*") Digest::RMD160.hexdigest Digest::SHA256.digest(bytes) end |
#hash160_from_address(address) ⇒ Object
get hash160 for given address
. returns nil if address is invalid.
93 94 95 96 97 98 99 100 101 102 103 |
# File 'lib/bitcoin.rb', line 93 def hash160_from_address(address) case address_type(address) when :witness_v0_keyhash _, witness_program_hex = decode_segwit_address(address) witness_program_hex when :hash160, :p2sh start_idx = version_bytes * 2 stop_idx = start_idx + 40 # 20 bytes (2 chars per byte) decode_base58(address)[start_idx...stop_idx] end end |
#hash160_to_address(hex) ⇒ Object
146 147 148 |
# File 'lib/bitcoin.rb', line 146 def hash160_to_address(hex) encode_address hex, address_version end |
#hash160_to_p2sh_address(hex) ⇒ Object
150 151 152 |
# File 'lib/bitcoin.rb', line 150 def hash160_to_p2sh_address(hex) encode_address hex, p2sh_version end |
#hash_mrkl_branch(tx, target) ⇒ Object
get merkle branch connecting given target
to the merkle root of tx
list
352 353 354 355 356 357 358 359 360 361 362 363 364 |
# File 'lib/bitcoin.rb', line 352 def hash_mrkl_branch(tx, target) return [ nil ] if tx != tx.uniq branch, chunks = [], [ tx.dup ] while chunks.last.size >= 2 chunks << chunks.last.each_slice(2).map {|a, b| hash = bitcoin_mrkl( a, b || a ) next hash unless [a, b].include?(target) branch << (a == target ? (b || a) : a) target = hash } end branch end |
#hash_mrkl_tree(tx) ⇒ Object
get merkle tree for given tx
list.
342 343 344 345 346 347 348 349 |
# File 'lib/bitcoin.rb', line 342 def hash_mrkl_tree(tx) return [nil] if tx != tx.uniq chunks = [ tx.dup ] while chunks.last.size >= 2 chunks << chunks.last.each_slice(2).map {|a, b| bitcoin_mrkl( a, b || a ) } end chunks.flatten end |
#inspect_key(key) ⇒ Object
297 298 299 |
# File 'lib/bitcoin.rb', line 297 def inspect_key(key) [ key.private_key_hex, key.public_key_hex ] end |
#int_to_base58(int_val, leading_zero_bytes = 0) ⇒ Object
211 212 213 214 215 216 217 218 219 |
# File 'lib/bitcoin.rb', line 211 def int_to_base58(int_val, leading_zero_bytes=0) alpha = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz" base58_val, base = '', alpha.size while int_val > 0 int_val, remainder = int_val.divmod(base) base58_val = alpha[remainder] + base58_val end base58_val end |
#litecoin_hash(hex) ⇒ Object
324 325 326 327 328 329 330 331 332 333 |
# File 'lib/bitcoin.rb', line 324 def litecoin_hash(hex) bytes = [hex].pack("H*").reverse begin require "scrypt" unless defined?(::SCrypt) hash = SCrypt::Engine.__sc_crypt(bytes, bytes, 1024, 1, 1, 32) rescue LoadError hash = Litecoin::Scrypt.scrypt_1024_1_1_256_sp(bytes) end hash.reverse.unpack("H*")[0] end |
#mrkl_branch_root(branch, target, idx) ⇒ Object
get merkle root from branch
and target
.
367 368 369 370 371 372 373 374 |
# File 'lib/bitcoin.rb', line 367 def mrkl_branch_root(branch, target, idx) branch.each do |hash| a, b = *( idx & 1 == 0 ? [target, hash] : [hash, target] ) idx >>= 1; target = bitcoin_mrkl( a, b ) end target end |
#open_key(private_key, public_key = nil) ⇒ Object
409 410 411 412 413 414 415 |
# File 'lib/bitcoin.rb', line 409 def open_key(private_key, public_key=nil) key = bitcoin_elliptic_curve key.private_key = ::OpenSSL::BN.from_hex(private_key) public_key = regenerate_public_key(private_key) unless public_key key.public_key = ::OpenSSL::PKey::EC::Point.from_hex(key.group, public_key) key end |
#p2sh_version ⇒ Object
51 |
# File 'lib/bitcoin.rb', line 51 def p2sh_version; Bitcoin.network[:p2sh_version]; end |
#pubkey_to_address(pubkey) ⇒ Object
159 160 161 |
# File 'lib/bitcoin.rb', line 159 def pubkey_to_address(pubkey) hash160_to_address( hash160(pubkey) ) end |
#pubkeys_to_p2sh_multisig_address(m, *pubkeys) ⇒ Object
163 164 165 166 |
# File 'lib/bitcoin.rb', line 163 def pubkeys_to_p2sh_multisig_address(m, *pubkeys) redeem_script = Bitcoin::Script.to_p2sh_multisig_script(m, *pubkeys).last return Bitcoin.hash160_to_p2sh_address(Bitcoin.hash160(redeem_script.hth)), redeem_script end |
#regenerate_public_key(private_key) ⇒ Object
417 418 419 |
# File 'lib/bitcoin.rb', line 417 def regenerate_public_key(private_key) OpenSSL_EC.regenerate_key(private_key)[1] end |
#sha256(hex) ⇒ Object
142 143 144 |
# File 'lib/bitcoin.rb', line 142 def sha256(hex) Digest::SHA256.hexdigest([hex].pack("H*")) end |
#sign_data(key, data) ⇒ Object
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
# File 'lib/bitcoin.rb', line 376 def sign_data(key, data) sig = nil loop { sig = key.dsa_sign_asn1(data) sig = if Script.is_low_der_signature?(sig) sig else Bitcoin::OpenSSL_EC.signature_to_low_s(sig) end buf = sig + [Script::SIGHASH_TYPE[:all]].pack("C") # is_der_signature expects sig + sighash_type format if Script.is_der_signature?(buf) break else p ["Bitcoin#sign_data: invalid der signature generated, trying again.", data.unpack("H*")[0], sig.unpack("H*")[0]] end } return sig end |
#sign_message(private_key_hex, public_key_hex, message) ⇒ Object
431 432 433 434 435 |
# File 'lib/bitcoin.rb', line 431 def (private_key_hex, public_key_hex, ) hash = () signature = OpenSSL_EC.sign_compact(hash, private_key_hex, public_key_hex) { 'address' => pubkey_to_address(public_key_hex), 'message' => , 'signature' => [ signature ].pack("m0") } end |
#valid_address?(address) ⇒ Boolean
check if given address
is valid. this means having a correct version byte, length and checksum.
75 76 77 |
# File 'lib/bitcoin.rb', line 75 def valid_address?(address) address_type(address) != nil end |
#valid_pubkey?(pubkey) ⇒ Boolean
check if given pubkey
is valid.
80 81 82 83 84 85 86 87 88 89 90 |
# File 'lib/bitcoin.rb', line 80 def valid_pubkey?(pubkey) ::OpenSSL::PKey::EC::Point.from_hex(bitcoin_elliptic_curve.group, pubkey) true rescue OpenSSL::PKey::EC::Point::Error false rescue OpenSSL::BNError # Occasionally, a malformed value will fail hex decoding completely and # instead of raising an `OpenSSL::PKey::EC::Point::Error` will raise this # error. We capture this failure mode here as well. false end |
#verify_message(address, signature, message) ⇒ Object
437 438 439 440 441 442 443 444 445 |
# File 'lib/bitcoin.rb', line 437 def (address, signature, ) signature = signature.unpack("m0")[0] rescue nil # decode base64 return false unless valid_address?(address) return false unless signature return false unless signature.bytesize == 65 hash = () pubkey = OpenSSL_EC.recover_compact(hash, signature) pubkey_to_address(pubkey) == address if pubkey end |
#verify_signature(hash, signature, public_key) ⇒ Object
396 397 398 399 400 401 402 403 404 405 406 407 |
# File 'lib/bitcoin.rb', line 396 def verify_signature(hash, signature, public_key) key = bitcoin_elliptic_curve key.public_key = ::OpenSSL::PKey::EC::Point.from_hex(key.group, public_key) signature = Bitcoin::OpenSSL_EC.repack_der_signature(signature) if signature key.dsa_verify_asn1(hash, signature) else false end rescue OpenSSL::PKey::ECError, OpenSSL::PKey::EC::Point::Error, OpenSSL::BNError false end |
#version_bytes ⇒ Object
50 |
# File 'lib/bitcoin.rb', line 50 def version_bytes; address_version.size / 2; end |